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INTRODUCTION



• Machine Learning Force Fields and Interatomic 
Potentials to study dynamics of molecules and 
materials 

• Learning the PES from quantum mechanical 
reference data via Neural Network approximation 

• But, molecules live in 3D (Euclidean/physical) space 

• MLFFs need to be able to “understand” 
symmetry/isometries of Euclidean space 

• Energy invariance/force equivariance 

• Importantly, learn meaningful, equivariant atom 
representations based on 3D point cloud 

• Use equivariant graph neural networks

Research Overview



• We use 3D geometries of molecules to encode them via an equivariant graph 
(message-passing) neural network  

• Atomic representations are then used to predict pharmacokinetic or toxicological 
profile of the molecule 

Toxicity Prediction - Overview



Toxicity Prediction - Overview



• Important ADMET profiles might not be correctly covered by other 
representations like SMILES strings or fingerprints (the larger the system) 

• Examples:  

• Cis-Platin / Trans-Platin 

• Thalidomide 

Toxicity Prediction - why 3D?

S-enantiomer (embryo-toxic) R-enantiomer (sedative)



METHODS



Methods
•We construct molecules as graphs 

➡ Each node  has a hidden state  at iteration  
with order  

•We collect messages from neighboring nodes/atoms  j 
in a given cutoff region with an edge index : 

 

•We can additionally add attention weights to every 
message, such that the model can learn to prioritize 

•We update every node:  
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MESSAGE -PASS I N G  N EURAL NE TWO RKS :  OVE RVIEW



•[We deal only with isometries of the Euclidean space] 

•Given a set of transformations  
•Given a function  (in our case NN) 

•Equivariance of : 
 

➡ Example: Spherical harmonics 
 are equivariant to SO(3) 

(group of 3D rotations) 
➡

Tg :  𝒱 → 𝒱 for g ∈ G
f :  𝒱 → 𝒲

f
∃Sg :  𝒲 → 𝒲 :  Sg[ f(x)] = f(Tg[x]) ∀g ∈ G,  x ∈ 𝒱

YJ :  S2 → ℂ2J+1 for J ≥ 0

YJ(R−1
g x) = D*J (g)YJ(x),  where x ∈ S2,  g ∈ G

SYMMETRY:  EQUIVARIANCE
Methods



• Molecules come with invariance of energy towards 
permutation of atom indices, global rotation and 
translation 
➡Equivariance of tensorial properties, like forces, 
multipole expansion of electron density etc. 

• No data augmentation: data efficiency 
• Restricting functional space: learning efficiency 

• Introduce directional, equivariant information (inductive 
bias) 

➡ Rotation-invariant representations (scalar reps.) do 
not propagate well directional information  

• Possibility to predict tensorial properties, not only 
scalar output

EQUIVARIANCE:  B ENEFITS
Methods



Methods
EQUIVARI ANT M ESSAGE-PASS I NG NE URAL NE TWORKS:  OVERVIEW



Methods
TORCHMD -NET:  E Q U I VA RIA NT TRANSFORMER

Thoelke and Fabritiis, arXiv:2202.02541 (2021)



RESULTS



Toxicity Datasets
• MoleculeNet: Tox21, ToxCast, SIDER, ClinTox, BACE, 

BBBP 

• TDCommons: Ames, hERG, DILI, Skin Reaction, LD50 

• ToxBenchmark: Ames mutagenicity 

• 3D conformers for MoleculeNet taken from GEOM 
dataset  

• 3D conformer generation using CREST and GFN2-xTB 
with an implicit solvation model for TDCommons and 
ToxBenchmark 



Toxicity Datasets



Benchmark: TDC and ToxBenchmark
OVERV IEW AND  COMPARISON



Benchmark: TDC and ToxBenchmark
ET VS.  SM ILES



Benchmark: TDC and ToxBenchmark
ET VS.  SM ILES



Benchmark: MoleculeNet
OVERV IEW AND  COMPARISON



Benchmark: MoleculeNet
ET VS.  SM ILES  



Benchmark: MoleculeNet
INVESTIGATION OF  TOX2 1  



Attention weights analysis
INVESTIGATION OF  AMES,  LD50 AND TOX21 
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Short/long range analysis
INVESTIGATION OF  AMES,  LD50 AND TOX21 



THANKS!


