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Uncertainty Quantification in NN?
How? And why?




Why do we need Uncertainty Quantification (UQ)?

4 )

What is the probability that

UQ can provide valuable information:
for which compounds can the model
confidently make predictions?
about which compounds is the model
uncertain?

UQ can help with:
assessment of risks, costs and benefits
prioritization of test compounds for
further analysis

& Models are often poorly calibrated



Sources of Uncertainty I

Epistemic vs. Aleatoric Uncertainty
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Aleatoric Uncertainty
Epistemic Uncertainty

Aleatoric uncertainty:

- due to uncertainty in the data

- stochastic/non-deterministic relationship
between X and Y

- ‘irreducible’

Epistemic uncertainty:

- due to uncertainty in the model
- everything that is not Aleatoric

- can have different sources

- ‘reducible’

Yang, Cl., Li, YP.,J Cheminform 15, 13 (2023).
Hullermeier, E., Waegeman, W. Mach Learn 110, 457-506 (2021).
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Sources of Uncertainty II

Uncertainty

I

e ol =101
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X

Aleatoric Epi .
(“irreducible”, noise) . pistemic
T (“reducible”, lack of knowledge)

) ) I
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Experimental System's property Model overfitting Distribution shift
(systematic, (e.g. biological) , .
unsystematic) Uncertainty source: Uncertainty source:
Choice of Model Data

— leads to increasing model variance

Gruber, C., et al. "Sources of Uncertainty in Machine Learning--A Statisticians' View." arXiv preprint arXiv:2305.167(




Disentangling Uncertainty in Classification Tasks I

What does a probability of 0.5 mean?

Source of uncertainty?

Uncertainty in the data?

aleatoric?

Uncertainty in the model?
epistemic?



Disentangling Uncertainty in Classification Tasks I

Example: classification task with 3 possible outcomes

Ensemble Model with M base estimators:

{P(we|x*, 0) i,

Categorical Distributions on a Simplex

Confident Prediction High aleatoric uncertainty High epistemic uncertainty
(e.g. due to experimental error) (e.g. due to distribution shift)

Predicted probability will be the same for both cases
Model variance to determine source of uncertainty

Malinin, A., and Gales M.. Advances in neural information processing systems 31 (2018).
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Okay, but why do we need
Probability Calibration, then?

Enhancing
Probability

Calibration
in NN




Why do we need Probability Calibration (PC) ?

What if the probability is not correct?
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=> Cost assessment cannot be performed
=> Optimal Decision is not feasible
=> DNN are often poorly calibrated

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017).



Why do we need Probability Calibration (PC) ?

Classification Tasks:

With increasing model size...
- ...classification error will decrease
- ...the model will be increasingly miscalibrated

During model training...
- ...classification error will decrease with progressing training
- ...NLL will first decrease and then increase with progressing training

“...the network learns better classification accuracy at the expense of
well-modeled probabilities”

“...overfitting manifests in probabilistic error rather than classification error.”

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017).



Enhancing Probability Calibration (PC) of MLPs

/ Chembl Data

- Target: ChEMBL279

-Stratified Folds
- Subsampling Training Data

==

MLP

\_ /

Simm, J., et al. (2018). Cell Chemical Biology.

Enhancing Probability
Calibration?

1. Model Selection:
HP-Optimization Strategies

N\ (

Accuracy ROC-AUC

J \

r

) (

v/ BCE-Loss v ACE

J .

2. Model architecture:
Probability Calibration Approaches

{ N\ -
MC-Dopout v" Ensemble
. J .
( ) (
v/ Platt Scaling v/ Ensemble + Platt
J .
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Enhancing PC: Model Selection I

Model overfitting results in probabilistic error. 030 ﬂ’leEtélEc
0.25 B ACE
Effects of HP- optimization strategies on PC 0.20

— Compare 4 performance metrics used in HP- optimization

Calibration Error

0.15
Accuracy %L _?_ﬂ 5
ROC-AUC
BCE Loss oo ‘ é& ﬁ
Adaptive Calibration Error (ACE) 0.00

acc rocauc loss ace
HP Optimization Metric

— There are substantial differences in CE between the optimization strategies
— Optimization with BCE Loss or ACE leads to the best results in PC

— Both CE metics show similar results .



Effects of HP- optimization Strategies on PC

How are the different Metrics performing in terms of ROC-AUC?

o [® acc
® rocauc
[® loss
—e— T [® ace
L
0.000 0.025 0.050 0.075 0.100 0125 0.150 0.175 0.200

ACE

— Model optimized with Loss and Ace PC

— Loss and Ace perform well in terms of ROC-AUC

— Accuracy shows the worst performance
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Enhancing PC: Calibration Approaches I

— HP- Optimization Metrics: Loss and ACE
Which PC approaches help improve PC?

. . Metric
— Compare 3 calibration approaches L. s
' I ace
Platt Scaling: \ 'nPut HJ—{ ‘ - J—» Output o
Linear ReLU Logistic
rearession
W 0.3
<
-  Ensemble Model: s | [
Input —» — — — Output 0.2
LR
- MC-Dropout: | Input ‘; ]% qb — Output == .
N 0.0 e —
Llnear ReLU Dropout SlngId baseline platt ensemble MCDropout

Model

— MC - Dropout does not work well
— Platt Scaling and Ensemble Modeling look promising

Lakshminarayanan, et al. (2017). Advances in Neural Information Processing Systems,.
Platt, J. C., & Platt, J. C. (1999). Advances in Large Margin Classifiers. 1%



Enhancing PC: Calibration Approaches II

— HP- Optimization Metrics: Loss and ACE
Which PC approaches help improve PC?

. . 0.050 -
— Compare 3 calibration approaches Metric

0.045 B loss

BN ace
Platt Scaling: l '"P"t >—>J—>U - U—n Output 0.040
Linear ReLU Logistic 0.035

redaression L

(<.E) 0.030
- Ensemble Model: Tk 0.025

Input —»  —» —» — Output

0.020

—
- MC-Dropout: | lnput b—»LH]—’D'—’L_’ Otrput 0.010

Linear ReLU Dropout Sigmoid

baseline platt ensemble
Model

— MC - Dropout does not work well
— Platt Scaling and Ensemble Modeling improve PC

Lakshminarayanan, et al. (2017). Advances in Neural Information Processing Systems,.
Platt, J. C., & Platt, J. C. (1999). Advances in Large Margin Classifiers.



AUC ROC

Enhancing PC: Calibration Approaches III

How are the Models performing in terms of ROC-AUC?

— HP- Optimization Metrics: ACE

0.82

—— @ baseline
0.81 — ‘® platt
0.50 ® ensemdle |, platt-Scaling and Ensemble Modeling improve PC
. — Ensemble Modeling improves ROC AUC
— Platt Scaling is not able to improve ROC- AUC (does

v Ok s : not correct non/monotonous so distortions)
0.77
0.76
0.75 | Idea: Platt- Scaling of Ensemble Model?
0.74
0.730 00 0.01 0.02 0.03 0.04 0.05 { | I ‘ ‘ ’/7‘ “‘//77\\‘

: : . o . . 000 - §—@®

Logistic
regression
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Enhancing PC: Calibration Approaches IV

Platt- Scaling of Ensemble Models:

HP - Optimization Metric: ace

0.82
| o [ baseline
0.81 , — ® platt
[® ensemble
0.80 [® ensemble_platt
0.79
9078
o ;
© ! ® = ® :
2 0.77
0.76
0.75
0.74 ~ -
0.73
0.00 0.01 0.02 0.03 0.04 0.05

ACE

0.68

0.66

o
(@)]
B

AUC ROC
<
(o))
N

0.58

0.56

— in some cases Platt Scaling improves PC of Ensemble Models

— Work in progress!

— Subsampling the training data

HP - Optimization Metric: ace

[® baseline
T @ platt
[®] ensemble
[® ensemble platt
| f ® {
’,
0.02 0.03 0.04 0.05 0.06 0.07

ACE

17



19




References

Uncertainty estimation for Neural Networks:

Gruber, C., et al. "Sources of Uncertainty in Machine Learning--A Statisticians' View." arXiv preprint arXiv:2305.16703 (2023).

Guo, C., Pleiss, G., Sun, Y., & Weinberger, K. Q. (2017). On Calibration of Modern Neural Networks (pp. 1321-1330). PMLR.
https://proceedings.mlr.press/v70/guol7a.html

Hullermeier, E., Waegeman, W. Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. Mach Learn 110,
457-506 (2021).

Malinin, A., and Gales M.. "Predictive uncertainty estimation via prior networks." Advances in neural information processing systems 31 (2018).

Mervin, L. H., Johansson, S., Semenova, E., Giblin, K. A., & Engkvist, O. (2021). Uncertainty quantification in drug design. Drug Discovery Today, 26(2), 474-489.
https://doi.org/10.1016/J.DRUDIS.2020.11.027

Nixon, J., Dusenberry, M., Jerfel, G., Nguyen, T,, Liu, J., Zhang, L., & Tran, D. (2019). Measuring Calibration in Deep Learning. https://doi.org/10.48550/arxiv.1904.01685
Yang, Cl., Li, YP. Explainable uncertainty quantifications for deep learning-based molecular property prediction. J Cheminform 15, 13 (2023).

Deep Ensembles:

Lakshminarayanan, B., Pritzel, A., & Deepmind, C. B. (2017). Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles. Advances in Neural
Information Processing Systems, 30.

Platt Scaling:

Platt, J. C., & Platt, J. C. (1999). Probabilistic Outputs for Support Vector Machines and Comparisons to Regularized Likelihood Methods. ADVANCES IN LARGE MARGIN
CLASSIFIERS, 61--74. http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639

Clustering of data:

Simm, J., Klambauer, G., Arany, A., Steijaert, M., Wegner, J. K., Gustin, E., Chupakhin, V., Chong, Y. T., Vialard, J., Buijnsters, P., Velter, I., Vapirey, A., Singh, S., Carpenter,
A. E., Wuyts, R., Hochreiter, S., Moreau, Y., & Ceulemans, H. (2018). Repurposing High-Throughput Image Assays Enables Biological Activity Prediction for Drug
Discovery. Cell Chemical Biology. https://doi.org/10.1016/j.chembiol.2018.01.015

20


https://proceedings.mlr.press/v70/guo17a.html
https://doi.org/10.1007/s10994-021-05946-3
https://doi.org/10.1016/J.DRUDIS.2020.11.027
https://doi.org/10.48550/arxiv.1904.01685
https://doi.org/10.1186/s13321-023-00682-3
http://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.1639
https://doi.org/10.1016/j.chembiol.2018.01.015

