Targeting Androgen Receptor with CADD

Mariia Radaeva

PhD Candidate

THE UNIVERSITY OF BRITISH COLUMBIA

Prostate Cancer

OF BRITISH COLUMBIA

UBC

Androgen Receptor (AR) - main driver of PC

TARGETING AR JOURNEY

AR Inhibitors as Prostate Cancer Drugs

- AR inhibitors are used as androgen deprivation therapy
- They all exhibit similar mode of action (target LBD site)
- They share similar chemical scaffold

Current AR Inhibitors Mechanism of Action

Prostate Cancer Eventually Develops Drug Resistance

Mutation induced drug resistance

Hignigrmalignant treatment resistance cancer

Factors that Causes Resistance to Anti-AR Drugs

Mutations in the LBD hamper the efficacy of known anti-androgens

Scher et al. Endocrine-Related Cancer 2004

Targeting AR DNA-binding domain

All current drugs target ligand binding domain (LBD)

Two problems:

- Mutations within LBD lead to drug resistance
- Advanced PC expresses truncated forms of AR ٠ completely lacking the LBD

THERE IS A NEED FOR DRUGS WITH A NEW MODE OF ACTION

Targeting AR at the DNA binding domain

Why don't we target DBD directly?

Previously was deemed impossible due to high conservation with other receptors

	560	570	580	590	600	610	620
					1.000		
AR-DBD	TCLI CGI	DE ASGCHYG <mark>A</mark> L	TCGS CKVFFKR	RAA E G K Q K Y L	CA <mark>S</mark> RNDCTI I	DKF RRKNCP S	CRL RKCYE A G
ER-DBD	YCAVCNI	DYASGYHYGVW	SCEGCKAFFKR	RSI QGHNDYM	1CP <mark>a</mark> tnqcti 1	DK <mark>N</mark> RRKS CQA	CRL RKCYE V G
GR-DBD	LCLVCSI	DEASGCHYGVL	TCGS CKVFFKR	RA <mark>V E G</mark> QHNYL	CAGRNDCI I	DKI RRKNCP A	CRYRKCLQ A G
PR-DBD	I CLI CGI	DEASGCHYGVL	TCGS CKVFFKR	RA <mark>ME G</mark> QHNYL	CAGRNDCI VI	DKI RRKNCP A	ACRL RKCCQ A G

THE UNIVERSITY OF BRITISH COLUMBIA

UBC

Using CADD to develop a selective drug

In Silico Screening Work

Protein structure

Molecular do

SMALL MOLECULE DATABASE

THE UNIVERSITY **OF BRITISH COLUMBIA**

Massive cancer-drug deal one of UBC's biggest to date

A promising new treatment for drug-resistant prostate cancer developed by scientists at the University of B.C. has been licensed by the pharmaceutical giant Roche for more than \$140 million, the university's richest intellectual property deal in its history.

Randy Shore Dec 16, 2015 · December 16, 2015 · 3 minute read

The 'Big Bang' of the chemical universe

TARGETING AR JOURNEY

How we find drug candidates today?

DRUG CANDIDATES DEEP DOCKING **37 BILLION** 100s X MOLECULES FASTER Predict docking THE UNIVERSITY

TARGET PROTEIN/TARGET SITE

OF BRITISH COLUMBIA

scores with AI models

DeepDocking workflow

Accelerates docking up to x50 times

- →1. Dock a sample of the database
- 2. Build a prediction model using the docked compounds
- 3. Predict docking scores of undocked compounds
- 4. Discard compounds with poor predicted docking scores

Identification of new AR drug candidates

OF BRITISH COLUMBIA

Problems with targeting AR DBD

Molecules compete with a big molecule - DNA

Difficult to optimize for both - activity and stability

THE UNIVERSITY OF BRITISH COLUMBIA

TARGETING AR JOURNEY

New strategy – AR DBD PROTAC

THE UNIVERSITY OF BRITISH COLUMBIA

Existing AR PROTAC

This drug targets LBD! Ineffective against truncated forms of AR

Arvinas PROTAC[®] Protein Degrader Bavdegalutamide (ARV-110) Continues to Demonstrate Clinical Benefit in Men with Metastatic Castration-Resistant Prostate Cancer Currently in Phase II Clinical Trials

THE UNIVERSITY OF BRITISH COLUMBIA

Current direction – development of a selective and potent PROTAC

Developing candidate PROTAC molecule using computational modeling

THANK YOU!