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We develop and apply a wide range of computational methods
that can provide guidance to early drug discovery
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Many of our models are accessible via a free web service at

nerdd.zbh.uni-hamburg.de

NERDD

New E-Resource for Drug Discovery

Sites of Metabolism Metabolite Structures Natural Product-Likeness

Hit Dexter 2.0

Regioselectivity prediction for Metabolite structure prediction Prediction of frequent hitters
phase 1 and phase 2 metabolism for cytochrome P450 metabolism

01/26/2021 Johannes Kirchmair Stork et al., Bioinformatics 2019, 36, 1291-1292.
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Case study on the 15 most noisiest,
approved drugs identified by GSK!

' Prediciad &8 medaratsly or Fighly- promuscious with &
probabiity of 1.0, at high confiderce

AROMIIBHInG o oredictad a8 highly-proeniscuous with a probability of
1.0, 8t high confidance

o Predicted as modenaiely or highly-promiscucus with a
probabdity of 1.0, 81 high confidence

© Predicted as highly-promiscuous with a probability af
1.0, at high cornfidence:

' Predictad a8 moderatsly of highly-FromisCuous with &
) probabiity of 1.0, at high confiderce
BuyquRing o predictod as highly-promiscuous with o probability of
1.0, st high coefidance

o Predicted as non-promiscuous with a probabilty of
0.0, at high confidencs

o Pradiciad as highhy-promiscuous with a probability of
0.13, at low confidence

Clomiprmine

o Pradicted as moderaely or highly-promiscucus with a
probabidity of 1.0, at high confidercs

Daunceubicin o Predicied as highly-promiscuous with o probabéiy of
1.0, at high corfidencs
o Poasibly an aggregator

o Predicted as moderately or highty-promiscucus with a

probabdity of 0,62, 3 high confidienos
o Pradictad as highly-prormiscusus with a probabiity of
0.58, ot modenate confidence

© Prasibly an aggrogator

@ Prsdicted &8 modenately o Fghty-romBcuus with &
protability of 1.0, at high confidence

DigRouin o Predicted as highly-promiscuous with o probability of
1.0, at high corffidencs
o Possibly an aggregator

01/26/2021 *Chakravorty et al., SLAS Discovery 2018, 23, 532-544. DOI: 10.1177/2472555218768497
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HR Doxter: Probability and prediction confidence of o

Lniversitat Case study on the 15 most noisiest,
wien approved drugs identified by GSK*

Simiarity of a
compound bo knawn

HMusmbaer of undesired functional groups p Lima

o Predicted as moderately or highly-promiscucus with a
pronabilty of 1.0, at high confidencs

Dasgrubicin @ Preciciod &8 Feghly-promscuous with a probabilty ol
1.0, at high confidence
© Poasidly &N Sgregator

o Pradicing &8 non-promsscucus with a probability of

. 049, ¢ mederate confidence

o Poasily an aggrogator

o Possialy dark chemical matier

o Predicted as moderately or highly-promiscuous with a
M pronability of 1.0, at high confidence

o Predicfed as highly-promiscucus with a probability of
1.0, at high confidence

o Preciciog &8 modenatoly of highly-promisducus with 2
probability of 087, at high confidence

Matikdigoin o Predicied a5 highly-promiscucus with o probabiiiy of
098, a2 high confidencs
o Possibly an aggregator

o Precicing as mocensoly oF highly=promiscucis with a
probability of 1.0, at high confidence

Miclosamide o Predicted as highly-promiscucus with a probability of
1.0, ot high confidence
o Possibly an aggregator

uFrnddodnrnn~wtﬂnml1ﬁ1.thtjm
078, af kow confidencs
o Predicted as non-promiscuous with a probability of
058, at low confideno

o Predictad &8 non-promiscudus with a probabikty of
05, at high confidence

& Procicing as highly-promiscuous with o probabilsy of
0., at kigh confidence

o Predicied as moderately or highly-promiscucis with a
probabiity of 1.0, at high confidencs

Sorafenib o Predicted as highty-promiscuous with a probabilisy of
1.0, at high condidence:
o Poasinly & agoregatar

01/26/2021 *Chakravorty et al., SLAS Discovery 2018, 23, 532-544. DOI: 10.1177/2472555218768497

Comments:

* “Predicted as highly promiscuous with a
probability of 1.0, at high confidence”
“Possibly an aggregator”
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\/Atom environment Site of metabolism
Database encoding Machine learning prediction

01/26/2021 Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376 Page 6



Model = P1+P2

o
o

o

Metric Value
N

©
N

Top-2 (avg)

10-fold cross-validation

1.2 3 4@
| Model | McC_ | AUC__ | Top2

P1+P2 100+

3 cyp 100+

test on holdout data

P1 100+

P2 100+

01/26/2021 Sicho et al., J Chem Inf Model 2019, 59, 3400-3412. doi: 10.1021/acs.jcim.9b00376
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FAME 3: Performance of “circCDK+ATF” models
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FAME 3: Prediction of the sites of metabolism of imatinib

Model: P1+P2 (depth: 5)

N-demethylation Molecule mol_1

Atom Probability FAMEscore

lactam formation \ N.2 0.888 0.785
| C.1 0.884 0.809
~(2) C.36 0.684 0.944
deamination + oxidation to 3:5\ ,.Jl C.4 0.684 0.944
carboxylic acid \\?/ C.6 0.668 0.808
o L L C.20 0.66 0.826
N-OX'iaflon ol C.37 0.652 0.939
3|zj-f “‘|3|4 \1\1'3/ o C.3 0.652 0.939
31'Q307 '29\27423:\23/22\21435516/15 N.33 0.644 0.912
I | I 1 C.13 0.128 0.804

26_.. .- 24 19 .. .- 17
SNos” (207 N18” N.22 0.044 0.814
hydroxylation N.5 0.044 0.788
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GLORYXx: Predictor of likely metabolites
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1. Extracted reaction types for phase | and phase Il enzymes from the literature
2. Represented reaction types by SMIRKS:

« e.g. "[c:1][H:2]>>[c:1][O][H:2]" - >

3. Applied transformations using AMBIT SMIRKS >> @ —

e Open-source Java library (IdeaConsult Ltd)
4. The transformations are only applied at those positions

01/26/2021 de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224 Page 9



GLORYx  SyGMa

Recall 0.77 0.68
Precision 0.061 0.120
Total # predictions 1724 800
# true positives 105 93

01/26/2021 de Bruyn Kops et al., Chem Res Toxicol 2020. doi: 10.1021/acs.chemrestox.0c00224
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GLORYXx: Performance on the Manually Curated Test Set

—— SyGMa, AUC =0.74
GLORYx, AUC = 0.79
T T T T 1
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