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What I will talk about

➢ What is “Human-In-The-Loop”?

➢ Motivation

➢ Human interaction
• Data processing
• Model training and inference

➢ Pros and cons

➢ Future directions & open challenges



What is “Human-In-The-Loop”

➢ Human-In-The-Loop (HITL) is a ML method that combines human and AI to build effective ML models.

Good at making 
optimal decisions 

when there is large 
and high-quality data

Good at recognizing 
patterns within small 
and low-quality data
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Not concerned with 
the process of 

obtaining the labels

Dominant form of 
learning till date
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Where can humans intervene?

ML modeling process

Humans in the loop



Data 
Processing



Data pre-processing

Goal: propose an adaptive data preparation approach 
to learn from humans the optimal sequence of data 
preparation tasks.

Method: Learn2Clean. Active reinforcement learning-
based approach where humans are introduced to 
adapt/select the sequence of data pre-processing tasks.

Application field: Web data mining

Laure Berti-Équille, CIDR 2020

• Data scientist spend about 80% of their time on data processing

• Challenge: orchestration of data pre-processing tasks is difficult, unguaranteed to be optimal



Data pre-processing

• Challenge: identify incorrectly labelled training data

Goal: identify incorrect labels in influential corpora 
used to train state-of-the-art models for NER

Method: Semi supervised approach to flag potentially-
incorrect labels in the corpus then manual review of 
these labels by humans in the loop

Application field: NLP, Name entity recognition (NER)

Cutler et al. 2020



2. Data annotation 

• Challenge: annotation of new collected data

Goal: release the limitations of pre-labeling and 
upgrades the model with continuously collected data 

Method: Deep reinforcement active learning to guide 
agents (models) to dynamically select new training 
samples annotated by humans 

Application field: CNNs for pedestrian re-identification

Liu et al. 2019



2. Data annotation 

• Challenge: incorporate human intelligence through data annotation

Goal: incorporate human intelligence to generate high-
quality comics

Method: Data-driven generation of comics from digital 
illustration components (line drawings, irregularities, 
texture..) annotated by an artist

Application field: Comics generation

Zhang et al. 2021



3. Iterative labeling

• Challenge : improve user experience from direct to dynamic data labelling

Goal: improve user experience in labelling 
new data

Method: partially automated labeling 
scheme for data annotation with deep 
learning and HITL

Application field: CV, visual recognition

Yu et al. 2015

HITL framework based on reinforcement learning



Model 
training and 

inference
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Natural Language Processing

Goal: learn from additional feedback from 
journalists

Method: retrain a rumour classification 
system with an updated dataset with user-
provided annotations  

Application field: Rumour Classification

Karmakharm et al. 2019

Goal: learn from continuous additional 
feedback from users

Method: self-feeding mechanism to 
generate new examples in the train set 

Application field: Chatbots

Hancock et al. 2019

Text classification Question-Answering

Goal: improve interpretability

Method: incorporate constraints defined by 
humans into the loss function of the classifier

Zaidan et al. 2007



Computer vision

OD: Object Detection. IR: Image Restoration. IS: Image Segmentation. IE: Image Enhancement. VOS: Video Object Segmentation



Computer Vision

Goal: learn from human knowledge by 
correcting a few annotations

Method: interactive object detection tool to 
ask humans to correct a few annotations for 
fine-tuning

Application field: CNNs, pedestrian 
detection

Yao et al. 2012

Goal: learn to restore incomplete images 
with the help of human experts

Method: interactive ML system based on 
Deep Image Prior

Application field: CNNs

Weber et al. 2020

Object Detection Image Restoration



• Recommender systems

Other fields

Goal: extend state-of-the-art recommenders to feedback on pairs of recommendations and explanations to 
improve future recommendations

Method: ELIXIR incorporate user latent preference vectors Ghazimatin et al. 2021



Other fields

• Collaboration between AstraZeneca and Aalto University : 
Human-in-the-Loop for molecular design

• REINVENT: de novo drug design tool developed by 
AstraZeneca which trains an agent to generate new molecules 
with specific properties by using a scoring function F(x).

Active learning

Probabilistic 
inference



Other fields

• Collaboration between AstraZeneca and Aalto University : 
Human-in-the-Loop for molecular design

Active learning

Probabilistic 
inference

Goal 1 : adapt the parameters of the scoring 
function to generate molecules with high QED 
score

Goal 2 : learn human knowledge as a separate 
scoring component to generate molecules with 
high activity on DRD2 receptor

Sundin et al.



Pros and cons

• Enable to label new data points

• Human feedback can be a valuable input

• Data labeling and constant feedback are costly

Example where human input can be valuable



➢How to analyse the quality of provided feedback?

➢How to pick the most representative feedback?

➢How to display what the model learned from this feedback?

➢How to choose an appropriate human intervention time?

➢Computational challenges

Open questions and challenges



➢Besides data annotation, how can the model learn from user experience?

➢Explore other methods for selecting key samples

➢No uniform standard for HITL benchmarks

➢Hope of achieving a universal model through HITL fine-tuning

Future directions



Thank you!


