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A fundamental problem in computational chemistry. First formulated by Corey &

Wipke in 19609.

Predict the products of an organic reaction given the reactants and reagents.
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Template-based methods

ldea: map reactions to predefined
reaction templates.

Developing since LHASA (1969).
Commercially succeful.

Dominant approach in reaction
prediction before 2017

SYNTHIA™

Retrosynthesis Software

Coded by chemists
for chemists.

Sigma-Aldrich.

Synthia, formerly Chematica — a commercial tool for retrosynthesys

https://www.sigmaaldrich.com/CH/de/services/software-and-digital-platforms/synthia-retrosynthesis-software
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Template-based methods

Idea: map reactions to predefined
reaction templates.

Developing since LHASA (1969).
Commercially succeful.

Dominant approach in reaction
prediction before 2017

Template-free methods

Let a model infer reaction rules
themselves based on the training
data.

Currently a common approach in
reaction prediction.
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Neural Networks for the Prediction of Organic Chemistry Reactions
Jennifer N. Wei," David Duvenaud,” and Alan Aspuru—Guzil(’*"P

Neural-Symbolic Machine Learning for Retrosynthesis and
Reaction Prediction

Marwin H. S. Segler™ and Mark P. Waller*™ "

Prediction of Organic Reaction Outcomes Using Machine Learning
Connor W. Coley,‘l‘ Regina Barzilay,i Tommi S. Jaakkola,jr‘ William H. Green,* ' and Klavs F. Jensen’*‘"i‘

*Department of Chemical Engineering and ¢Ccu‘nputer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States

* Cons:
* No generalizabillity outside of the templates domain

* It’s not straightforward to construct a good set of templates
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The only open chemical reaction dataset — chemical reactions from US patents.
Gathered by Daniel Lowe in 2012 and presented in his doctoral thesis.
Size: 1-2 million reactions, pretty noisy.

There are different filtered subsets of it prepared by different authors.

reactions in train valid te st total
USPTO MIT set™ 409 035 30 000 40000 479 035
-No stereochemical information
USPTO LEF” * * 29 360 349 898
-Nonpublic subset of USPTO_MIT, without e.g. multistep reactions
USPTO STEREO™ 902 581 50131 50258 1002 970

From Schwaller et al. 2019

https://figshare.com/articles/dataset/Chemical reactions from_US patents 1976-Sep2016 /5104873
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Molecule Edit Graph Attention Network: ggnetr"l?:le S — T —
I & Cite This: ent. Sci. . 5, -

Molecular Transformer: A Model for Uncertainty-Calibrated

Modeling Chemical Reactions as Sequences of

Graph Edits Chemical Reaction Prediction
Philippe S(:h‘,\i_a]ler,’”‘ﬁ‘:E Teodoro }ainof Theophile Gaudin,” Peter Bolgar,§ Christopher A. Hunter,’
Mikotaj Sacha,! Mikotaj Btaz," Piotr Byrski,” Pawet Dabrowski-Tumarnski, Costas Bekas," and Alpha A. Lee*™*

"IBM Research — Zurich, Riischlikon 8803, Switzerland
¢Del:mrtrrlem of Physics, University of Cambridge, Cambridge CB3 OHE, United Kingdom
Stanistaw Jastrzebski**’”’i $Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom

Mikotaj Chrominski,¥ Rafat Loska,! Pawet Witodarczyk-Pruszynski,' and

»
GRAPH TRANSFORMATION POLICY NETWORK  Chemical g’

FOR CHEMICAL REACTION PREDICTION Saence
EDGE ARTICLE View Article Online

View Journal | View Issue

Kien Do, Truyen Tran and Svetha Venkatesh , .
Applied Artificial Intelligence Institute ) Checkforupdates‘ A graph-convolutional neural network model for

the prediction of chemical reactivityt

Deakin Univer Si[}’, GCC]OI]g, Australia Cite this: Chem. Sci., 2019, 10, 370

{dkd{}, Iruyen_If‘an,svetha_venkalesh} @deakin.edu.au & Al publication charges for this aricle - Connor W. Coley, 2 Wengong Jin,® Luke Rogers,? Timothy F. Jamison, & ¢

h?"cehbee_”t'r’;id for by the Royal Society  Tommi S. Jaakkola,” William H. Green, (92 Regina Barzilay*® and Klavs F. Jensen (2 *2
Ol emis
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Brief history of the field
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Important concepts:

Reactants:

Molecules that contribute atoms to products.
Reagents:

Molecules that don’'t change by the end of the reaction but are
nesessary to make it possible, e.g. catalysts and solvents.

Atom-to-atom mapping:

Numeric labels of atoms preserved between both sides of a reaction.
Can be incorporated into SMILES strings.
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* All of the recent template-free methods perform roughly
the same on USPTO. Molecular transformer is mostly the

best model.

Top-k accuracy on USPTO-MIT: Accuracies(%)

Model Name(scheme) Top-1 Top-2 Top-3 Top-5 parallel end-to-end
WLDNT (combinatorial) 79.6 87.7 89.2 v X
GTPN T( graph) 83.2 - 86.0 86.5 X v
Transformer-base T ( sequence) 88.8 92.6 93.7 94 4 X v
MEGANT (graph) 89.3 92.7 94 .4 95.6 X v
Transformer-augmented ' ( sequence) 90.4 93.7 94.6 95.3 X v
Symbolic’ (combinatorial) 90.4 03.2 04.1 95.0 v X
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Electron flow modelling
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Theoretically, all chemical reactions can be described by the
stepwise rearrangement of electrons in molecules.

Why not try to model this mechanism with neural networks?

QUH

0 f S0—o0H 0 R &
Ph

R Ph —e Ph

Picture from the organic chemistry textbook by Clayden, Greeves, Warren




Linear electron flow modelling

Istituto

Dalle Molle

di studi
sull'intelligenza
artificiale

IDSTA

Consider reactions from USPTO with

linear electron flow.

Sequentially predict how the reaction
unfolds, adding or deleting one bond

at a time.

product prediction

A GENERATIVE MODEL FOR ELECTRON PATHS

John Bradshaw
University of Cambridge

Max Planck Institute, Tiibingen
jab255@cam.ac.uk

Marwin H. S. Segler
BenevolentAl

marwin.segler@benevolent.ai

mer::hanism predictian

Matt J. Kusner
University of Oxford
Alan Turing Institute
mkusner@turing.ac.uk Dbpaige@turing.ac.uk

Brooks Paige
Alan Turing Institute
University of Cambridge

José Miguel Hernandez-Lobato
University of Cambridge
Microsoft Research Cambridge
Alan Turing Institute
jmh233@cam.ac.uk
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* Why not model the redistribution of electrons in one-shot?

* What is we consider individual electrons instead of labeled bonds?

0 :0

. |
/C’\(T-I\Q—R’ — C—Q—FR
R \bQH 7 H,0

A half-arrow means a single electron instead of a pair.

We can get the products instantly without unfolding a recurrent mechanism.
We can also get a range of other advantages.
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Template-free .
topology reaction electron
Can model arbitrary electron redistribution. :
Better than Bradshaw et al. 2018, Sacha et al. 2020 0___'??{_{3 \/@ - \/@\
Do et al. 2018 Hr .
N=G =.|_
Can train end-to-end. cyclic e
Better than Qian et al. 2020, Jin et al. 2017 \/©\ . % NS ]
i g} r
Predictions are interpretable by chemists. G 0 b
o
Better than Schwaller et al. 2019 branch —NH; 5
O
Naturally predicts side products a— ﬁ::' Q% _" ©_< @FS},

"o HO G
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The authors called their framework NERF.
It is written in Pytorch 1.8.1.

The model is mostly a transformer,
but over atoms, not text tokens

O PyTorch

Open-Source Cheminformatics
and Machine Learning
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* Dataset: 1 00 0 0 O
* USPTO_MIT, atom mapping is required. 0 2 2 3 11
I 1 2 2 2 2

* Representation: 1 3 3 3 3 3
* Adjacency list of a graph of all involved atoms + atom Gr=15 5 6 6 7 8
features. 4 4 5 5 5 5

4 4 6 6 6 6

* Atom features: 4 7T 7T 7 T T
* Atomic number, aromaticity, formal charge, some 4 8 8 8 8 8]

masks and flags

* Assume each atom has 6 bonds at most.

N
9\—@
®

Example of a reaction graph and its adjacency list
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Build the adjacency matrices using adjacency lists.
Predict the difference in the reaction adjacency matrix before and after the reaction.

5 1 0 0 0 5 1.0 00 0 0 0 0 0]

1 4 1 0 0 1 4 1 0 O 0 0 D 0 0

e . =10 1 4 0 1 el.=10 1 4 1 0 A—ig.~el.— |0 0 8 =1 1
1] 1] i ¥

0 0 0 6 O 0O 01 5 O 0 0 -1 1 0

001 0 5 0000 6 00 1 0 -1

0y = A — Aty Loss function:  Lyona = Z &)

Calculated based on AAM Output of the model (based on atom features)




Message-passing GNN

Istituto

Dalle Molle

di studi
sull'intelligenza
artificiale

IDSTA

Idea: Representation learning.

Learn the best node representations taking
the information of the local connectivity into
account.

Update each node embedding using a learnable
function of its neighbours’ embeddings.

Several MPGNN layers can be stacked together.

Each node embedding is updated based on the information carried

by its neighbours.

Particular example: m:(l) = RELU(WW" . SUM{R’('"V|u € N} })

r(l—1)

1
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A powerful architecture first used in neural machine translation.
Relies on multi-head self-attention mechanism for representation learning.

In the machine translation setting receives
embeddings of the text tokens as input.

This is also the case for molecular transformer.

However, the input embeddings could
represent something else, e.g. atom features.

: ( Softmax )
.,( Add & Normalize ) [ 3
:' 7y 7y ‘ ( Linear )
: ( Feed Forward ) ( Feed Forward ) 4
% 3
I."'( Add & Normalize )
[ C—TTER
A IR  SEEELALL LI LLLE 1
,-b( Add & Normalize ) ."( Add & Normalize )
: 3 . N 3 T
E ( Feed Forward ) ( Feed Forward ) ,‘"( Encoder-Decoder Attention )
REPETErr $-- - /S B LS CTTTTT . SECCLLLCLCE LT L
'o( Add & Normalize ) ,b( Add & Normalize )
: ) ) : L] 1
E ( Self-Attention ) : ( Self-Attention )

Picture from https://jalammar.github.io/illustrated-transformer/

Vaswani, A. et al. Attention is all you need. 2017. Advances in Neural Information Processing Systems 30.
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A method of representation learning. Multihead attention works like a GNN, but on a fully connected graph.

Text modeling: emdeddings of tokens are updated with the function of embeddings of all other tokens in a sequence.

An embedding of a token is updated with a Transformer

weighted sum of value vectors of other tokens |
Self-attention layer

h; = ; QU5 v = fy(h) .\
e k= fu(h) = . D
eld: 1T a = f.(h) . ._. we%nhlgn Attention(@, K. V) = softmax(~7= )\
ZjeS e(qj k) Input noy
L

Value Output

; =

Learnable functions
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1) This is our 2) We embed 3) Split into 8 heads. 4) Calculate attention  5) Concatenate the resulting ~ matrices,
input sentence* each word* We multiply X or using the resulting then multiply with weight matrix to
M U Itl head Just means that Instead Of with weight matrices Q/K/V matrices produce the output of the layer
one self-attention layer we use several X W@ 5
smaller self-attention layers in parallel ' YA
and concatenate the results. i Vo
W@
* In all encoders other than #0, Q1
we don't need embedding. W,V e
We start directly with the output i Vi1
of the encoder right below this one ik
W-Q

Q7

W7V r?% A

Picture from https://jalammar.github.io/illustrated-transformer/
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A generative model. Given data X, trains to model the distribution P(X) of
data using a latent variable z.

Approximate P(X) by E, _q(x)P(X]|z)

| KLIN ((X), Z(X))[|N(0,1)]] | Decoder

P(X|2) = N(f-(2).0°1) ZCONVE] | =2 ziceE o I
+
Q(Z|X) =N(f#(X),fJ(X)I) ‘y{}'&‘ﬂ}’.){] *

Encoder |Samp|er from N1 £) | Encoder

P(z) = N0, 1) 0 5
] ]

[z, fus fo - trainable functions.

‘ Sample ¢ from N (0, 1) ‘

VAE CVAE

log P(X) 2 —E..q(:1x)(log P(X|2)) + Dk (Q(2]|X)||P(2))
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Model the probability of product graphs GP conditioning on the reactant graphs G, i.e. P(G?| G").

1. Learn atom representations with GCN and Transformer-encoder layers.
2. Squeeze them into a reaction embedding. Use it as an input to CVAE. Train a latent distribution.

3. Sample a latent variable, add it to atom representations, pass them into multi-head self-attention.
4. The attention scores are the output of the model.

representation node embedding

(parallel edges) (GCN+Transformer)
CH,

N ot

reactant molecule E E
E latent E
variabl

reactant graph h" }"lr
S —

encoding: q(z|GP,G"), p(z|G")

reactivities of 8 electrons in
each atom (PointerNets)

pairwise electron
flow predictions

- .
Y A s
/_.- \x_ . - \\.
.'." l.l'l 'f \"

electron 1 electron 8 ﬂﬁrﬁ

bond addition product molecule
and removal graph

bond addition

J

A

~
i

bond removal p

L

decoding: p(G?|G", z)
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100

T 1ao
The encoder starts with a one message-passing ”"”I”"
layer. "
1). Every atom feature gets an embedding by
the means of torch.nn.Embedding.
2). The sum of those embeddings + positional
embedding = atom embedding.
3). Atom embeddings get updated by one
message passing layer.

0.50

0.25

0.00

Position of Word

—0.25

—0.50
20

-0.75

,|| =1.00
E o 50 100 150 200 250 300
h?. -(:_ f ( h‘} ) Index of Word Embedding Dimension

Positional encodings scheme
JEN (i)

Here fis an MLP based on 1D-convolutions.

Every batch has L atoms, every atom has an embedding vector of length D.
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After that the atom embeddings are passed into a transformer encoder.

In pytorch is is very straightforward:

self ,
encoder_output = self , src_key_padding_mask
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Again, authors aim to model the conditional distribution P(G"|G").

logp(GP|G") > Ey21av.cry [log p(GP|G", 2)] -
K L(q(z|G*,G")||p(z|G")),

They do it just like one does in VAE, except the input is special:

The input to VAE is an embedding of an entire reaction.

To build it, authors do the following:

1). Pass the initial molecules through the model encoder and obtain embeddings h’ (already done).
2). Pass the target molecules through the model encoder and obtain embeddings h*.

3). Pass h?and h’into a Transformer decoder. Update the atom embeddings h" by attending to h? and get (h')*.
4). Calculate a mean of the new (h")*and use it as an input to CVAE.
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Decoder: Pointer Networks
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Now we can use atom embeddings to predict the change Aapit
in connectivity. i
h' =h" + 2 softmax;
. A
— I"
— F - - 5 - T
h. = TransformerEncoder(h.,) o
~ =
Aw;; = BondDecoder(h,) N -
fq fk
Bond Decoder consists of two parallel self-attention layers T t

~ +d —d
Aw;; = E W — E W,
d=1 d=1

h? {n, VjeS)
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Authors also use . to predict atom features like aromaticity and formal charge in a supervised manner.

This is necessary to construct a resulting reaction graph. Authors also suggest predicting chirality.

Therefore, the overall loss function of the model is as follows:

f’ 1 Z (Ei-'_ezj_‘A'?Eij)z_'_DKL(Q(Z‘GP‘GPN‘P(ZlGr‘))+£BC’E.charge+£BCE.m‘mnatir:ity
1,JEV




Overall architecture
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Dictionary of atom features

P il T~

Source (r) Target (p)
GCN, encoder GCN, encoder
Transformer enc., encoder Transformer enc., encoder
h' h?

\-b Transformer decoder

CVAE
—Z
+
I
v
h' -
v Source and target connectivity,

Transformer enc., decoder

2 * Multihead attention » Aw;; — > Loss function
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Table 1. Top-k accuracy on USPTO-MIT; Best results in bold. We also show if the comparison model can be parallelly trained in an
end-to-end fashion. ' indicates that the results were copied from its published paper. The bracket indicates the method’s learning
taxonomy: “combinatorial” for parallel optimization, “graph” for graph translation, and “sequence” for an auto-regressive generation.

Accuracies(%)
Model Name(scheme) Top-1 Top-2 Top-3 Top-5 parallel end-to-end
WLDNT (combinatorial) 79.6 - 87.7 89.2 v X
GTPN T( graph) 83.2 - 86.0 86.5 X v
Transformer-base T ( sequence) 88.8 92.6 03.7 94 4 X v
MEGANT(graph) 89.3 92.7 94 4 95.6 X v
Transformer-augmented '( sequence) 90.4 93.7 94.6 95.3 X v
Symbolic’ (combinatorial) 90.4 03.2 04.1 95.0 v X
NERF 90.7+0.03 92.3+0.22 933£0.15 93.74+0.17 v v

Statistical significance tests vere conducted.

Table 2. Computation speedup (compared with Transformer)

Model Name Wall-time Latency Speedup
Transformer (b=5) 9min 448 ms 1 x
MEGAN (b=10) 31.5min 144ms 0.29 x
Symbolic >T7h [130ms  0.02 x
NERF 20s [7ms 27 x
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electron redistribution

Basically we predict condensed graphs of reactions.

So even side products are predicted naturally.
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1). The NERF framework established a new state of the art in reaction prediction.
2). The model yields interpretable predictions and naturally predicts side products.
3). It is faster on inference compared to previous SOTA models.

> |t's architecture is mostly transformer, but over atom embeddings.

> The attention mechanism is ubigitous in the architecture, even the output is att. scores.

> |t uses conditional variational autoencoder as a sublayer to model the distribution of product graphs given
the reactant graphs.

> |t can be probably used as a framework for other models, e.g. for retrosythesis prediction.
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