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Helmholtz Association – Facts and Figures

• 19 research centers
• Budget: 5 Billion €, more than 42.000 staff

6 Research Fields

6 centers represent the Research Field Health.

Germany´s largest research organization
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German Research Center for Environmental Health  

BIGCHEM GmbH is a spin-off of the center
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PPI interface

Hypothesized Target for African sleeping sickness

Neufeld, C. … Sattler, M.  (2009) EMBO J. 28: 745-754 Peroxins Pex14/Pex5 are responsible 
for transport of  glycosomal enzymes 
from cytoplasm to glycosomes for 
glucose metabolism 5
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African trypanosomiasis: hit identification
G. Popowicz

Dawidowski, M., … Popowicz, G. M. Science 2017, 355, 1416-1420. 6



Target Discovery 
and Validation Lead Discovery Lead Optimisation

ADME/DMPK
Lead Profiling
ADME/DMPK Clinics Approval

PHARMACOLOGY Safety and EfficacyADME/DMPK 

500.000 (or billions 
virtual) Cpds 

< 5000 
Cpds

< 500
Cpds

< 5
Cpds 1 CC 1 drug

2-3 Years 0.5-1 Years 1-3 Years 1-2 Years
5-6 Years 1-2 Years

Pre-clinics Clinics

Traditional Process of Drug Discovery

• Profiling and screening in the virtual space helps to identify the most promising candidates

Slide courtesy of Dr. C. Höfer, Merck
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ADMETox filters in Bayer

Göller, A.H. et al  Drug Discov. Today 2020, 25 (9), 1702-1709. 9



OCHEM https://ochem.eu
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https://ochem.eu/
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Molecules

Articles

Conditions

Properties

Users
Names

OCHEM Database schema

Units
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Modeling iterative workflow

Select dataset
• Over >3M measurements
• Over 400 properties

Select descriptors
(24 packages:0D, 1D, 2D 3D)

Build model
(MLR, ANN, KNN, Random 

Forest, SVM, FSMLR, 
TransformerCNN)

Validate
Internal (N-Fold cross-

validation, Bagging)
External validation
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  Saccharin

1D   2D  3D

C7H5NO3S   

Representation of chemical structures
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Definition of molecular descriptors

The molecular descriptor is the final result of a logic and 
mathematical procedure which transforms chemical 
information encoded within a symbolic representation of a 
molecule into a useful number, or the result of some 
standardized experiment.

Roberto Todeschini & Viviana Consonni
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Examples of descriptors
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QSPR/QSAR modelling in OCHEM
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Examples of recent studies using OCHEM
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New low-molecular bioregulators as effective agents against multi-drug 
resistant Acinetobacter baumannii clinical isolate
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https://ochem.eu/article/135195 
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https://ochem.eu/article/135195


OCHEM modelling

• Comprehensive modeling
• Multitask learning (up to 100 

properties)
• >20 descriptors blocks
• GPU + CPU modern methods 

Supports models 
• >1,000,000 compounds
• >1,000 servers
• up to 1GB in size (Java limit)

• Model private/publishing
• Conditions, external descriptors
• ToxAlerts
• Consensus models

* Sparse format, DOI:10.1186/s13321-016-0113-y
21



Consensus modelling

Best method(s) are defined
Average prediction of models is used
The consensus prediction is more accurate and stable
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Novotarskyi, S. et al. Chem. Res. Toxicol. 2016, 29, 768-75. 25



Model to predict Lowest Effect Level (training set)



Best Balanced accuracy - Abdelaziz, A. et al. Front. Environ. Sci. 2016, 4, 2. 
26



Multi-task learning

  		A/B

A B
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Multi-task learning
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Problem:

• prediction of tissue-air partition 
coefficients 
• small datasets 30-100 molecules 
(human & rat data)

Results:

simultaneous prediction of several 
properties increased the accuracy 
of models

Varnek, A. et al J. Chem. Inf. Model. 2009, 49, 133-44.
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Analysis of toxicity of chemical compounds

toxicity measurements 
from RTECS*129 142
unique molecular 
structures 87 064
toxicity endpoints29

*RTECS: Registry of Toxic Effects of Chemical Substances

Sosnin, S. et al.  J. Chem. Inf. Model., 2018, 59:1062-1072.
39



RMSE for different toxicities using CDK descriptors and DNN
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Sosnin, S.; Karlov, D.; Tetko, I.V.; Fedorov, M.V. A comparative study of prediction of multi-
target toxicity for a broad chemical space. J Chem Inf Model. 2018, 59, 1062-1072. 40



Machine Learning directly from chemical structures

Text processing:   convolutional neural networks, transformers, LSTM

Graph processing: message passing neural networks

Saccharin:   c1ccc2c(c1)C(=O)NS2(=O)=O

33



Image augmentation

https://github.com/aleju/imgaug



Machine Learning to canonise chemical structures

SMILES canonization can be done by machine learning!

ChEMBL database (1.7M) was used, >95% accuracy
34



Machine Learning directly from chemical structures

P. Karpov, G. Godin, I. V. Tetko, J. Cheminform. 2020, 12, 17.

https://github.com/bigchem/transformer-cnn 35

https://github.com/bigchem/transformer-cnn


Convolutional vs. Descriptor-based Neural Neural Networks

Coefficient of determination, r2. Transformer CNN provides similar or better accuracy compared to 
traditional methods based on descriptors even for small datasets (few hundrends compounds!). 
P. Karpov, G. Godin, I. V. Tetko, J. Cheminform. 2020, 12, 17.
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Winning model: 
OCHEM-generated consensus 

model

Andrea Kopp
SLAS Europe 2023

25.05.2023

Team of Igor Tetko with Peter Hartog, Martin Šícho and Guillaume Godin

Kopp at al, DOI: 10.26434/chemrxiv-2023-p8qcv
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https://doi.org/10.26434/chemrxiv-2023-p8qcv


Challenge set-up

93%

4% 3%

high medium low

• Experimentally: Nephelometer measures undissolved sediment

• Classification into low, medium and high soluble with phenytoin 
and amiodarone as thresholds

• 70k training datapoints, 15k public leaderboard, 15k private 
leaderboard

• Stratified random sampling

Imbalance of data
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Workflow with OCHEM

Data preparation Model calculation

Consensus 
model

Evaluation

- Standardization
- Neutralize
- Remove salts
- Clean structure

Classification
with thresholds

Methods
- Linear Regression
- Random forests
- Boosting
- Deep neural networks
- Convolutional NN
- …

3300 properties
in 28 single models Average

Metrics
- ROC-AUC
- (Balanced) accuracy
- RMSE

Descriptor sets
- ALogPS, OEstate
- CDDD
- RDKit
- Fragmentor
- …

Database

Probability prediction of test molecules

Public scoring
Highest κ2 = 0.147

Assumption of class frequencies
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Molecular representation

Categorical boosting algorithm (decision-tree based)

Neural Network with seven layers

Convolutional Neural Network

Graph Convolutional Neural Network

@Peter Hartog with BioRender.com

Kopp at al, DOI: 10.26434/chemrxiv-2023-p8qcv
31
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Quadratic kappa metric scores

0.140 0.114

0.147 0.116

0.132 0.107

0.117 0.096

0.131 0.115

0.132 0.104

0.129 0.103

Public leaderboard Private 
leaderboard

Consensus 
modeling 
improves 
individual 

predictions

28 models

8 models

9 models

10 models

Kopp at al, DOI: 10.26434/chemrxiv-2023-p8qcv

@Peter Hartog with BioRender.com
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https://doi.org/10.26434/chemrxiv-2023-p8qcv


openOCHEM
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Retrosynthesis – it is a problem solving technique for 
transforming the structure of synthetic target molecule (TM) 
to a sequence of progressively simpler structures along the 
pathway which ultimately leads to simple or commercially 
available starting materials for a chemical synthesis.

Elias James Corey
Nobel Prize 1990

TM Transformations:

FGA – function group addition
FGI -  function group interconversion
FGR – function group removing

Cyclisation, Fisher indole, Mannich, 
Michael, Oxidation, Rearrangement, 
and many others.

These rules make core of the first 
programs OCSS (organic chemical 
simulation of synthesis) and LHASA (logic 
and heuristics applied to synthetic 
analysis) 



Natural Language Processing (NLP) for reaction predictions



c1ccccc1C(=O)O.CC(O)C   >  [H+] >  c1ccccc1C(=O)OC(C)C.O

CC=CC=C.C=CC(=O)OC  >  C(Cl)(Cl)(Cl)Cl >  CC1C=CCCC1C(=O)OC
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Reaction prediction task can be treated as a neural 
machine translation



Stacked LSTM are difficult to train 
especially for long sentences  

Nam and Kim, arXiv preprint 
arXiv:1612.09529 (2016)



https://arxiv.org/abs/1706.03762   (Attention is all you need)
c1ccccc1C(=O)O.CC(O)C

c1ccccc1C(=O)OC(C)C.O

The Transformer architecture is currently the state of 
art for organic reactions

https://arxiv.org/abs/1706.03762


Direct synthesis USPTO-500k

Schwaller P. (Seq2Seq) 2018 80,3
Jin. W (Weisfeiler-Lehman network) 2017 79,6
Kien D. (Policy network) 2019 82,4
Coley C. (Graph convolution) 2018 85,6
Schwaller P. (Transformer) 2018 90,4

74 76 78 80 82 84 86 88 90 92

Schwaller P. (Seq2Seq) 2018

Jin. W (Weisfeiler-Lehman network) 2017

Kien D. (Policy network) 2019

Coley C. (Graph convolution) 2018

Schwaller P. (Transformer) 2018

Retro-synthesis USPTO 50k

Rule-Base 34,8
Pande V. et al 2016 37,4
ICANN 2019 (our work) 42,7

0 10 20 30 40 50

Rule-Base

Pande V. 2016

Our work 2019

Synthesis planning (top-1)

Karpov, P.; Godin, G.; Tetko, I. V. In A Transformer Model for Retrosynthesis, Artificial Neural Networks and Machine Learning – ICANN 
2019: Workshop and Special Sessions, Münich, 17th - 19th September 2019; Tetko, I. V.; Kůrková, V.; Karpov, P.; Theis, F., Eds. Springer 
International Publishing: Münich, 2019; pp 817-830. 



Image augmentation

https://github.com/aleju/imgaug



Direct synthesis (500k), USPTO-MIT
Schwaller P. (Seq2Seq) 2018 80,3
Jin. W (Weisfeiler-Lehman network) 2017 79,6
Kien D. (Policy network) 2019 82,4
Coley C. (Graph convolution) 2018 85,6
Schwaller P. (Transformer) 2019 90,4
Our work (Augmented Transformer, 2020)* 91,9

Retro-synthesis (50k), USPTO-50

Rule-Base 34,8
Seq2Seq, Pande V. 2016 37,4
Graph Logic Networks, Coley C. 2019 52,5
Our work: ICANN2019 42,7
Our work: (Augmented Transformer, 2020)* 53,5

Synthesis planning (top-1)

*Tetko et al Nature Comm. 2020. 11, 11, 1-11. 



Retrosynthesis planning

P. Torren-Peraire et al Models Matter: The Impact of Single-Step Retrosynthesis on 
Synthesis Planning, https://arxiv.org/abs/2308.05522 

https://arxiv.org/abs/2308.05522


Conclusions

• Computational tools are essential for drug discovery

• Use of diverse methods and descriptors can  help to identify 
the best models for the given task

• Representation learning methods provide similar or better 
performance than traditional models based on descriptors

• Multitask learning can further improve model performances
• Combination of models as consensus usually contributes best 

performing approaches

• Publishing model on-line allows their wide promotion and 
acceptance by the scientific community

• Multistep reaction predictions is a new challenge to be 
addressed with AI



6 out of 14 positions are still available

https://aichemist.eu/

Also see Twitter: https://twitter.com/aichemist_dn 

https://twitter.com/aichemist_dn


https://icann2024.org 

Special session: AI in Drug Discovery
Big Data and advanced machine learning in chemistry
eXplainable AI (XAI) in chemistry
Chemoinformatics
Use of deep learning to predict molecular properties
Modeling and prediction of chemical reaction data
Generative models

https://icann2024.org/
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