
Non-Autoregressive Electron
Redistribution Modeling for

Reaction Prediction
Proceedings of the 38th International Conference on Machine Learning

Hangrui Bi, Hengyi Wang, Chence Shi, Connor Coley, Jian Tang, Hongyu Guo

About the authors

 Dr. Jian Tang:

 Assistant Professor at Mila – Quebec AI institute. Leader of the team
developing TorchDrug.

 Dr. Hongyu Guo:

 Researcher at National Research Council Canada, one of the authors of “A
graph to graphs framework for retrosynthesis prediction, 2020”.

 Dr. Connor Coley:

 Assistant professor at MIT, head of the Coley group.

Task: Reaction prediction

A fundamental problem in computational chemistry. First formulated by Corey &
Wipke in 1969.

Predict the products of an organic reaction given the reactants and reagents.

Brief history of the field

Template-based methods

Idea: map reactions to predefined
reaction templates.

Developing since LHASA (1969).
Commercially succeful.

Dominant approach in reaction
prediction before 2017

https://www.sigmaaldrich.com/CH/de/services/software-and-digital-platforms/synthia-retrosynthesis-software

Synthia, formerly Chematica – a commercial tool for retrosynthesys

Brief history of the field

Template-based methods

Idea: map reactions to predefined
reaction templates.

Developing since LHASA (1969).
Commercially succeful.

Dominant approach in reaction
prediction before 2017

Template-free methods

Let a model infer reaction rules
themselves based on the training
data.

Currently a common approach in
reaction prediction.

Template-based methods

 Cons:

 No generalizabillity outside of the templates domain

 It’s not straightforward to construct a good set of templates

Training data and benchmarks

The only open chemical reaction dataset – chemical reactions from US patents.

Gathered by Daniel Lowe in 2012 and presented in his doctoral thesis.

Size: 1-2 million reactions, pretty noisy.

There are different filtered subsets of it prepared by different authors.

https://figshare.com/articles/dataset/Chemical_reactions_from_US_patents_1976-Sep2016_/5104873

From Schwaller et al. 2019

Template-free methods

Brief history of the field

Important concepts:

Reactants:

Molecules that contribute atoms to products.

Reagents:

Molecules that don’t change by the end of the reaction but are
nesessary to make it possible, e.g. catalysts and solvents.

Atom-to-atom mapping:

Numeric labels of atoms preserved between both sides of a reaction.
Can be incorporated into SMILES strings.

An example of an atom-mapped reaction SMILES string:
[Cl:25][CH2:26][Cl:27].[Na+:13].[Na+:14].[Na+:24].[O-:15][S:16]([O-:17])(=[S:18])=[O:19].[O-:20][C:21]([OH:22])=[O:23].[OH:1][CH2:2][CH2:3][CH2:4][NH:5][C:6]([O:7][C:8]([CH3:9])([CH3:10])[CH3:11])=[O:12]>>[O:1]=[CH:2][CH2:3][CH2:4][NH:5][C:6]([O:7]
[C:8]([CH3:9])([CH3:10])[CH3:11])=[O:12]

Performance comparison

• All of the recent template-free methods perform roughly
the same on USPTO. Molecular transformer is mostly the
best model.

Top-k accuracy on USPTO-MIT:

Electron flow modelling

Theoretically, all chemical reactions can be described by the
stepwise rearrangement of electrons in molecules.

Why not try to model this mechanism with neural networks?

Picture from the organic chemistry textbook by Clayden, Greeves, Warren

Linear electron flow modelling

Consider reactions from USPTO with
linear electron flow.

Sequentially predict how the reaction
unfolds, adding or deleting one bond
at a time.

New idea

 Why not model the redistribution of electrons in one-shot?

 What is we consider individual electrons instead of labeled bonds?

We can get the products instantly without unfolding a recurrent mechanism.
We can also get a range of other advantages.

A half-arrow means a single electron instead of a pair.

Advantages of the model
 Template-free

 Can model arbitrary electron redistribution.

 Better than Bradshaw et al. 2018, Sacha et al. 2020,
Do et al. 2018

 Can train end-to-end.

 Better than Qian et al. 2020, Jin et al. 2017

 Predictions are interpretable by chemists.

 Better than Schwaller et al. 2019

 Naturally predicts side products

Setup of the paper

The authors called their framework NERF.

It is written in Pytorch 1.8.1.

The model is mostly a transformer,

but over atoms, not text tokens

Setup of the paper
 Dataset:

 USPTO_MIT, atom mapping is required.

 Representation:

 Adjacency list of a graph of all involved atoms + atom
features.

 Atom features:

 Atomic number, aromaticity, formal charge, some
masks and flags

 Assume each atom has 6 bonds at most.

Example of a reaction graph and its adjacency list

Objective of the model

Build the adjacency matrices using adjacency lists.

Predict the difference in the reaction adjacency matrix before and after the reaction.

Output of the model (based on atom features)Calculated based on AAM

Loss function:

Message-passing GNN

Each node embedding is updated based on the information carried
by its neighbours.

Particular example:

Idea: Representation learning.

Learn the best node representations taking
the information of the local connectivity into
account.

Update each node embedding using a learnable
function of its neighbours’ embeddings.

Several MPGNN layers can be stacked together.

Transformer

A powerful architecture first used in neural machine translation.

Relies on multi-head self-attention mechanism for representation learning.

Vaswani, A. et al. Attention is all you need. 2017. Advances in Neural Information Processing Systems 30.

Picture from https://jalammar.github.io/illustrated-transformer/

In the machine translation setting receives
embeddings of the text tokens as input.

This is also the case for molecular transformer.

However, the input embeddings could
represent something else, e.g. atom features.

Self-attention
A method of representation learning. Multihead attention works like a GNN, but on a fully connected graph.

Text modeling: emdeddings of tokens are updated with the function of embeddings of all other tokens in a sequence.

An embedding of a token is updated with a
weighted sum of value vectors of other tokens

Learnable functions

Multi-head self-attention

Multi-head just means that instead of
one self-attention layer we use several
smaller self-attention layers in parallel
and concatenate the results.

Picture from https://jalammar.github.io/illustrated-transformer/

Variational Autoencoder

A generative model. Given data X, trains to model the distribution P(X) of
data using a latent variable z.

VAE CVAE

Architecture of the paper

Model the probability of product graphs Gp conditioning on the reactant graphs Gr, i.e. P(Gp| Gr).
1. Learn atom representations with GCN and Transformer-encoder layers.
2. Squeeze them into a reaction embedding. Use it as an input to CVAE. Train a latent distribution.
3. Sample a latent variable, add it to atom representations, pass them into multi-head self-attention.
4. The attention scores are the output of the model.

Encoder: GNN

The encoder starts with a one message-passing
layer.
1). Every atom feature gets an embedding by
the means of torch.nn.Embedding.
2). The sum of those embeddings + positional
embedding = atom embedding.
3). Atom embeddings get updated by one
message passing layer.

Every batch has L atoms, every atom has an embedding vector of length D.

Positional encodings scheme

Here f is an MLP based on 1D-convolutions.

Encoder: Transformer encoder

After that the atom embeddings are passed into a transformer encoder.

In pytorch is is very straightforward:

layer = TransformerEncoderLayer(dim, nhead, dim, dropout)
self.transformer_encoder = TransformerEncoder(layer, nlayer)
encoder_output = self.transformer_encoder(embedding, src_key_padding_mask=mask)

 All atom embeddings get updated taking the global graph information into account.

Authors use 6 layers and 8 self-attention heads.

Encoder: CVAE

Again, authors aim to model the conditional distribution P(Gp|Gr).

They do it just like one does in VAE, except the input is special:

The input to VAE is an embedding of an entire reaction.

To build it, authors do the following:

1). Pass the initial molecules through the model encoder and obtain embeddings hr (already done).
2). Pass the target molecules through the model encoder and obtain embeddings hp.
3). Pass hp and hr into a Transformer decoder. Update the atom embeddings hr by attending to hp and get (hr)*.
4). Calculate a mean of the new (hr)* and use it as an input to CVAE.

Decoder: Pointer Networks

Now we can use atom embeddings to predict the change
in connectivity.

Bond Decoder consists of two parallel self-attention layers

Decoder: Additional features

Authors also use to predict atom features like aromaticity and formal charge in a supervised manner.

This is necessary to construct a resulting reaction graph. Authors also suggest predicting chirality.

Therefore, the overall loss function of the model is as follows:

Overall architecture

Results: performance

Statistical significance tests vere conducted.

Results: interpretability

Basically we predict condensed graphs of reactions.
So even side products are predicted naturally.

Conclusion / Summary

1). The NERF framework established a new state of the art in reaction prediction.
2). The model yields interpretable predictions and naturally predicts side products.
3). It is faster on inference compared to previous SOTA models.

> It’s architecture is mostly transformer, but over atom embeddings.
> The attention mechanism is ubiqitous in the architecture, even the output is att. scores.
> It uses conditional variational autoencoder as a sublayer to model the distribution of product graphs given
the reactant graphs.

> It can be probably used as a framework for other models, e.g. for retrosythesis prediction.

Thank you for your

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

