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Why do we care: Importance of Reaction Yield Prediction

● In CASP: We could use yield prediction to filter out 
unsuccessful reactions in Computer-Aided Synthesis 
Planning (CASP). This could significantly cut costs and 
boost sustainability.

● In HTE: In High-Throughput Experimentation (HTE) 
accurate yield prediction can help us optimize synthesis 
processes, saving time and resources.
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● Low Reactivity

● Side Reactions

● Reactant/Reagent/Catalyst Deactivation

● Thermodynamic and Kinetic Factors

● Contaminants

● Sensitivity to Environment

● Product Degradation/Reactivity

● Product Isolation

Factors Influencing Yield of a Chemical Reaction
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Data generation and sources 
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What’s the problem with the data storage?
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What is the SotA?

For low-scale data the Active 
Learning approach is popular. 
The design of fingerprints, 
including advanced ones is 
popular.

For large-scale data the Deep 
Learning (Transformers, Graph 
Neural Networks) are current 
SoTA.
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SotA overview
Data encoding:

● DFT
● Structural fingerprints (ECFP, DRFP)
● Learned representations
● Graph-based Encodings
● One-hot

Methods:

● XGBoost, Random Forest and other 
classics

● Bayesian modeling
● Active learning approach
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Natural Language Processing:

● Yield-BERT
● Multimodal Transformer
● Augmented Transformer

Graph-based DL:

● MPNN with self-attention
● Uncertainty-aware MPNN
● YieldGNN
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“Solved” Case

Buchwald-Hartwig HTE dataset:

15 aryl halides, 23 additives, 4 palladium catalysts, and 3 bases

Dense and consistent

Toy dataset for yield prediction
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t-SNE of BH HTE dataset 
demonstrates that there are 
distinctive clusters from which 
one could see the areas with 
lower or higher yield.
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Gradient Boost Regression for BH HTE dataset in different featurizations
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“Unsolved” Case

Buchwald-Hartwig Amination reaction

● Reaxys - 7K entries
● AZ ELN 750 - 500 entries
● Ahneman’s HTE 

Buchwald-Hartwig (BH HTE) - 4K 
entries

● USPTO - 6K entries
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t-SNE with conditions t-SNE without conditions
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Solvent           Ligand Caesium salt            Reactants                         Product

Palladium catalyst

Ligand                   Base            Palladium catalyst Additive                    Reactants                       Product

USPTO ID01456115

BH HTE example
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What could we do about that?

Data Standardization

Deep Integration of Chemistry 

Yield Variability: a need for 
classification models with multiple bins 
to address data complexity.

Future Trajectory: The future of yield 
prediction involves enhanced datasets, 
uncertainty-based predictions, and the 
development of reaction-specific 
descriptors. 

Yield prediction is influenced by inherent data noise. An 
analysis revealed standard deviations of around 16% in 
general datasets.
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Thank you for 
your attention!

21



Ligand                   Base            Palladium catalyst Additive                    Reactants                       Product

Solvent      Caesium salt                  Ligand                                          Reactants                       Product

Palladium catalyst
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