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The main diagonal of the Coulomb matrix 0.5 Zi
2.4 consists of

a polynomial fit of the nuclear charges to the total energies of
the free atoms,2 while the remaining elements contain the
Coulomb repulsion for each pair of nuclei in the molecule.
Except for homometric structures (not present in the data set)
the Coulomb matrix is a unique representation of molecules.
The fact that rotations, translations, and symmetry

operations such as mirror reflections of a molecule in 3D
space keep the total energy constant is reflected by the
invariance of the Coulomb matrix with respect to these
operations.
However, there are two problems with the representation of

molecules by their Coulomb matrices, which make it difficult to
use this representation in a vector-space model. First, different
numbers of atoms d result in different dimensionalities of the
Coulomb matrices, and second there is no well-defined
ordering of the atoms in the Coulomb matrix; therefore, one
can obtain up to d! different Coulomb matrices for the same
molecule by simultaneous permutation of rows and columns,
while the energies of all these configurations remain unchanged.
In order to solve the first problem we introduce “dummy

atoms” with zero nuclear charge and no interactions with the
other atoms. In the Coulomb matrix representation this is
achieved by padding each matrix with zeros,2 which causes all
matrices to have size d × d (where d is the maximal number of
atoms per molecule).
The ambiguity in the ordering of the atoms is more difficult

as there is no obvious physically plausible solution. To
overcome this problem we investigate three candidate
representations derived from the Coulomb matrix. They are
depicted in Figure 2: (a) the eigenspectrum representation
consisting of the sorted eigenvalues of C, (b) a sorted variant of
the Coulomb matrix based on a sorting of the atoms, and (c) a

set of Coulomb matrices, which all follow a slightly different
sorting of atoms. All of them are explained in more detail
below.

2.2.1. Eigenspectrum Representation. In the eigenspectrum
representation the eigenvalue problem Cv = λv for each
Coulomb matrix C is solved to represent each molecule as a
vector of sorted eigenvalues (λ1,...,λd), λi ≥ λi+1. This
representation (first introduced by Rupp et al.2) is invariant
with respect to permutations of the rows and columns of the
Coulomb matrix.
Computing the eigenspectrum of a molecule reduces the

dimensionality from (3d−6) degrees of freedom to just d. In
machine learning, dimensionality reduction can sometimes
positively influence the prediction accuracy by providing some
regularization. However, such a drastic dimensionality reduc-
tion can cause loss of information and introduce unfavorable
noise (see Moussa35 and Rupp et al.36), like any coarse-grained
approach.

2.2.2. Sorted Coulomb Matrices. One way to find a unique
ordering of the atoms in the Coulomb matrix is to permute the
matrix in such a way that the rows (and columns) Ci of the
Coulomb matrix are ordered by their norm, i.e. ||Ci|| ≥ ||Ci+1||.
This ensures a unique Coulomb matrix representation. As a
downside, this new representation makes the problem much
higher-dimensional than it was when choosing only eigenvalues.
The input space has now dimensionality Natoms

2 compared to
Natoms for the eigenspectrum representation. Also, slight
variations in atomic coordinates or identities may cause abrupt
changes in the Coulomb matrix ordering, thereby impeding the
learning of structural similarities.

2.2.3. Random(-ly Sorted) Coulomb Matrices. The problem
of discontinuities due to abrupt changes in the matrix ordering
can be mitigated by considering for each molecule a set of

Figure 1. Coulomb matrix representation of ethene: A three-dimensional molecular structure is converted to a numerical Coulomb matrix using
atomic coordinates Ri and nuclear charges Zi. The matrix is dominated by entries resulting from heavy atoms (carbon self-interaction 0.5·62.4 = 36.9,
two carbon atoms in a distance of 1.33 Å result in ((6.6)/(1.33/0.529)) = 14.3). The matrix contains one row per atom, is symmetric, and requires
no explicit bond information.

Figure 2. Three different permutationally invariant representations of a molecule derived from its Coulomb matrix C: (a) eigenspectrum of the
Coulomb matrix, (b) sorted Coulomb matrix, (c) set of randomly sorted Coulomb matrices.
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which achieves a mean absolute error of 0.58 kcal/mol on the
GDB-9 set, when trained on 118000 molecules. An angle repre-
sentation based on molecular atomic radial angular distributions
(MARAD) achieves a MAE of 1.2 kcal/mol with kernel ridge
regression and 4.0 kcal/mol with the linear Bayesian ridge
regression model when trained on 118000 molecules.
The recently introduced BAML (bonds angles machine learning)

representation21 can be viewed as a many-body extension of BOB
and constructs arbitrary distance functions between pairwise
distances. BAML reaches a MAE of 1.15 kcal/mol on the GDB-7
set trained on 5000 molecules24 and a MAE of 1.2 kcal/mol on
the GDB-9 set when trained on 118000 molecules.10

Huo et al.24 introduced a many-body tensor representation
which improves on the histogram descriptors of Faber et al. by
“smearing” the histograms of given many-body features. For one
of their best models, a MAE of 0.60 kcal/mol on GDB-7 using
Gaussian kernel ridge regression and a MAE of 0.74 kcal/mol
using a linear model (with many-body interactions) have been
reported.
Recently, even more accurate models for predicting the

atomization energy have been introduced,37,38 which reach an
accuracy of 0.26 kcal/mol37 on 100000 training samples and
0.45 kcal/mol38 on 110000 training samples, respectively.
Most of the above approaches use explicit three-body (e.g.,

angle) or four-body (e.g., dihedral angle) features to construct
the respective representation. In this work, we propose novel
translational, rotational, and atom indexing invariant molecular
descriptors which build on the success of inverse pairwise dis-
tances for predicting the atomization energy.7−9,11,23,34 In partic-
ular, we construct many-body interaction features of arbitrary
order from inverse pairwise distances which helps to alleviate
sorting challenges encountered in e.g. CM. Accordingly, our
model learns e.g. a three-body interatomic potential, which is not
necessarily a function of angle. Our novel descriptors allow for
construction of an invariant two-body and many-body inter-
action representation at a f ixed descriptor size. Note that fixed
sized molecular descriptors are useful in practice as they can be
easily used in combination with kernel ridge regression or deep
neural networks or other models that expect fixed size input data.
Also, such fixed size representations are generally extensible to
large molecules and solids, while incorporating informative higher-
order interaction terms. While missing long-range interactions
(H-bond, van der Waals, etc.), those can be easily built on top of
our proposed short-range models.39,40 Clearly, any such combina-
tion of short-range and long-range models for interatomic
potentials will have to carefully avoid double-counting effects.
Furthermore, when using these novel descriptors we observe that
linear models perform only slightly worse than the nonlinear
methods. The latter is helpful in practice as linear models allow to
simply and easily analyze the importance of the proposed two-,
three-, or many-body interaction features for predicting atom-
ization energies of the molecules. This allows for extracting
insights from the learned model.
We view our new descriptors as an optimal compromise that

allows high-throughput calculations of extensive molecular prop-
erties for equilibrium geometries throughout chemical space.
Our many-body model is complementary to recently developed
deep neural networks and nonlinear kernel methods for esti-
mating molecular properties.10,11,24,34

The paper is structured as follows. The next section defines the
invariant two-body and three-body molecular descriptors. The
following section details the data sets as well as the learning
task and the prediction of several properties of small molecules.

This is followed by the analysis of the importance of the two- and
three-body molecular features and the conclusion.

■ INVARIANT MANY-BODY INTERACTION
DESCRIPTORS

We represent a molecule or material by the respective finite set
from which the molecule or unit cell is constructed.

Figure 1. Illustration of the bag-of-bonds molecule similarity. The
distance between two atoms of the left molecule gets directly compared
to an arbitrary distance of the right molecule corresponding to the same
atom types composing the pairwise interaction.

Figure 2. Illustration of the F2B and F3B molecule similarity. For F2B, the
pairwise distances of the left molecule corresponding to a fixed pair of
atom types are computed into a feature entry, which gets compared to
the same feature entry of the right molecule composed identically for the
same pair of atom types. Similarly, F3B compares three bonded atoms
which have an angle.

Table 1. Prediction Errors of the PBE0 Atomization Energy of
the Molecules of the Set GDB-7 by Various ML Models with
Random 5K Train Molecules and the Remaining 1868
Molecules as Test Seta

method features MAE RMSE MAX. DEV

mean 174 219 1166
RR CM 25 33 134
RR BOB 23 30 144
RR F2B 4.9 12 350
RR F2B + F3B 1.0 8.3 327
KNN CM 80 104 461
KNN BOB 70 102 424
KNN F2B 49 73 230
KNN F2B + F3B 10 28 306
KRR (Gauss) CM 8.6 15 433
KRR (Laplace) CM 3.7 5.8 89
KRR (Gauss) BOB 7.6 10 99
KRR (Laplace) BOB 1.8 3.9 103
KRR (Gauss) F2B 1.9 4.7 155
KRR (Laplace) F2B 4.2 6.1 62
KRR (Gauss) F2B + F3B 0.8 1.5 28
KRR (Laplace) F2B + F3B 2.4 3.8 51

aThe errors are given in kcal/mol. The models used are ridge regression
(RR), kernel ridge regression (KRR), and k-nearest neighbors (KNN).
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Let ri denote the position of the atom i with atomic number Zi
in three-dimensional coordinate space. Then, a physical system
with N atoms is defined by S = {Zi, ri}i=1

N . From this physical
system S, we propose the many-body interaction descriptors

∑ δ= · ···̅
··· ∈

̅ Z r rf S p Z Z( ) ( ) ( , , , , )Z Zp
j j G k N

j j j j,
( , , ) ( , )k

k k

1

1 1
(1)

where Z ≔ (Zj1,···,Zjk), Z̅ is a given k-tuple of k atomic numbers
with k ≤ N, p is a k-body interaction term, and the partial
permutations set G(k, N) consists of the sequences without
repetition of k elements from the set {1,2,···,N} and the
Kronecker delta δZ̅(Z), which equals 1 if and only if the two
k-tuples Z̅ and Z are equal and zero otherwise. The number of
elements of the k-permutations of N set G(k, N) is !

− !
N

N k( )
.

The descriptors in eq 1 are intrinsically invariant to the
indexing of the atoms comprising the system S, as we sum over all
elements of the k-permutations of N set G(k, N). If the k-body
interactions term p satisfies invariance to the translation and
rotation of the atoms of S, this carries over to the descriptors
f Z̅,p(S). In the following, we propose a set of translational and

rotational invariant two-body and three-body interaction terms p,
which will define our invariant many-body interaction descriptors.

Invariant Two-Body Interaction Descriptors F2B. We
define the set of translational and rotational invariant two-body
interaction terms

≔ ∥ − ∥−r r r rp Z Z( , , , )m
m2B

1 1 2 2 1 2 (2)

where ∈ +1m . For a given set of n different atomic numbers
An≔ {Zi}i=1

n with Zi≠Zj ∀ i, j ∈ {1, ···, n}, let S2B denote the set of
all tuples (Zi, Zj) with Zi≤Zj and Zi, Zj ∈ An. LetM2B denote the
set M2B ≔ {1, 2, ···, 15}. For a given physical system S, the
two-body interaction descriptors F2B are now given by

≔ ̅ ∈ ̅ ∈F f S{ ( )}Z Zp m M S2B , ,
m
2B

2B 2B (3)

Typically, the set Sn contains the atomic numbers present in the
data set. The dimension of the two-body interaction descriptors
is 15 · n · (n + 1)/2.

Invariant Three-Body Interaction Descriptors F3B. We
define the set of translational and rotational invariant three-body
interaction terms

Table 2. Mean Absolute Errors of Predicting Several Ground- and Excited-State Properties by Kernel Ridge Regression Trained on
5000 Random Molecules and Tested on the Remaining 1868 Molecules of the GDB-7 Data Seta

property CM BOB F2B F2B + F3B unit description

ae-pbe0 3.7 1.8 1.9 0.8 kcal/mol atomization energy (DFT/PBE0)
homogw 0.212 0.138 0.167 0.128 eV highest occuppied molecular orbital (GW)
lumo-gw 0.187 0.142 0.155 0.147 eV lowest unoccupied molecular orbital (GW)
homo-pbe0 0.202 0.130 0.156 0.120 eV highest occupied molecular orbital (DFT/PBE0)
lumo-pbe0 0.174 0.108 0.133 0.108 eV lowest unoccupied molecular orbital (DFT/PBE0)
homozindo 0.279 0.144 0.173 0.132 eV highest occupied molecular orbital (ZINDO/s)
lumo-zindo 0.252 0.134 0.168 0.112 eV lowest unoccupied molecular orbital (ZINDO/s)
p-pbe0 0.130 0.083 0.103 0.088 Ångström3 polarizability (DFT/PBE0)
p-scs 0.065 0.042 0.061 0.032 Ångström3 polarizability (self-consistent screening)
e1-zindo 0.37 0.19 0.21 0.15 eV first excitation energy (ZINDO)
ea-zindo 0.29 0.15 0.18 0.13 eV electron affinity (ZINDO/s)
imax-zindo 0.084 0.067 0.074 0.071 au excitation energy at maximal absorption (ZINDO)
emax-zindo 1.47 1.20 1.29 1.26 eV maximal absorption intensity (ZINDO)
ip-zindo 0.32 0.18 0.21 0.18 eV ionization potential (ZINDO/s)

aThe best performing models are marked in bold.

Table 3. Mean Absolute Errors of Predicting Several Properties Calculated at the B3LYP/6-31G(2df,p) Level of Quantum
Chemistry and Predicted by Kernel Ridge Regression Trained on 5000 RandomMolecules and Tested on the Remaining 126722
Molecules of the GDB-9 Data Seta

property CM BOB F2B F2B + F3B unit description

U0 7.9 4.0 4.8 1.5 kcal/mol internal energy at 0 K
U 7.9 4.0 4.8 1.5 kcal/mol internal energy at 298.15 K
H 7.9 4.0 4.8 1.5 kcal/mol enthalpy at 298.15 K
G 7.9 4.0 4.8 1.5 kcal/mol free energy at 298.15 K
HOMO 5.8 4.3 4.7 3.6 kcal/mol energy of highest occupied molecular orbital
LUMO 8.9 5.7 6.0 5.1 kcal/mol energy of lowest occupied molecular orbital
gap 11 6.8 7.9 6.2 kcal/mol gap, difference between LUMO and HOMO
alpha 1.00 0.63 0.72 0.49 Bohr3 isotropic polarizability
mu 0.77 0.65 0.67 0.61 Debye dipole moment
r2 16 8.5 7.3 9.0 Bohr2 electronic spatial extent
zpve 0.33 0.20 0.18 0.10 kcal/mol zero point vibrational energy
A 0.42 0.37 0.40 0.42 GHz rotational constant A
B 0.12 0.10 0.12 0.13 GHz rotational constant B
C 0.052 0.045 0.046 0.050 GHz rotational constant C
cv 0.38 0.20 0.21 0.12 cal/(mol K) heat capacity at 298.15 K

aThe best performing descriptors are marked in bold.
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where ∈ +1m m m, ,1 2 3 , rij ≔ ri − rj for i, j = {1,2,3}, and the
bond angle indicator

θ · ≔

< ∧ <
< ∧ <
< ∧ <

⎧

⎨
⎪⎪

⎩
⎪⎪

d B Z Z d B Z Z

d B Z Z d B Z Z

d B Z Z d B Z Z
( )

1, ( , ) ( , )

1, ( , ) ( , )

1, ( , ) ( , )

0, otherwise

12 1 2 13 1 3

13 1 3 23 2 3

12 1 2 23 2 3

(5)

where B(Z1, Z2) ≔ 1.1 · L(Z1, Z2), and the values for the bond
length function L are given in Table 6. For a given set of n
different atomic numbers An ≔ {Zi}i=1

n with Zi ≠Zj ∀ i, j ∈ {1, ···,
n}, let S3B denote the set of all 3-tuples (Zi, Zj, Zk) with Zi ≤ Zk
and Zi, Zj, Zk ∈ An. Let M3B be the set of partial permutations
G(3, 6) as defined above. For a given physical system S, the three-
body interaction descriptors F3B are now given by

≔ ̅ ∈ ̅∈F f S{ ( )}Z Zp m m m M S3B , ( , , ) ,
m m m1, 2, 3
3B

1 2 3 3B 3B (6)

The dimension of the of the three-body interaction descriptors is
· + · !

− !n n( 1)/22 6
(6 3)

.

The difference between the molecular descriptors BOB, F2B, and
F3B is illustrated in Figures 1 and 2, respectively. The bag-of-bonds
model compares arbitrary pairwise distances with each other,
while for the proposed F2B + F3B descriptors, two- and three-body
features are computed, and corresponding features are compared
with each other.

■ TESTS ON MOLECULAR DATA SETS
We use the following two reference data sets for the evaluation of
the predictive power of ML models with our proposed invariant
many-body interaction descriptors.

GDB-7. The GDB-7 data set is a subset of the freely available
small molecule database GDB-1341 with up to seven heavy atoms
CNO. For this data set, electronic ground- and excited-state
properties have been calculated. Hybrid density functional
theory with the Perdew−Burke−Ernzerhof hybrid functional
approximation (PBE0)42,43 has been used to calculate the atomi-
zation energy of the molecules. The electron affinity, ionization
potential, excitation energies, and maximal absorption intensity
have been obtained from ZINDO.44−46 For the static polar-
izability, PBE0 and self-consistent screening (SCS)47 have
been used. The frontier orbital (HOMO and LUMO)
eigenvalues have been calculated using PBE0, SCS, and Hedin’s
GW approximation.48 The SCS, PBE0, and GW calculations have
been performed using FHI-AIMS49 (tight settings/tier2 basis set),
and ZINDO/s calculations are based on the ORCA50 code.

GDB-9. The GDB-9 data set is a subset of the chemical
universe database GDB-1751 of 166 billion organic small mole-
cules. The subset contains molecules with up to nine heavy

Table 4. Prediction Errors of the B3LYP/6-31G(2df,p)
Atomization Energy of the Molecules of the Set GDB-9 by
VariousMLModels with Random 5KTrainMolecules and the
Remaining 126722 Molecules as Test Seta

method features MAE RMSE MAX. DEV

mean 185 235 1544
RR CM 235 308 1289
RR BOB 89 134 653
RR F2B 6.8 10 462
RR F2B + F3B 1.6 2.8 88
KNN CM 239 279 898
KNN BOB 231 272 758
KNN F2B 151 177 556
KNN F2B + F3B 25 42 358
KRR (Gauss) CM 17 22 181
KRR (Laplace) CM 7.9 10 129
KRR (Gauss) BOB 11 16 253
KRR (Laplace) BOB 4.0 6.0 132
KRR (Gauss) F2B 4.8 6.4 45
KRR (Laplace) F2B 8.2 11 190
KRR (Gauss) F2B + F3B 1.5 2.8 96
KRR (Laplace) F2B + F3B 4.5 6.4 147

aThe errors are given in kcal/mol. The models used are ridge regression
(RR), kernel ridge regression (KRR), and k-nearest neighbors (KNN).

Figure 3. Mean absolute errors of several electronic ground- and
excited-state properties of the molecules of the set GDB-7 predicted
with KRR using the descriptors CM, BOB, F2B, and F2B + F3B. For CM
and BOB, the Laplace kernel has been used; for F2B and F2B + F3B, the
Gauss kernel has been used. The MAEs are normalized by the MAE of
the KRR-CM model.

Figure 4.Mean absolute errors of several properties of the molecules of
the set GDB-9 calculated at the B3LYP/6-31G(2df,p) level of quantum
chemistry and predicted with KRR using the descriptors CM, BOB,
F2B, and F2B + F3B. For CM and BOB, the Laplace kernel has been used;
for F2B and F2B + F3B, the Gauss kernel has been used. The MAEs are
normalized by the MAE of the KRR-CM model.
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error (RMSE), and the maximum deviation (MAX. DEV),
respectively.
For the atomization energy, the results of the ML models are

given in Tables 1 and 4. The results for predicting diverse
quantum mechanical properties are given in Tables 2 and 3,
respectively. Figures 3 and 4 show the MAE of the models
normalized by the mean absolute error of the CM model. From
these results it is not clear how good a specific molecular property
can be predicted. Therefore, Figures 5 and 6 show the predicted
properties relative to the reference results. The MAE in depen-
dence of the number of training samples is shown in Figures 7
and 8, respectively.
The F2B + F3B model outperforms the BOB descriptor in

the prediction of the static polarizability computed with self-
consistent screening (20% improvement), the first excitation
energy (20% improvement), and the atomization energy

(50% improvement) of the molecules of the GDB-7 set.
Additionally, the prediction errors of the electron affinity
and the HOMO eigenvalues are improved by 5%. The largest
correlation between prediction and reference is achieved for the
static polarizability computed with SCS as well as the atomization
energy.
The F2B + F3B model outperforms the BOB descriptor in the

prediction of the heat capacity (40% improvement), the zero
point vibrational energy (50% improvement), the isotropic
polarizability (30% improvement), and the atomization energies
(60% improvement) of the molecules of the GDB-9 set.
Additionally, the prediction errors of the HOMO and LUMO
eigenvalues as well as the gap are improved by 15%, 10%, and 9%,
respectively. The largest correlation between prediction and
reference is achieved for the electronic spatial extent, zero point
vibrational energy, the heat capacity, the isotropic polarizability,
and the atomization energies.
The three-body descriptors F3B are local in the sense that they

include pairs of bonded atoms which have an angle. This locality
suggests an applicability of our descriptors to predict quantum
mechanical properties of much larger molecules. In a first
attempt to justify such transferability, we conducted an additional
experiment where we predict the atomization energy of a set of
large molecules when trained on a set of small molecules and vice
versa. To this end, we select a set of small molecules composed of
3000 randommolecules of the GDB9 set with a number of atoms
smaller than 14. Similarly, the set of larger molecules consists of
3000 randommolecules of the GDB9 set with a number of atoms
larger than 22. The results of training and testing a kernel ridge
regression model in combination with the CM, BOB, and F2B +
F3B descriptors using all combinations of small and large
molecule sets are shown in Table 5. The CM and BOB models
show poor performance when predicting the atomization energy
of the larger molecule set from the small molecule set and vice

Figure 7. Mean absolute error of predicting the PBE0 atomization
energy of the molecules of the set GDB-7 with KRR in dependence of
the number of training samples. The errors are given in kcal/mol. For
CM and BOB, the Laplace kernel has been used; for F2B and F2B + F3B,
the Gauss kernel has been used. The model hyperparameters have been
determined by 10-fold cross-validation.

Figure 8. Mean absolute error of predicting the B3LYP/6-31G(2df,p)
atomization energy of the molecules of the set GDB-9 with KRR in
dependence of the number of training samples. The errors are given in
kcal/mol. For CM and BOB, the Laplace kernel has been used; for
F2B and F2B + F3B, the Gauss kernel has been used. The model
hyperparameters have been determined by 10-fold cross-validation.

Table 5. Mean Absolute Errors of Predicting the B3LYP/
6-31G(2df,p) Atomization Energy of 3000 Random Small and
Large Molecules with Kernel Ridge Regressiona

train/test set CM BOB F2B + F3B
small/small 7.2 3.5 1.4
small/large 733 493 6.2
large/small 793 797 50
large/large 3.2 1.2 0.5

aThe models are trained on sets of 3000 random small and large
molecules, respectively. The errors are given in kcal/mol. Best results
are marked bold.

Table 6. Bond Lengths in Ångström for All Combinations of
the Elements C, H, N, and Oa

bond-type (Z1, Z2) L(Z1, Z2)

H−H (1, 1) 0.74
H−C (1, 6) 1.08
H−O (1, 8) 0.96
H−N (1, 7) 1.01
C−C (6, 6) 1.51
C−O (6, 8) 1.43
C−N (6, 7) 1.47
O−O (8, 8) 1.48
O−N (8, 7) 1.40
N−N (7, 7) 1.45

aUsed for computing the three-body interaction descriptors F3B.
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Predicting atomization energy

algorithms executed on quantum computers. 
As such, QML models aim to provide a 
feedback mechanism between QM and/or 
SM, and (statistical) ML. Given sufficient 
reference data obtained from QM and SM 
simulations, queries of properly trained 
ML models can yield accurate properties 
within milliseconds39 — as opposed to the 
many CPU hours or days necessary to solve 
the corresponding quantum and statistical 
mechanics problems for representative 
compounds. Because of the rigorous 
interpolation of QML in complex non- linear 
spaces and their consequently controlled 
predictive accuracy40, the door has now 
opened for an extensive analysis and study 
of these interpolated spaces, which was 
previously impossible due to the prohibitive 
computational cost of direct QM and SM 
simulations.

Given the substantial progress in QML 
discussed in this Perspective, we argue that 
meaningful progress in the exploration 
and understanding of CCS can be made 
through systematic combination of rigorous 
physical theories, comprehensive data sets 
of QM and SM properties, and sophisticated 
ML methods that incorporate physical and 
chemical knowledge. The authors have 
witnessed the quick development of QML 
from the perspective of electronic- structure 
calculations and, hence, the focus in this 
Perspective is on combining QM and ML 
with the goal of enhanced exploration 
of CCS. Efforts to use ML to capture SM 
properties in analogous ways is the subject  
of active current research41,42.

Goals and advances of QML
The overarching goal of QML is to develop 
reliable models with the accuracy of high- 
 level electronic- structure calculations. 
Depending on the application, the reference 
data can be obtained from high- level 
quantum chemistry, such as coupled cluster 
single double (triple) (CCSD(T)), or from 
DFT calculations. Although much work 
remains to be done to reach the ‘dream’ of 
exact QML models, many key advances 
have been recently achieved that we discuss 
in this section and connect to important 
remaining challenges for which we deem 
that urgent progress is needed.

All QML advances hinge on the 
availability of trustworthy QM data. These 
data need to cover a certain important 
domain, for example, the CCS of organic 
drug- like compounds, as explored by 
Reymond and colleagues through their 
generated database (GDB) list of simplified 
molecular- input line- entry system (SMILES) 
strings43–46. QM calculations on these 

molecular graphs led to the publication of 
data sets that collect equilibrium structures 
and properties of many thousands of 
small molecules (QM7 and QM9)47,48, 
their molecular- dynamics trajectories 
(MD17)49 and non- equilibrium molecular 
structures (ANI-1)50. One can also calculate 
equilibrium structures and properties of 
solids51–53, or generate equilibrium and 
non- equilibrium molecular dynamics (MD) 
data for a single element (for example, 
silicon)54. The ultimate goal of QML is to 
develop a universal and efficient model for 
the whole CCS that enables the accurate 
description of molecules and materials on 
equal footing and possibly leads to new 
insights on CCS underlying regularity and 
chemical relationships. Reorganizing the 
periodic table (in the sense of revisiting and 
generalizing Pettifor’s concept of Mendeleev 
number)55,56 represents a first and important 
step in this direction53,57. Initially, various 
models have been developed focusing either 
on molecular or materials data, but versatile 
models have been more recently proposed 
that can be applied to both molecules 
and solids58–60.

CCS is commonly explored using 
cheminformatics- based approaches. 
In contrast, QML rigorously adheres to its 
roots in fundamental physics, such that it 
is consistent with the laws of QM and SM. 
One of the first QML applications in which 
ML techniques were used for non- linear 
interpolation of QM data aimed to construct 
reliable system- specific interatomic 
potentials or potential- energy surfaces, 
going beyond conventional force fields in 
terms of universality (atom- type specificity 
no longer required) and accuracy61–66. 
Further developments aimed at transferable 
QML models that are trained and applicable 
throughout CCS for the description of 
QM properties, as shown for the QM7 set 
of organic molecules39, highlighting the 
potential of QML for efficient and accurate 
exploration of CCS. This idea was rapidly 
demonstrated to be applicable to many 
electronic properties using neural networks 
as well as kernel–ridge regression47,67,68, or to 
search for polymers with useful properties69, 
explore chemical properties of crystalline 
solids53,70–73 and design materials for a variety 
of technological applications74,75.

A crucial aspect that determines the 
reliability and applicability of any QML 
model is its generalization accuracy that is 
assessed on the calculated QM properties 
of a sufficiently large out- of- sample 
(hold- out) test data set. It is remarkable 
how quickly the generalization accuracy 
and data efficiency of QML models has 

improved during the past few years. As 
shown in FIG. 1 on the example of the QM9 
data set, the QML prediction errors have 
decreased by 40- fold — from 8 kcal mol−1 
(0.340 eV) to 0.2 kcal mol−1 (0.008 eV) in 
2018 (REF.58), using exactly the same training. 
This noticeable increase in accuracy mainly 
stems from incorporation of physical prior 
knowledge into the QML models, such 
as proper description of permutational 
symmetries of atoms in a molecule49,58,60,76, 
as well as explicit inclusion of physically 
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Fig. 1 | Learning curves illustrate the progress 
of QML models of atomization energies of 
molecules over the past few years. This plot 
shows the mean absolute error (MAE) in eV on 
atomization energies of small molecules in the 
quantum- mechanics- based data set for organic 
molecules with up to nine non- hydrogen atoms 
(QM9)48. The compared quantum machine learn-
ing (QML) models differ solely by representation 
and model architecture, and correspond to 
Coulomb matrix (CM)39, bag of bonds (BoB)83, 
bonds, angles, machine learning (BAML)77, histo-
gram of distances, angles, dihedrals (HDAD)137, 
constant- size descriptors (ConstSize)103, deep 
tensor neural network (DTNN)86, spectrum of 
London and Axilrod–Teller–Muto (SLATM)3, 
atomic SLATM (aSLATM), smooth overlap of ato-
mic positions (SOAP)60, Faber, Christensen, 
Huang, Lilienfeld (FCHL)58, message passing node 
and edge- based neural network with set- to- set 
readout function (enn- s2s)162, moment tensor 
model (MTM)135, many- body- based (MBD)  
kernel–ridge regression78, reactive neural net-
work (NN)87, Hierarchically Interacting Particle 
Neural Network (HIP- NN)163, SchNet59 and wave-
lets164. The black X on the left indicates the target 
value in the ‘QM9 challenge’, in which QML mod-
els should be developed to reach 1 kcal mol−1 
(0.043 eV) accuracy on the QM9 data set using 
only information of 100 molecules for training.  
To date, this challenge has not been met. Adapted  
from REF.165, Springer Nature Limited.
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Ø Coulomb matrix

Ø Two- and three-body interactions
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ESR13: Quantum machine learning for reactivity
Defining novel QM descriptors

Ø Structural properties
• Atomic positions
• Moment of inertia tensor

Ø Molecular properties
• PBE0 atomization energy
• MBD dispersion energy
• HOMO-LUMO gap
• Dipole moment
• Molecular polarizability
• Molecular polarizability tensor
• C6 coefficient

Ø Atom-in-a-molecule properties
• Total atomic forces
• Hirshfeld charges
• Hirshfeld dipole moment
• Atomic polarizabilities
• vdW radii

Property-property 

relationship
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ESR13: Quantum machine learning for reactivity
Machine learning for chemical discovery

A. Tkatchenko, Nat. Commun., 11, 4125, (2020).
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ESR13: Quantum machine learning for reactivity
Work plan for the doctoral student

Reinforcing knowledge about 
chemical reactivity, machine 

learning, QM, and SM.

Publishing results in scientific 
journals and attending conferences.

Generation of an extensive QM dataset 
using high level of electronic structure.

Development and validation of 
machine learning models for predicting 

TS geometries and energies.

ML toolbox for predicting TS geometries and energies.
Getting Doctor degree at UniLu.

In coordination with 
ESR4, ESR5, ESR7. 

Secondment at AALTO 
(ESR9).

In coordination with 
Janssen Pharmaceutical 

(month 25-42).

NEB and/or
String method
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Many thanks for the attention.


