I) MOLECULAR TARGETS & THERAPEUTICS CENTER

OCHEM consensus model wins Kaggle solubility challenge

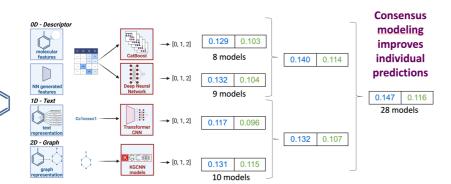
Andrea Kopp, 1 Peter Hartog, 1 Martin Šícho, 2.3 Guillaume Godin, 4 and Igor V. Tetko, 1.5.1

Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich-Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), DE-85764 Neuherberg, Germany; ²-Leiden Academic Centre for Drug Research, Leiden University, S5 Einstelniweg, 2333 CC Leiden, The Netherlands; ³CZ-O-PENSCREEN: National Infrastructure for Chemical Biology, Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, 166 28, Prague, Czech Republic; ⁴DSM-Firmenich SA, Rue de la Bergère 7, CH-1242 Satigny, Switzerland; SBIGCHEM GmbH, Valerystr, 59, DE-85716 Unterschleißheim, Germany

We outline our success in the EU-OPENSCREEN - a not-for-profit European Research Infrastructure
Consortium (ERIC) - and The Society for Laboratory
Automation and Screening (SLAS) solubility challenge.
The challenge was established to identify the state-of-the-art computational methods for reliable predictions of threshold solubility of compounds. Here, we present our consensus model which was the winning solution amid 100 contributing teams.

https://ochem.eu

Imbalance of data Workflow with OCHEM Online chemical database → Model calculation thods Linear Regression Random forests Boosting Deep neural networks Convolutional NN Standardization Neutralize Remove salts Clean structure Public scorin in 28 single mode Evaluation 93% Metrics - ROC-AUC ■ high ■ medium ■ low (Balanced) accuracy RMSE mption of class freq


LSSVMG ASNN PLS KNN ALogPS, OEsta 0.68 0.61 0.64 0.74 0.75 0.71 CDDD 0.56 0.71 0.59 0.68 ors (pH 0 - 14:1) 3D:c 0.7 0.59 0.65 Dragon6 (2D blocks: 1 28) 0.64 6 (3D blocks: 1-29) 3D: 0.59 0.63 entor (length:2 - 4) 0.72 0.69 0.71 0.57 0.67 0.59 MAP4 0.65 0.67 0.55 0.67 Mera, Mersy 3D:corina OEstate 0.69 0.7 PyDescriptor 3D:corina 0.71 0.71 0.67 RDKIT (3D blocks: 1-11 15-16) 3D: 0.72 0.56 0.65 0.59 0.67 0.6 trophores (accuracy=20) 3D:corina 0.68 0.6 0.52 alvaDesc (3D blocks: (only) 1-30) 3D:corina 0.71 0.57 0.68

Challenge setup: classification of highly imbalanced data into three ordered classes

Workflow used for model development

Example of models developed using OCHEM


Quadratic kappa metric scores \rightarrow Public leaderboard Private leaderboard

Overview of molecular representations and models. Molecules were represented by descriptors, SMILES text, and graph representations. Subsequently, descriptor-based models including CatBoost and DNNs, TransformerCNN and KGCNN models were generated and tested. Combinations of models improved performance.

Conclusions:

- Concensus modellling provided the best accuracy
- Different representations enhance the performance
- Reliable protocol is important to get best results
- Do not give up!

Challenge winners (Ms. A. Kopp is in the centre) with the challenge organizers during 2023 SLAS conference in Brussels

See pre-print at https://doi.org/10.26434/chemrxiv-2023-p8qcv

