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Chemical reactions
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A reaction type is defined by the reaction center and reagents.
With different reagents, reactants can turn into different products.

Any part of a reaction can be predicted.




Why predict reagents?

1). To help CASP
Aizynthfinder generates routes without reagents.

2). To address data flaws
Many reactions in USPTO don’t always have well-specified

reagents

Show Reactions Routes:
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e 0.9940
number of reactions 2.0000
number of pre-cursors 3.0000
number of pre-cursers in stock 3.0000
average template occurrence  1506.5000
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Transformer

Today the standard base model for all kinds of NLP tasks.
Originally proposed for machine translation.

Input: reactants-reagents (atom-wise tokenization)
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SMILES

A <LN \ P SMILES - a text notation of organic molecules designed for chemical

AR @Q‘ﬁ information systems.

. ° Reaction SMILES are to depict reactions.
. < The idea of SMILES is to build a spanning tree in the molecular graph.
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N1CCN(CC1)C(C(F)=C2)=CC(=C2C4=0)N(C3CC3)C=C4C(=0)O

Any part of a reaction SMILES can be predicted by masked language modeling
SMILES for cyprofloxacin




Chemical reaction data

Chemical reactions from US patents (USPTO Reaxys — a proprietary expert-curated database
dataset, 2012) — the only open chemical reaction from Elsevier, 56M reactions.

dataset.

Consists of 1-2M reactions obtained by text - - =
mining, pretty noisy. i, Ry, WA W T

97 Reactions out of 62 Documents, containing 56 Substances, 51 Targets ~
4
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http://www.elsevier.com/
http://www.elsevier.com/

USPTO noise

US07985491B2, 2011

US08765940B2, 2014

US08853675B2, 2014

US09394290B2, 2016 |
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Pd(PPh3)4
Na>CO3

toluene, DME Q O O

Pd(PPh3)4
Na2COs3

Na>COs3

toluene

All reagents are specified

No solvent is specified

The Pd catalyst is missing

All reagents are missing

A catalyst, a base and a solvent are necessary.



Paper idea

Reagent and product models
are transformers.

We can use a reagent model
to improve product prediction
models.

Model-agnostic in principle
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Training set

Training on full USPTO without USPTO MIT test. Final size ~ 1M reactions
Preprocessing:

1). Delete atom mapping.

2). Mix up precursors and extract reagents with RDKit.

3). Remove reagents which are too rare.

4). Augment data.
5). Sort reagents by roles (catalyst, solvent, etc.) using heuristics.

N\ \l}r\\o Nat  H J\ NI =
A"‘ | — P

CC(C)S.FclccenclF>>CC(C)SclncccclF [H-].[Na+].CN(C)C=0

source target
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Reaction role assignment

An RDK:it procedure to separate reactants for
reagents (Schneider et al. 2016). P

Atom mapping not needed. l (ﬁ é e
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Test set

We used a subset of Reaxys for testing 0.30 Proportion of reaction classes
USPTO 50K
urposes.
p p 0.25 B Reaxys Test
Size: 96972 reactions. 0.20
. 0.15
Reagent SMILES determined by
PubChemPy. 0.10
Reaction types determined by o0
NameRXN. | I I
0.00 . .
. .. . X X 5 <o <& o™ P
Design goal: similarity to USPTO 50K é@m“j @0‘“{?&‘}\ @@'8’"‘3 ab°v°° Oﬁv"“ <a*-6"“°° &06““‘0 &
in terms of types distribution P ST # o°
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,é& : Q'a
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Discussion: overall performance

Exact match accuracy

Predicted only the molecules in the ground truth and all of them. A.C.B. ~A.B.C
Partial match accuracy

Some of the molecules are predicted correctly. A.B ~A.C.D.

Recall

#(correctly predicted) / #(molecules in target)

Metric Top-1 Top-2 Top-3 Top-4
Exact match accuracy 17.0 24.7 29.2 31.8
Full recall 19.2 28.4 31.5 39.3
Partial match accuracy 70.9 80.5 89.4 87.3
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Model confidence

Confidence scores for reactions

Confidence: prOdUCt of the prObabiIitieS of all Overall distribution of confidence scores  predicted correctly and not

tokens in the generated sequence.
1.0
The reagent model is much less confident than a
product model. 05
For the latter, it is close to 1 almost all of the time. ;
5061
g 0.41 —y—
S
0.2
0.0+

Proportion of reactions Top-1 (exact) miss  Top-1 (exact) hit




Performance across reaction types

Percentage
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Reagent prediction scores across reaction classes in the Reaxys test set
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Top-5 exact
Top-5 partial
Top-3 exact
Top-3 partial
Top-1 exact
Top-1 partial

Class proportion

Heteroatom Acylation Deprotections Reductions
alkylation and related
and arylation processes

C-C bond
formation

FGI

Protections

FGA

Oxidations

Heterocycle
formation
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Reagent improvement

Strategy

Replace if more molecules were
predicted than there was reported.
Reagents changed in ~25% of reactions

Restored catalysts, reducing agents, etc.
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Product prediction

The new model performs better

than the old model on both Reaxys and
USPTO in both separated
and mixed settings.

Statistical significance: McNemar'’s test

F| incorrect

F', correct

F5 incorrect

A

B

F5 correct

C

D

Reaxys USPTO MIT
MT, no reagents T 84.0
MT base, mixed 82.0 87.7
MT new, mixed 83.0 88.3
MT base, separated 84.3 89.2
MT new, separated 84.6 89.6

(IB-C|-1)’

B+C

MT base: trained on basic USPTO.
MT new: trained on USPTO with

reconstructed reagents.

Chi-squared distribution (1 degree of

freedom).

Null hypothesis: difference is

accidental
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Conclusion

> Transformer can be succesfully used to suggest reagents for organic reactions.
> We used the strategy to train a model on USPTO and test it on Reaxys.

> We used a reagent model to improve a product model in a self-supervised and model-agnostic
fashion.

> \We beat the score of the Molecular Transformer on USPTO MIT.
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