2nd March 2022

COMPUTER AIDED SYNTHESIS PREDICTION TO ENABLE AUGMENTED CHEMICAL DISCOVERY AND CHEMICAL SPACE EXPLORATION

DR AMOL THAKKAR

BigChem

amol.thakkar@unibe.ch

 $\boldsymbol{u}^{\scriptscriptstyle b}$

INTRODUCTIONS

2012-2017

University of St Andrews, MChem, First Class Honors Thesis: Modelling Uranyl Chemistry in Liquid Ammonia From Density Functional Theory 2015-2016

Pfizer, Chemical Research and Development

Process route souting, design, and optimisation, reaction screening, multi-gram synthesis, technology transfer

D UNIVERSITÄT BERN

2018 - 2022

University of Bern, Reymond Group Exploration of Chemical Space by Data and AI driven Computer Aided Synthesis Planning

January 2019 - July 2020

AstraZeneca, Molecular Artificial Intelligence

- Co-developed and led efforts for a computer aided synthesis planning platform that was deployed in industry, combining automated data extraction from inhomogeneous sources, artificial neural networks, and Monte-Carlo tree search.
- Used the developed tools to identify the synthetic accessibility of chemical space, and impacted ongoing drug discovery and development projects.

OVERVIEW

CHEMICAL SPACE AND DRUG DISCOVERY

Organic Chemistry

Molecules Orally Bioavailable Obeying Lipinskis Rule of 5

> Bohacek et al. Med. Res. Rev. **1996**, 16, 3–50 Lipinski et al. Adv. Drug Delivery Rev. **1997**, 23, 3– 25

CHEMICAL SPACE AND GDB

ca. 166 billion GDB17

Ruddigkeit et al., J. Chem. Inf. Model. **2012**, 52, 11, 2864– 2875

KEY RESEARCH QUESTION

How do we predict the synthesis of compounds that are generated or suggested by a chemist or computer?

LEGO – ANALOGY TO SYNTHESIS PLANNING

Building Lego as an analogy to synthetic route planning

SYNTHESIS PLANNING

Retrosynthetic Analysis

SYNTHESIS PLANNING

Retrosynthetic Analysis

Synthesis Plan

Byron et. al. J. Chem. Soc. 1963, 2253 Byron et. al. J. Chem. Soc. 1966, 840 Warren and Wyatt. Organic Synthesis: The Disconnection Approach, Wiley, 2011

COMPUTER AIDED SYNTHESIS PLANNING (CASP)

LHASA-Logic and Heuristics Applied to Synthetic Analysis

DAVID A. PENSAK

Central Research and Develop. Dept., E. I. du Pont de Nemours and Co., Wilmington, Del. 19898

E. J. COREY

Dept. of Chemistry, Harvard University, Cambridge, Mass. 02138

Despite the wealth of knowledge about various chemical reactions, there exists no formal framework of interrelationships to guide the chemist in the synthesis of even moderately complex molecules. The LHASA (Logic and Heuristics Applied to Synthetic Analysis) project is an attempt to codify and organize the techniques used in organic synthesis.

One important aspect of the project has been the writing of a general purpose computer program which will aid the laboratory chemist and will employ both the basic and more complex techniques for synthetic design as elucidated by this study. The program (hereafter also called LHASA) is intended to propose a variety of synthetic routes to whatever molecule it is given. The responsibility for final evaluation of the merit of the routes lies with the chemist. The

MODERN CASP

Philippe Schwaller PhD Thesis, 2021, University of Bern

AiZynthFinder – Retrosynthetic Planning

<u>Thakkar A</u> et al., Chemical Science, **2020**, 11 (1), 154-168. Genheden S, Thakkar A et al., J. Cheminform., 2020, 12:70

DEVELOPING

Highlights:

Most popular 2019-2020 physical and theoretical chemistry articles and Accelerating Chemistry Symposium Collection

REACTION DATA - INCONSISTENCIES

Dataset

Example from USPTO

Multi-step reactions

Reaction Example – Claisen Rearrangement

Reactant

Product

Retro Reaction Example – Claisen Rearrangement

Product

Reactant

Thakkar et al., Chemical Science, **2020**, *11* (1), 154-168. Coley et al. Journal of Chemical Information and Modelling **2019**, 59 (6), 2529–2537. Sun et al. Chem. – Asian J. **2012**, 7, 2321

Reaction SMILES

CCICC/C=C2C(CCI=O)CCCCC\2>>CC3CCC(OC3=C)C4=CCCCCC4

Atom-mapped Reaction SMILES [CH3:1][CH:2]1[CH2:3][CH2:4][CH:5]([C:6]2=[CH:12][CH2:11][CH2:10][CH2:9][CH2:8][CH2:7]2)[O:15][C: 14]1=[CH2:13]>>[CH3:1][CH:2]1[CH2:3][CH2:4]/[CH:5]=[C:6]2/[CH2:7][CH2:8][CH2:9][CH2:10][CH2:11]CH: 12]2[CH2:13][C:14]1=[O:15]

Thakkar et al., Chemical Science, **2020**, *11* (1), 154-168. Coley et al. Journal of Chemical Information and Modelling **2019**, *59* (6), 2529–2537. Sun et al. Chem. – Asian J. **2012**, *7*, 2321

Retro Reaction Example – Claisen Rearrangement

Procedure

- Iterate around atom indices
- Check for a change in atomic environment •
- All changes = reaction centre
- Extract reaction centre as template (Reaction SMARTS)
- Expand Core

Product

Reaction SMARTS – Template Radius 0

([CH;D2;+0:4]=[C;H0;D3;+0:5]\\[CH;D3;+0:6]-[CH2;D2;+0:1]-[C;H0;D3;+0:2]=[O;H0;D1;+0:3])>>([CH2;D1;+0:1]=[C;H0;D3;+ 0:2]-[O;H0;D2;+0:3]-[CH;D3;+0:4]-[C;H0;D3;+0:5]=[CH;D2;+0:6])

Thakkar et al., Chemical Science, 2020, 11 (1), 154-168. Coley et al. Journal of Chemical Information and Modelling 2019, 59 (6), 2529-2537. Sun et al. Chem. - Asian J. 2012, 7, 2321

Retro Reaction Example – Claisen Rearrangement

Core Expansion

- Consider Neighbouring Atoms
- Increased Template Specificity
- Increases Number of Templates Extracted

Reaction SMARTS – Template Radius 1

([C:1]-[CH;D3;+0:2](-[CH2;D2;+0:10]-[C;H0;D3;+0:8](-[C: 9])=[O;H0;D1;+0:7])/[C;H0;D3;+0:3](-[C:4])=[CH;D2;+0:5]\\[C: 6])>>([C:1]-[CH;D2;+0:2]=[C;H0;D3;+0:3](-[C:4])-[CH;D3;+0:5](-[C:6])-[O;H0;D2;+0:7]-[C;H0;D3;+0:8](-[C:9])=[CH2;D1;+0:10])

Thakkar et al., Chemical Science, **2020**, *11* (1), 154-168. Coley et al. Journal of Chemical Information and Modelling **2019**, 59 (6), 2529–2537. Sun et al. Chem. – Asian J. **2012**, 7, 2321

Retro Reaction Example – Claisen Rearrangement

Core Expansion

- Consider Neighbouring Atoms
- Increased Template Specificity
- Increases Number of Templates Extracted

Reaction SMARTS – Template Radius 2

Radius-2 $\begin{array}{c} 3 \\ 2 \\ 1 \\ 1 \\ 0 \\ 15 \end{array}$ $\begin{array}{c} 4 \\ 5 \\ 7 \\ 8 \\ 7 \\ 10 \end{array}$ $\begin{array}{c} 3 \\ 4 \\ 7 \\ 10 \\ 10 \end{array}$ $\begin{array}{c} 3 \\ 4 \\ 7 \\ 10 \\ 12 \end{array}$ $\begin{array}{c} 3 \\ 4 \\ 7 \\ 10 \\ 12 \end{array}$ $\begin{array}{c} 3 \\ 4 \\ 7 \\ 10 \\ 12 \end{array}$ $\begin{array}{c} 3 \\ 7 \\ 10 \\ 11 \end{array}$

 Thakkar et al., Chemical Science, 2020, 11 (1), 154-168.
 [O;H0]

 Coley et al. Journal of Chemical Information and Modelling 2019, 59 (6), 2529–2537.

 Sun et al. Chem. – Asian J. 2012, 7, 2321

TEMPLATE QUALITY ASSESSMENT

NEURAL NETWORK TRAINING - TEMPLATE PRIORITISATION

PREDICTING MULTISTEP PATHWAYS

TEMPLATE SIZE AND PERFORMANCE

DATASETS AND THEIR PERFORMANCE

NUMBER OF TEMPLATES AND PERFORMANCE

EXAMPLE AI GENERATED ROUTE

RINGBREAKER

PREDICTION OF RING SYSTEMS

Thakkar et al. Journal of Medicinal Chemistry, 2020, 63, 16, 8791-8808.

Highlights: <u>Artificial Intelligence in Drug Discovery</u> special issue.

COMMON RING FORMING REACTIONS

Thakkar et al. Journal of Medicinal Chemistry, 2020, 63, 16, 8791-8808.

PRACTICAL USE CASE – INTERACTIVE MODE

GENERALISING BEYOND THE TRAINING SET

Thakkar et al. Journal of Medicinal Chemistry, 2020, 63, 16, 8791-8808.

REACTION DATA AUGMENTATION – ARTIFICIAL LABELS

Artificial Multi Matte Label

 Forced Template Application
 Generated Reactants

Product

Template

Reactants

IMPROVING TEMPLATE PRIORITISATION

IMPROVING TEMPLATE PRIORITISATION

RETROSYNTHETIC ACCESSIBILITY SCORE (RASCORE)

Thakkar et al. Chem. Sci. 2021, 12 (9), 3339–3349

Highlights: Most popular 2021 physical and theoretical chemistry articles and Editor's Choice – Graeme Day

EXISTING SYNTHETIC COMPLEXITY SCORES

Ertl et al., J. Cheminf., 2009, 1(1), 8 Coley et al., J. Chem. Inf. Model., 2018, 58(2), 252–261 Voršilák et al., J. Cheminf., 2020, 12(1), 35 Thakkar et al. Chem. Sci. 2021, 12 (9), 3339–3349

RETROSYNTHETIC ACCESSIBILITY SCORE (RASCORE)

a) Expressed in days taken on a single machine with 8 CPUs and 64 GB of RAM (no GPU required), rounded to the nearest day. The time taken in minutes for the neural network classifier with ECFP6 counted fingerprints is also given for comparative purposes. The neural network classifier, RAscore, is able to reproduce the results obtained from AiZynthFinder in a fraction of the time taken to predict full retrosynthetic routes. ^bRascore ^c)GDBscore

35

MODEL ASSESSMENT

	ChEMBL	GDBChEMBL	GDBMedChem
Percentage Solved	75.21	25.54	20.79
Size	200,000	100,000	100,000
AiZynthFinder Run Time (days)	239	149	151
Score Run Time (mins)	79 ^{b)}	30 ^{c)}	30 ^{c)}

Average distance between all pairs of items

Thakkar et al. Chem. Sci. 2021, 12 (9), 3339–3349

a) Expressed in days taken on a single machine with 8 CPUs and 64 GB of RAM (no GPU required), rounded to the nearest day. The time taken in minutes for the neural network classifier with ECFP6 counted fingerprints is also given for comparative purposes. The neural network classifier, RAscore, is able to reproduce the results obtained from AiZynthFinder in a fraction of the time taken to predict full retrosynthetic routes.^bRascore

ASSESSING THE GDB CHEMICAL SPACE

Curently individual components and we want to combine them – lower barrier to entry

GDB CHEMICALAI PLANNEDBROWSER BASEDEXPERIMENTALSPACESYNTHESISEXPLORATIONENGAGEMENT

ACCESSING GDB CHEMICAL SPACE

ENABLING EXPERIMENTATION BY LINKING CHEMICAL LIBRARY VISUALISATION

Unpublished – Corresponding Slides Removed

LINKING LIBRARY VIZUALISATION TO SYNTHESIS

- × Scripting or command line knowledge
- × Step wise compound submission
- × Wait for batch runs
- Switching between tools for visualisation, calculation of properties, synthesis prediction, prioritisation
- ✓ One tool
- ✓ Precomputed routes fast access
- \checkmark Allows whole library to be visualised
- Enables easier prioritisation using synthetic route information

A MolecularAl/aizynthfinder (Public)					
<> Code 💿 Issues	1 Pull requests 1 🕞 Actions 🔱	Security 🗠 Insights			
	🐉 master 👻 🤔 4 branches 🛇 8	tags	Go to file Add file - Code -	About	
	SGenheden Merge pull request #54 from MolecularAl/video-link		✓ c65884f 6 days ago 🕚 63 commits	A tool for retrosynthetic planning Ø molecularai.github.io/aizynthfinder/	
	.github/workflows	Create docs.yml	12 months ago	cheminformatics neural-networks	
	aizynthfinder	Prepare minor release	last month	monte-carlo-tree-search	
	Contrib	Fix bug in python notebook code	12 months ago	chemical-reactions astrazeneca	
	docs	Prepare minor release	last month	reaction-informatics	
	tests	Prepare minor release	last month	Readme	
	🗅 .gitignore	Release 2.5.0	8 months ago		
	CHANGELOG.md	Prepare minor release	last month	 Cite this repository ♥ ☆ 203 stars 	
	CITATION.cff	Create CITATION.cff	12 months ago	24 watching	
		First commit	2 years ago	약 48 forks	
	C README.md	Update README.md	6 days ago		
	🗅 env-dev.yml	Updates for version 2.4.0	12 months ago	Releases 8 V v3.1.0 (Latest) on 21 Dec 2021 + 7 releases	
	🗅 env-users.yml	Update env-users.yml	6 months ago		
	D poetry.lock	Bump pillow from 8.4.0 to 9.0.0	21 days ago		
	pyproject.toml	Bump pillow from 8.4.0 to 9.0.0	21 days ago		
	🗅 tasks.py	Release 2.5.0	8 months ago	Packages	
	i≣ README.md			No packages published	
AiZynthFinder				Contributors 5	

SUMMARY

40

SUMMARY

AiZynthFinder – Open-Source Retrosynthetic Planning

Data Augmentation – Artificial Labels

RingBreaker

- Standard Model STOPS - Ring Disconnection NOT Predicted

Retrosynthetic Accessibility

GDBRouteBrowser

ACKNOWLEDGEMENTS

Professor Jean-Louis Reymond

Dr Ola Engkvist (AZ) Dr Esben Jannik Bjerrum (AZ) Dr Samuel Genheden (AZ)

Reymond Group, University of Bern, Switzerland Molecular AI, AstraZeneca, Sweden Global Chemistry Community, AstraZeneca Elsevier NextMove Software

The reviewers for their useful feedback.

amol.thakkar@unibe.ch

