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Problem statement
-Thanks to their sensitivity and efficiency, fluorescence-based assays are the 

most widely employed technology for the high-throughput-screening (HTS) of 

compounds [1, 2]. 

-Despite the technical advantages brought to the field, fluorescence-based assays 

result in a significant number of false positive readouts caused by assay 

interference [3]. 

- If false readouts remain undetected, they may trigger costly follow-up studies 

that may eventually turn out as futile. 

1. Macarron R.  et al. Impact of high-throughput screening in biomedical research. Nat. Rev. Drug Discovery
2.  https://atrandi.com/blog/fluorescence-assays-dominate-life-science-research
3. Sink R. et al. False positives in the early stages of drug discovery. Curr. Med Chem



The dominant readout: 
Fluorescence
“Fluorescence-based detection is the most used detection method in HTS: it is 

highly sensitive and has good signal-to-noise ratios. 

Fluorescence assays don't require special setups and can be miniaturized, which 

makes them ideal tools for screening applications.”[3]

3. https://atrandi.com/blog/fluorescence-assays-dominate-life-science-research



Fields of application
-HITS TRIAGING:

The practice of selecting a compound series with a promising efficacy profile 

that meets basic safety requirements and to justify investment in its optimization [4].

-NEGATIVE DESIGN:

Battery of methods that are usually employed to eliminate molecules with 

undesired properties [5].

4. Vincent F.  et al. Hit Triage and Validation in Phenotypic Screening: Considerations and Strategies. Cell Chem Bio
5. Yang Z. et al. Application of Negative Design To Design a More Desirable Virtual Screening Library. J. Med Chem



Agenda 
PART 1.  (~5 mins): Introduction

Introduction to miniaturized fluorescent assays in high-throughput-screening 

Overview of the main mechanisms of assay interference

PART 2. (~5 mins): State-of-art

Addressing assay interference: experimental and in-silico methodologies

Addressing assay interference: pitfalls of existing approaches

PART 3. (~20 mins): A new pipeline to predict assay interference

Building a comprehensive dataset from primary HTS screenings

Identifying interfering compounds through analysis of compound activity rates

Prediction of compounds likely to interfere with the assay technology



Fluorescence Intensity Assays (FLINT)
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Fluorogenic assays Fluorescence polarization (FP)

Credits: https://bpsbioscience.com/

• Convenient for screening enzymatic 

inhibitors

• Fluorescent emission upon enzymatic 

cleavage • Detect dynamic interaction between 

the biological target and the ligand

• Fluorescent emission upon interaction



Other popular fluorescence-based assay formats
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• Fluorescence Resonance Energy Transfer (FRET)

Measures the energy transfer between a donor-acceptor pair. For the energy transfer to 

work donor and acceptor must be in close proximity.

• Time-Resolved FRET (TR-FRET)

Measures the time a fluorophore spends in the excited state before it reverts to its 

ground state by emitting a photon (FLT).

Credits: https://bpsbioscience.com/

Pro of fluorescence-based assays



No one’s safe: false positive 
readouts
“Many hits are artefacts - their activity does not depend on a specific, 
drug-like interaction between molecule and protein. Artefacts have 
subversive reactivity that masquerades as drug-like binding and yields 
false signals across a variety of assays.”[6]

6. Baell J. et al. Chemical con artists foil drug discovery. Nature



Interfering compounds and interference mechanisms
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PAINS

REACTIVES

AGGREGATORS

FREQUENT
HITTERS

Interfering 
compounds

True promiscuous 
compounds

Compounds likely to 
generate colloidal 

aggregates

Compounds with 
higher than 

expected hit rate

Compounds 
inducing parasitic 

reactions

Compounds containing 
one of 480 substructures 

found problematic in 
AlphaScreen assays



Interfering compounds and interference mechanisms
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6. Baell J. et al. Chemical con artists foil drug discovery. Nature



Dealing with assay interference: 
prevention measures and 
hit-triaging



Experimental countermeasures
• Screening with non-ionic detergents to prevent compounds aggregation

• Use of novel fluorophores emitting in a different region of the spectrum

• Use orthogonal assays to confirm the primary hits

• Implementation of counter-screen assays to identify interfering compounds
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Why we do in-silico modelling? To avoid running expensive experiments!

In-silico methodologies
Global methods:

HitDexter3, Pan-Assay interference compounds (PAINS)*

Specialized methods:

InterPred, ChemFluo, AZ (TR-)FRET interference classifiers



Specialized methods: ChemFluo
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7. Yang Z. et al. ChemFLuo: a web-server for structure analysis and identification of fluorescent compounds. 
Briefings in Bioinformatics



Specialized methods: InterPred
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8. Borrel A. et al. InterPred: a webtool to predict chemical autofluorescence and luminescence interference. Nucleic 
Acids Research. 



Overview of existing methods

ChemFluo AZ (TR-)FRET interference classifiers InterPred
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• Two Extreme Gradient Boosting 

(XGBoost) ensembles

• Prediction of autofluorescence in 

blue and green channels

• Trained and tested on 

counter-screen data

• Underwhelming performances on 

external test set (MCC=0.34) using 

the same experimental evidence 

used in training

• Random Forest Classifier (RFC)

• Prediction of interference in 

AlphaScreen, FRET and TR-FRET 

assays

• Trained and tested on 

counter-screen data from 

AstraZeneca

• Underwhelming performances on 

public test dataset (MCC=0.20)

• 13 Random Forest Classifiers (RFCs)

• Prediction of autofluorescence in the 

blue, green and red channels

• Trained validated and tested on 

random splits of the same dataset

• Uses counter-screen data produced 

ad-hoc

• Each is model specific for one assay

• Not possible to assess their 

performances due to testing strategy 

used



A new methodology to identify 
compounds interfering with 
fluorescent assays
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Overview
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Data collection: Bayer AG HTS historical data

Assay ID

Bioactivity 
readoutCompound ID

Dataset composition

• Compounds:

More than 5 millions compounds represented by 

canonical SMILES strings.

• Assays:

500 different assays (different technology, biological 

target).

• Readouts:

Preprocessed bioactivity readouts received from 

experimentalists as Z-scores

To my knowledge, this represent the largest 

HTS primary screening dataset available 

both in public and private domain.



18

Data preprocessing: Bayer AG HTS historical data

# Assays: 
187

# Bioactivity 
readouts:

296,830,391

# Compounds: 
1’441,052

Preprocessing pipeline

1. Assays must have bioactivity recorded 

    for at least 80% of the compounds

2. Compounds must have bioactivity 

     recorded for at least 80% of the assays

Dataset composition after step 1 and 2: 

205 assays, 1’488’407 compounds

3. Assays must be annotated

4. Compounds must be unique (SMILES   

    strings matching)

5. Binarize Z-scores following  

    experimentalist indications
Note: Readouts were available for both main and background 
signal
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Data preprocessing: Bayer AG HTS historical data

Dataset split prior to modelling

1. Compute Murcko scaffolds

2. Group molecules sharing the same scaffold

3. Random assignment of grouped molecules  

     to training (80%), validation (10%) and test  

     (10%) set.

Splits sizes: 

Train: 1’130’711

Validation: 135’ 830

Test: 174’493

# of compounds # of Murcko scaffolds

Training set 1,130,711 197,095

Validation set 135,830 48,559

Test set 174,493 58,932
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Dataset characterization: Bayer AG HTS historical data

Assays space:

FLINT:  56 Blue  , 23 Green, 8 Red

FRET: 16

TR-FRET: 10

Bioluminescence: 76

PCA comparing the training set chemical space (BLUE) 
and the DrugBank approved drugs space (RED) 

Chemical space

Cell-based: 88

Biochemical: 99
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Data collection and preprocessing: PubChem test set

ChemFluo blue fluorescence  external 

validation set.

Data were collected from PubChem Bioassay 

database as described by the authors*

*As you may notice someone did a mess and wrote 3 times the same assay ID. This show that Supplementary materials should 
never be overlooked.

# of Compounds: 

10’691

# of Compounds after preprocessing:

10’031

Preprocessing:
1. Removal of salt moieties
2. Removal of duplicated structures (0)
3. Removal of structures matching with     
     the training set (660)
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Dataset characterization: PubChem test set

Distribution of compounds’ maximum Tanimoto 
coefficient computed between the training and the 

PubChem test set.

Tanimoto coefficient distribution

Median: 0.53

Interquartile range: 
0.42 - 0.63



Core work: labelling compounds 
likely to interfere with 
fluorescence-based assays
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Labelling compounds likely to interfere with the assay 

technology: compute interference metrics
Activity-to-tested ratio (ATR) 

reloaded Noise-to-active ratio (NAR) Fisher exact test

  For the compound contingency table X:

0 1

Fluorescent 
assays a b

Other 
technologies c d

1. Compute compounds p-values applying 

    Fisher –exact test 

2. Apply threshold to obtain binary 

    interference labels
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Labelling compounds likely to interfere with the assay 

technology: compute binary labels

Percentage of likely interference compounds
(thresh)

2% 5% 10% 20%

ATR 5.00 3.00 1.00 0.90

NAR 0.10 0.07 0.04 0.03

p-value from Fisher’s 
exact test 0.01 0.07 0.17 0.35

Thresholds applied to compute binary interference labels

Rationale applied to interference metrics to compute binary labels
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Labelling compounds likely to interfere with the assay 

technology: comparison of labelling strategies

20% threshold:
● ATR is a superset of NAR
● Fisher recognize a different 

set of compounds as 
interfering

2% threshold:
● Higher relative size of 

overlap among all methods
● NAR is not a subset of ATR 

anymore



27

Development of machine learning classifiers for assay 

interference prediction
mol

GetMorganFingerprintAsBitVect

Morgan2(nbits=2048)

RFC

MLP

BalancedRandomForest 

(imbalanced-learn)

BayesOpt 50 iterations

Hyperparameters optimized:

● n_estimators

● max_depth

● bootstrap

MLP (PyTorchLightning)
ELU activation function

BinaryCrossEntropyLoss

WeightedRandomSampler

Optuna 50 iterations

Hyperparameters optimized:

● n_layers

● n_units

● dropout

● learning_rate
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Optimized hyperparameters: RFC

2% 5% 10% 20%

n_estimators 1928 228 1633 3900

max_depth 36 40 48 48

bootstrap False True False True

ATR

2% 5% 10% 20%

n_estimators 4490 566 3085 4557

max_depth 48 41 46 50

bootstrap True False True True

2% 5% 10% 20%

n_estimators 471 337 2270 420

max_depth 39 40 62 52

bootstrap True False False True

NAR

FISHER

Have fun reading 

the tables
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Optimized hyperparameters: MLP
2% 5% 10% 20%

n_layers 5 2 5 4

n_units 2034 1025 1894 1385

dropout 0.8 0.5 0.8 0.7

learning_rate 3.4e-4 1.0e-4 5.0e-4 1.4e-4

2% 5% 10% 20%

n_layers 5 3 5 5

n_units 1125 1154 1420 1270

dropout 0.6 0.7 0.8 0.3

learning_rate 2.5e-4 1.9e-4 1.4e-4 1.3e-4

2% 5% 10% 20%

n_layers 2 5 3 5

n_units 1249 1801 1881 1835

dropout 0.7 0.7 0.7 0.8

learning_rate 1.9e-4 1.3e-3 1.3e-4 1.0e-4

ATR

NAR

FISHER

Have fun reading 

the tables
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Model performances on the Bayer AG test set

Labelling 
method Threshold

Bayer AG test set

MCC AUC Precision Recall

MLP

ATR

20% 0.38 0.84 0.30 0.80

10% 0.42 0.84 0.37 0.71

5% 0.43 0.89 0.42 0.50

2% 0.32 0.91 0.17 0.70

NAR

20% 0.43 0.82 0.47 0.65

10% 0.41 0.85 0.34 0.73

5% 0.43 0.88 0.34 0.67

2% 0.41 0.90 0.39 0.47

Fisher

20% 0.34 0.76 0.40 0.65

10% 0.39 0.82 0.36 0.58

5% 0.36 0.86 0.23 0.71

2% 0.35 0.88 0.31 0.44

Labelling 
method Threshold

Bayer AG test set

MCC AUC Precision Recall

RFC

ATR

20% 0.42 0.87 0.34 0.81

10% 0.45 0.87 0.40 0.75

5% 0.38 0.91 0.23 0.81

2% 0.25 0.94 0.09 0.86

NAR

20% 0.47 0.85 0.47 0.72

10% 0.44 0.88 0.36 0.77

5% 0.41 0.91 0.27 0.80

2% 0.33 0.94 0.15 0.86

Fisher

20% 0.41 0.80 0.49 0.61

10% 0.41 0.86 0.32 0.73

5% 0.37 0.89 0.23 0.76

2% 0.29 0.92 0.12 0.80
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Model performances on the Bayer AG test set

RFC MCC for different labelling 
methods

MLP MCC for different labelling 
methods
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Model performances on the PubChem derived test set

Labelling 
method Threshold

PubChem test set

MCC AUC Precision Recall

MLP

ATR

20% 0.21 0.75 0.15 0.53

10% 0.25 0.78 0.19 0.50

5% 0.22 0.79 0.32 0.20

2% 0.26 0.72 0.32 0.29

NAR

20% 0.25 0.78 0.19 0.52

10% 0.25 0.78 0.12 0.55

5% 0.23 0.77 0.28 0.26

2% 0.21 0.78 0.37 0.15

Fisher

20% 0.17 0.73 0.12 0.58

10% 0.24 0.77 0.19 0.45

5% 0.25 0.72 0.25 0.34

2% 0.21 0.75 0.39 0.14

Labelling 
method Threshold

PubChem test set

MCC AUC Precision Recall

RFC

ATR

20% 0.35 0.91 0.20 0.75

10% 0.36 0.91 0.21 0.75

5% 0.33 0.91 0.18 0.73

2% 0.31 0.90 0.17 0.73

NAR

20% 0.35 0.91 0.19 0.79

10% 0.35 0.91 0.19 0.81

5% 0.36 0.91 0.21 0.75

2% 0.35 0.91 0.19 0.78

Fisher

20% 0.41 0.93 0.31 0.63

10% 0.42 0.93 0.29 0.71

5% 0.45 0.94 0.34 0.66

2% 0.44 0.94 0.32 0.69
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Model performances on the PubChem derived test set
RFC MCC for different labelling 

methods

Benchmark against available methods
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Analysis of performances on the PubChem derived test set

TMAP of PubChem test set compounds colored by 
PubChem activity label (BLUE non-autofluorescent, 

RED autofluorescent)

TMAP of PubChem test set compounds colored by 
predicted interference label (BLUE non-interfering, 

RED interfering)
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Conclusions

• Single-dose HTS data can be used with very little preprocessing to address assay interference

• We show that statistically derived labels can be used to train ML models for prediction of assay 

interference (best model reaching MCC=0.47 on the internal test set)

• The interference labels obtained using ATR, NAR, and Fisher exact test can approximate 

experimental evidence

• Our best model outperforms existing methods for the prediction of autofluorescent compounds 

(MCC=0.45 on the external test set)

Additional experiments

• Explore if the models can predict other type of interference (e.g. aggregation)

• Find additional public available datasets to further assess the models applicability

• Extend the approach to other assay technologies


