

AIDD kick-off meeting

ESR13: Quantum machine learning for reactivity (WP3)

Leonardo Medrano Sandonas and Alexandre Tkatchenko

Department of Physics and Materials Science, University of Luxembourg, Luxembourg

January 26, 2021

Theoretical Chemical Physics group

Headed by Prof. Dr. Alexandre Tkatchenko

https://www.tcpunilu.com

- Machine learning in Chemical Physics
- Non-covalent interactions
- Imaginary time path-integrals

Molecular property prediction

Dataset generation

> Small organic molecules up to 7 heavy atoms (QM7-X dataset)

Small and large molecules with pharmaceutical relevance (UniLu-Janssen dataset)

Ongoing project in collaboration with Janssen Pharmaceutical.

J. Hoja, .., A. Tkatchenko, Scientific Data, accepted, (2021).

0:2

0:2

1.5

0:3

2.92.9

QM descriptors

Coulomb matrix \geq

Two- and three-body interactions \geq

$$p_m^{2B}(\mathbf{r}_1, Z_1, \mathbf{r}_2, Z_2) := \|\mathbf{r}_1 - \mathbf{r}_2\|^{-m}$$

$$p_{m_1, m_2, m_3}^{3B}(\mathbf{r}_1, Z_1, \mathbf{r}_2, Z_2, \mathbf{r}_3, Z_3) := \frac{1}{\|\mathbf{r}_{12}\|^{m_1} \|\mathbf{r}_{13}\|^{m_2} \|\mathbf{r}_{23}\|^{m_3}}$$

$$\cdot \theta(Z_1, Z_2, Z_3, \|\mathbf{r}_{12}\|, \|\mathbf{r}_{13}\|, \|\mathbf{r}_{23}\|)$$

K. Hansen, .., A. Tkatchenko, K.-R. Müller, , J. Chem. Theory Comput., 9, (2013). W. Pronobis, A. Tkatchenko, K.-R. Müller, J. Chem. Theory Comput., 14, (2018). O.A. von Lilenfeld, K.-R. Müller, A. Tkatchenko, Nat. Rev. Chem., 4, (2020).

AIDD kick-off meeting University of Luxembourg // Luxembourg Luxembourg // 26.01.2021

Predicting atomization energy

Defining novel QM descriptors

- Structural properties
 - Atomic positions
 - Moment of inertia tensor
- Molecular properties
 - PBE0 atomization energy
 - MBD dispersion energy
 - HOMO-LUMO gap
 - Dipole moment
 - Molecular polarizability
 - Molecular polarizability tensor
 - C₆ coefficient

Atom-in-a-molecule properties

- Total atomic forces
- Hirshfeld charges
- Hirshfeld dipole moment
- Atomic polarizabilities
- vdW radii

Machine learning for chemical discovery

A. Tkatchenko, Nat. Commun., 11, 4125, (2020).

Work plan for the doctoral student

Many thanks for the attention.

