Equivariant Graph Neural Networks for Toxicity Prediction

AIDD TALK 02-2023

INTRODUCTION

Research Overview

- Machine Learning Force Fields and Interatomic Potentials to study dynamics of molecules and materials
- Learning the PES from quantum mechanical reference data via Neural Network approximation
- But, molecules live in 3D (Euclidean/physical) space
 - MLFFs need to be able to "understand" symmetry/isometries of Euclidean space
 - Energy invariance/force equivariance
- Importantly, learn meaningful, equivariant atom representations based on 3D point cloud

<u>Use equivariant graph neural networks</u>

REGRESSION

LOCAL STRU PARAMETERS

Toxicity Prediction - Overview

- We use 3D geometries of molecules to encode them via an equivariant graph (message-passing) neural network
 - profile of the molecule

Atomic representations are then used to predict pharmacokinetic or toxicological

Toxicity Prediction - Overview

Toxicity Prediction - why 3D?

- Important ADMET profiles might not be correctly covered by other representations like SMILES strings or fingerprints (the larger the system)
 - Examples:
 - Cis-Platin / Trans-Platin
 - Thalidomide

NETHODS

Methods **MESSAGE-PASSING NEURAL NETWORKS: OVERVIEW**

•We construct molecules as graphs

- **\Rightarrow** Each node *i* has a hidden state $h_i^{t,l}$ at iteration *t* with order *l*
- •We collect messages from neighboring nodes/atoms j in a given cutoff region with an edge index e_{ii} : $m_i^{t+1} = \sum M_t(h_i^t, h_j^t, e_{ij})$ $j \in N(i)$
- •We can additionally add attention weights to every message, such that the model can learn to prioritize

•We update every node: $h_i^{t+1} = S_t(h_i^t, m_i^{t+1})$

Methods **SYMMETRY: EQUIVARIANCE**

- [We deal only with isometries of the Euclidean space]
- Given a set of transformations $T_g: \mathscr{V} \to \mathscr{V}$ for $g \in G$
- Given a function $f: \mathscr{V} \to \mathscr{W}$ (in our case NN)
- Equivariance of *f*: $\exists S_g: \mathcal{W} \to \mathcal{W}: S_g[f(\mathbf{x})] = f(T_g[\mathbf{x}]) \; \forall g \in G, \; \mathbf{x} \in \mathcal{V}$
 - Example: Spherical harmonics $\mathbf{Y}_{J}: S^{2} \rightarrow \mathbb{C}^{2J+1}$ for $J \geq 0$ are equivariant to SO(3) (group of 3D rotations)
 - → $\mathbf{Y}_J(\mathbf{R}_g^{-1}\mathbf{x}) = \mathbf{D}_J^*(g)\mathbf{Y}_J(\mathbf{x})$, where $\mathbf{x} \in S^2$, $g \in G$

Methods **EQUIVARIANCE: BENEFITS**

- Molecules come with invariance of energy towards permutation of atom indices, global rotation and translation
 - Equivariance of tensorial properties, like forces, multipole expansion of electron density etc.
- No data augmentation: data efficiency
- **Restricting functional space: learning efficiency**
- Introduce directional, equivariant information (inductive bias)
 - Rotation-invariant representations (scalar reps.) do not propagate well directional information
- Possibility to predict tensorial properties, not only scalar output

Methods EQUIVARIANT MESSAGE-PASSING NEURAL NETWORKS: OVERVIEW

Methods Torchmd-Net: Equivariant transformer

Thoelke and Fabritiis, arXiv:2202.02541 (2021)

RESULTS

Toxicity Datasets

- MoleculeNet: Tox21, ToxCast, SIDER, ClinTox, BACE, BBBP
- **TDCommons:** Ames, hERG, DILI, Skin Reaction, LD50
- **ToxBenchmark:** Ames mutagenicity

- 3D conformers for MoleculeNet taken from GEOM dataset
- 3D conformer generation using CREST and GFN2-xTB with an implicit solvation model for TDCommons and **ToxBenchmark**

Toxicity Datasets

Dataset	Property	Tasks	Species	Recovered
Tox21	Qualitative toxicity	12	7,677	98.0%
ToxCast	Qualitative toxicity	617	8,405	98.0%
SIDER	Drug side effects	27	$1,\!356$	95.1%
ClinTox	Toxicity of failed approved drugs	2	$1,\!438$	98.7%
BACE	BACE-1 inhibition	1	1,511	99.9%
BBBP	Blood-brain barrier penetration	1	1,959	99.2%
Ames	Mutagenicity	1	7,269	99.8%
hERG	Coordination of heart beating	1	650	99.2%
DILI	Drug-induced liver injury	1	470	98.9%
Skin Reaction	Skin sensitization	1	403	99.7%
LD50	Acute toxicity	1	7,353	99.5%
ToxBenchmark	Mutagenicity	1	6,489	99.6%

Benchmark: TDC and ToxBenchmark

Dataset	$\mathbf{Ames} \uparrow$	hERG ↑	$\mathbf{DILI}\uparrow$	Skin 🔶	$\mathbf{LD50}\downarrow$	Tox-
				$\mathbf{Reaction}^{\top}$		Benchmark
No. molecules	7,269	650	470	403	7,353	$6,\!489$
AttrMasking	$0.842_{\pm 0.008}$	$0.778_{\pm 0.046}$	$0.919_{\pm 0.008}$	_	$0.685_{\pm 0.025}$	_
AttentiveFP	$0.814_{\pm 0.008}$	$0.825_{\pm 0.007}$	$0.886_{\pm 0.015}$	_	$0.678_{\pm 0.012}$	_
Fingerprint-based	$0.865_{\pm 0.002}$	$0.875_{\pm 0.003}$	$0.937_{\pm 0.004}$	_	$0.588_{\pm 0.005}$	$0.86_{\pm 0.01}$
SMILES-T	$0.697_{\pm 0.011}$	$0.703 _{\pm 0.056}$	$0.760_{\pm 0.041}$	$0.633_{\pm 0.051}$	$0.715_{\pm 0.012}$	$0.720_{\pm 0.014}$
ET (single)	$0.836_{\pm 0.003}$	$0.839_{\pm 0.017}$	$0.878_{\pm 0.013}$	$0.662_{\pm 0.033}$	$0.653_{\pm 0.008}$	$0.881_{\pm 0.008}$
ET (multi)	$0.804_{\pm 0.004}$	$0.763_{\pm 0.021}$	$0.885_{\pm 0.030}$	$0.581_{\pm 0.055}$	$0.660_{\pm 0.01}$	$0.879_{\pm 0.003}$

_ ↑

)

ET VS. SMILES

Benchmark: TDC and ToxBenchmark

- **Equivariant Transformer**
- Equivariant Transformer + Energy
- SMILES Transformer

Benchmark: TDC and ToxBenchmark

Equivariant Transformer

SMILES Transformer

Benchmark: MoleculeNet

$\mathbf{Dataset} \uparrow$	Tox21	ToxCast	SIDER	ClinTox	BACE	BBBP
No. molecules	7,677	8,405	1,356	$1,\!438$	1,511	1,959
No. tasks	12	617	27	2	1	1
D-MPNN	$0.759_{\pm 0.007}$	$0.655_{\pm 0.003}$	$0.57_{\pm 0.007}$	$0.906_{\pm 0.006}$	$0.809_{\pm 0.006}$	$0.724_{\pm 0.004}$
AttentiveFP	$0.761_{\pm 0.005}$	$0.637_{\pm 0.002}$	$0.606_{\pm 0.032}$	$0.847_{\pm 0.003}$	$0.784_{\pm 0.022}$	$0.643_{\pm 0.018}$
GEM	$0.781_{\pm 0.001}$	$0.692_{\pm 0.004}$	$0.672_{\pm 0.004}$	$0.901_{\pm 0.013}$	$0.856_{\pm 0.011}$	$0.724_{\pm 0.004}$
SMILES-T	$0.691_{\pm 0.011}$	$0.578_{\pm 0.011}$	$0.504_{\pm 0.028}$	$0.819_{\pm 0.045}$	$0.739_{\pm 0.075}$	$0.931_{\pm 0.012}$
ET (single)	$0.805_{\pm 0.024}$	$0.685_{\pm 0.009}$	$0.606_{\pm 0.01}$	$0.851_{\pm 0.027}$	$0.832_{\pm 0.009}$	$0.960_{\pm 0.03}$
ET (multi)	$0.751_{\pm 0.008}$	$0.623_{\pm 0.008}$	$0.560_{\pm 0.011}$	$0.843_{\pm 0.012}$	$0.816_{\pm 0.013}$	$0.955_{\pm 0.008}$

Benchmark: MoleculeNet **ET VS. SMILES**

Benchmark: MoleculeNet

Attention weights analysis INVESTIGATION OF AMES, LD50 AND TOX21

Short/long range analysis INVESTIGATION OF AMES, LD50 AND TOX21

THANKS!

