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Lots of attention on automatic drug design



Introduction

� Many generative models for de-novo drug design in recent
years ( 2016-ongoing)

� Aim is to "invent" new molecules.

� No test set for testing the algorithm

� Evaluation strategy?



Evaluating the results

� Important to critically review methods

� Could the results be achieved by more simple means?

� Could an expert come up with similar ideas in less time?

� How useful are results in the first place?



Distribution-learning

The aim is to generate samples that resemble the training set in
distribution.

� Novelty?

� Quality?

� Diversity?

� Distribution
match?
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Guacamol metrics

Brown et al. (2019) used the following metrics to evaluate a
generated set:

� Validity: Percentage of viable molecules (correct
valences,...)

� Uniqueness: Fraction of non-repeated molecules in set

� Novelty: Fraction of molecules not in training set.

� KL divergence: mean KL-divergence between property
(MolLogP, MolWt, TPSA,..)

� FCD: Frechet distance between ChemNet representations
of train set and generated set.



Problems

� Validity: Discard invalid molecules

� Uniqueness: Discard non-unique molecules

� Novelty: Discard non-novel molecules



Model sketch

Training set Some generation
procedure
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Filtering will slow model down, but speed is usually not
measured in the first place.



AddCarbon2

� Take random compound from training set
� Add a carbon at some point in the SMILES string, such

that it minimally changes the canonical SMILES
� Only output it if it is novel and valid

Table 1: Comparing the AddCarbon model to the baselines in1. RS
randomly samples from the training set.

Benchmark RS LSTM GraphMCTS AAE ORGAN VAE AddCarbon

Validity 1.000 0.959 1.000 0.822 0.379 0.870 1.000
Uniqueness 0.997 1.000 1.000 1.000 0.841 0.999 0.999
Novelty 0.000 0.912 0.994 0.998 0.687 0.974 1.000
KL divergence 0.998 0.991 0.522 0.886 0.267 0.982 0.982
FCD 0.929 0.913 0.015 0.529 0.000 0.863 0.871

1Brown et al. 2019.
2Renz et al. 2019.



Takeaways

� Simple model performs relatively well.

� Casts doubt on how expressive the metrics are.

� Consider cross-entropy (Bits per character) on a test set if
applicable



Goal-directed generation

� Aim is to generate molecules that satisfy some property
profile (bioactivity, physchem, ADME)

� Aim encoded as a scoring function: Molecule in, score out

� Hard to encode complex properties as scoring functions



Imperfect scoring function

Evolving a body that can jump. Score is determined highest
point reached by any part of the body3.

3Lehman et al. 2019.



ML models as scoring functions

4

5

6 7
4Chen et al. 2021.
5Xie et al. 2021.
6Gottipati et al. 2020.
7Olivecrona et al. 2017.



An image analogy

Generating images by maximizing outputs of a classifier gives
unpleasing results8.

8Nguyen, Yosinski, and Clune 2015.



Problems

� Optimizing output of ML models can be problematic.

� How relevant are predictions outside of training domain?

� Do molecules "overfit" to scoring function?



Data

Target ChEMBL ID Active Inactive AUC

JAK2 CHEMBL3888429 140 527 0.78±0.03
EGFR CHEMBL1909203 40 802 0.76±0.05
DRD2 CHEMBL1909140 59 783 0.86±0.03

Table 2: Information on the data sets. AUC shows the performance of
the trained classifiers

� The ratio of actives to inactives in both splits is kept equal.

� ECFP4 used as features.

� Random forest classifiers



Optimization / control scores9

Split 1 Split 2

Optimization
score

Model control
score

Data control
score

We train three classifiers to obtain three different scoring
functions:

� Optimization score (OS): Classifier trained on Split 1

� Model control score (MCS): Classifier trained on Split 1,
but with different random seed

� Data control score (DCS): Classifier trained on Split 2
9Renz et al. 2019.



Data specific biases
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Figure 1: Random forest predictions on bioactivity datasets described
below.

� Classifiers fit on data usually exhibit a bias to those exact
data.

� During optimization we might prioritize compounds similar
to train actives.



Optimization

We employ the two top-performing methods in10:

� GA: graph based genetic algorithm (GA)11.
1. Start with random molecules from ChEMBL.
2. Make random changes to them.
3. Keep the best ones
4. Back to 2

� LSTM: Next character LSTM combined with hill-climbing12

1. Pretrain SmilesLSTM on ChEMBL
2. Sample molecules
3. Add best to buffer
4. Finetune on buffer
5. Back to 2

10Brown et al. 2019.
11Jensen 2019.
12Segler et al. 2017.



Quantifying model/data specific exploits

Figure 2: The bold line corresponds to the median while the shaded
areas correspond to the interquartile range.

� OS and MCS grow in sync initially and later diverge.

� OS always grows, while control scores sometimes fall



Similarity embedding 1

Figure 3: t-SNE embedding at the start of optimization



Similarity embedding 2

Figure 4: t-SNE embedding at the end of optimization



More questions

One should state the desiderata clearly:

� Do we want one top-scoring molecule or many?

� If we report absolute number of "good" molecules found
are we satisfied with trivial variatons?

� Could we have achieved results with simpler methods
(virtual screening)?

� Did we provide the same compute budget to the simpler
methods?



Summary

� Distribution-learning
� Current distribution-learning evaluation is not really

sufficient.
� Likelihood on test set would give better evaluation if

possible.
� More relevant measures of novelty important.

� Goal-directed learning
� Optimization methods show both

• Model specific biases
• Data specific biases

� Control scores might help to better evaluate generated
compounds.

� Predictive accuracy of scoring function on generated
compounds unknown.
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