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What | will talk about

» What is “Human-In-The-Loop”?
» Motivation

» Human interaction
* Data processing
 Model training and inference

> Pros and cons

» Future directions & open challenges



What is “Human-In-The-Loop”
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» Human-In-The-Loop (HITL) is a ML method that combines human and Al to build effective ML models.
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Background and motivation

* ML models perform well with sufficient amount of training data with labels
* Available datasets becoming outdated in size and density

* Need for new data annotation

e Data growing constantly
e Laborious
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Where can humans intervene?
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Data pre-processing

* Data scientist spend about 80% of their time on data processing

e Challenge: orchestration of data pre-processing tasks is difficult, unguaranteed to be optimal

Goal: propose an adaptive data preparation approach
to learn from humans the optimal sequence of data
preparation tasks.

Method: Learn2Clean. Active reinforcement learning-
based approach where humans are introduced to
adapt/select the sequence of data pre-processing tasks.

Application field: Web data mining

Laure Berti-Equille, CIDR 2020



Data pre-processing

e Challenge: identify incorrectly labelled training data




2. Data annotation

* Challenge: annotation of new collected data




2. Data annotation

* Challenge: incorporate human intelligence through data annotation




3. Iterative labeling

* Challenge : improve user experience from direct to dynamic data labelling
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Goal: improve user experience in labelling

Agent
new data
Method: partially automated labeling reward
scheme for data annotation with deep ™
learning and HITL .-itatr:
Application field: CV, visual recognition , O a e Res
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Human
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HITL framework based on reinforcement learning
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Natural Language Processing
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Natural Language Processing

Task Motivation
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Natural Language Processing

Text classification Question-Answering
Goal: learn from additional feedback from Goal: learn from continuous additional
journalists feedback from users
Method: retrain a rumour classification Method: self-feeding mechanism to
system with an updated dataset with user- generate new examples in the train set
provided annotations Application field: Chatbots

Application field: Rumour Classification

Karmakharm et al. 2019 Hancock et al. 2019

Goal: improve interpretability

Method: incorporate constraints defined by
humans into the loss function of the classifier

Zaidan et al. 2007



Computer vision

Task Motivation
OD IR IS IE VOS | Performance Interpretability Usability

Yao et al. (2012) [114] v v

Rovetal (2018)[115] v v v
Madono et al. (2020) [116] v
Roels et al. (2019) [127]

Weber et al. (2020) [125]

Wang et al. (2020) [133]
Ravanbakhsh et al. (2020) [135]
Kapoor et al. (2014) [136]
Murata et al. (2019) [137]
Fischer et al. (2020) [138]
Benard et al. (2017) [139]
Caelles et al. (2018) [140]
Ohetal. (2019)[141]

Work

SNEN
<

SNENEN

NN N NS NENENENEN

ANENEN
NENEN

OD: Object Detection. IR: Image Restoration. IS: Image Segmentation. |IE: Image Enhancement. VOS: Video Object Segmentation



Computer Vision

Object Detection Image Restoration




Other fields

 Recommender systems

Goal: extend state-of-the-art recommenders to feedback on pairs of recommendations and explanations to
improve future recommendations

Method: ELIXIR incorporate user latent preference vectors Ghazimatin et al. 2021
Recommendation (rec) Explanation (exp):  Similar aspect of Feedback on ELIXIR Recommendation (rec)
attime T =t (rec, exp): (rec, exp): at time 7+1/
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Other fields

Human-in-the-Loop

Collaboration between AstraZeneca and Aalto University :
Human-in-the-Loop for molecular design
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Other fields

Collaboration between AstraZeneca and Aalto University :
Human-in-the-Loop for molecular design
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Pros and cons

« Enable to label new data points

« Human feedback can be a valuable input

« Data labeling and constant feedback are costly

Example where human input can be valuable



Open questions and challenges

»How to analyse the quality of provided feedback?

»How to pick the most representative feedback?

»How to display what the model learned from this feedback?
»How to choose an appropriate human intervention time?

» Computational challenges



Future directions

» Besides data annotation, how can the model learn from user experience?

» Explore other methods for selecting key samples

» No uniform standard for HITL benchmarks

»Hope of achieving a universal model through HITL fine-tuning



Thank you!




