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New Applications of computers in Chemistry
Neue Anwendungsgebiete fiir Computer in der Chemie

Von Ivar Ugi, Johanmes Bauer, Josef Brandt, Josef Friedrich, Johann Gasteiger,
Clemens Jochum und Wolfgang Schubertl”]

“In chemistry the use of computers has been customary for a long time. Nevertheless, only a
modest part of the inherent capabilities of modern computers is utilized for the solving of
chemical problems. Numerical problems are solved, such as the ones encountered in quantum
chemistry, and in the collection and evaluation of experimental data, or large sets of data are
subjected to storage and retrieval operations.

The challenge to solve chemical problems by algorithms which simulate human intelligence in
the sense of decision processes and deductive thought was felt at a rather early stage. It led to
studies in a direction which is now associated with the term ‘artificial intelligence’.”



Analytica Chumeca Acta, 295 (1991) 1-30 1
Eisevier Soence Publishers BV . Amsterdam

Review

—-—

Neural networks: A new method for solving chemical
problems or just a passing phase?

J. Zupan **' and J. Gasteiger

Organesch-chemisches Insturat, Techmische Universrdt Miinchen, D-8086 Garching (Germany )
{Recarved drd January 1991)



Two Paradigms for Program Solving with Computers

nput —p> - —» Outpu

Programming: Encode all instructions to solve problem

Machine Learning: Use example data + simple algorithm to derive
problem solving instructions



Chemical Reactions

Reagents, Catalysts

Reactants =—————— Products
Solvents

Conditions



The Trinity of Organic Chemistry
(We need all threel!)

Theory

Experimental Krllonlledge
Data atterns
Rules

\/

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168



Pattern recognition in Organic Chemistry goes a long way.

/©/ B(OH), /©/OM9 Pd]
+ > ?
F Br

Do you need ab-initio theory to
predict the likely outcome of this reaction?

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168



Pattern recognition in Organic Chemistry goes a long way. But Not All...

/©/ B(OH), /@OMG Pd]
+ > ?
F Br

Do you need ab-initio theory to
predict the likely outcome of this reaction?

Will matching function groups give you an exact
picture of the potential energy surface and
transition states?

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168



The Trinity of Organic Chemistry
We need all three!

Theory

Simulations +
Machine Learning

Simulations
(+ ML)

Experimental Krllonlledge
Data Machine Learning Aterns
Rules

\__/

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168
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CH,Cl, 70°C O
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Gini et al, Chem. Eur. J. 2015, 21, 12053 - 12060
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Experimental Procedures describe how to reproduce reactions

EtO
HO\N,Boc o
+ 47
O
OEt

TEMPO

CH,Cl, 70°C

N-O OFEt

/
O

o) OEt

Yield: 87%

General procedure:
In a screw-cap Schlenk tube, the corresponding N-protected N-
benzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH2Cl2 (2.00

mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv)
were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent
was re- moved under reduced pressure and the obtained crude product was
purified by flash column chromatography on silica gel eluting with pentane/
AcOEt to give the corresponding N-protected isoxazoline 3.

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According
to the general procedure, N-Boc N-benzyl hydrox- ylamine (1 a) (0.25 mmol, 63.3
mg, 1.00 equiv), dry CH2Cl2 (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and

TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was

puri- fied by flash column chromatography on silica gel eluting with pentane/

AcOEt ((%AcOEt): 1 (30); 5 (50); 15 (300) 25 % (200 mL)) to give 3 a as a viscous
oil (0.218 mmol, 79.3 mg, 87 %).

(300 MHz, CDCI3): d =7.34-7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H),

1.39ppm (s, 9H); 13CNMR (75MHz, CDCI3): d=161.4, 158.1, 155.2, 149.9, 138.7,
128.8,127.4,111.0,84.3,68.9 53.6,52.2, 28.1 ppm; MS-ESI: m/z: calcd for

[C18H21NO7Na]*: 386.1210; found: 386.1207.

Gini et al, Chem. Eur. J. 2015, 21, 12053 - 12060
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The Reaction Mechanism is the sequence of
elementary steps from reactants to products

COZMe BOC\N/O

Boc\+,(_)
Boc, o JN + / - )\%*COZMe

HO., .B EtQ
“NTOY O N- OEt -
. // TEMPO y 11\ 2a 5 CO,Me
CH,Cl, 70 °C O Boc -0 R R
0 o~ OH 1w f [ 10
OEt ~ R7H 0 Boc ™ .0" “Boc

Boc. .OH disproportionation of 10 ]
N via BOC\N,O

SET + deprotonation
R/I - P

o

10

o — | OH /[
+

TEMPO™ ~CO,Me 4 TEMPO~ ~CO,Me

2a 9 2a

Scheme 5. Mechanistic proposal.

Gini et al, Chem. Eur. J. 2015, 21, 12053 - 12060

4a

COzMe
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Retrosynthetic Analysis in Synthesis Planning

a) Retrosynthesis (backward)

FtO,C
> \©
OH
OH

Target Intermediate

b) Synthetic route (forward)

EtO,C._~ EtO,C
g T

Starting materials Intermediate

Starting materials

OH
OH

Target

14



Retrosynthesis vs Forward Synthesis: Synthesis Trees

Retrosynthesis Actual Synthesis

Backward Forward
Building Blocks/

ovo ? Starting materials C\/O T
0 Reactions
l l Intermediates & )ﬁ
\Z/ Reaction

l Desired Target Product

O«+—
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Different Questions in Reaction Modelling
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TEMPO
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- What is the (major) product?

- What are the conditions?

- How can | make this product?

- What will be theyield, e.r., d.r.?

. Will this reaction run at all?

- What is the class of this reaction?

- Can | help to understand the mechanism?
- What is the procedure?

General procedure:
In a screw-cap Schlenk tube, the corresponding N-protected N-
benzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH2Cl2 (2.00

mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv)
were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent
was re- moved under reduced pressure and the obtained crude product was
purified by flash column chromatography on silica gel eluting with pentane/
AcOEt to give the corresponding N-protected isoxazoline 3.

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According
to the general procedure, N-Boc N-benzyl hydrox- ylamine (1 a) (0.25 mmol, 63.3
mg, 1.00 equiv), dry CH2Cl2 (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and

TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was

puri- fied by flash column chromatography on silica gel eluting with pentane/

AcOEt ((%AcOEt): 1 (30); 5 (50); 15 (300) 25 % (200 mL)) to give 3 a as a viscous
oil (0.218 mmol, 79.3 mqg, 87 %).

(300 MHz, CDCI3): d =7.34-7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H),

1.39ppm (s, 9H); 13CNMR (75MHz, CDCI3): d=161.4, 158.1, 155.2, 149.9, 138.7,
128.8,127.4,111.0,84.3,68.9 53.6,52.2, 28.1 ppm; MS-ESI: m/z: calcd for
[C18H21NO7Na]*: 386.1210; found: 386.1207.
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How to represent molecules with computers

MOIQCUIar Graph Adjacency Matrix
atoms & bonds as objects (does not always specify bond order!)

2 atom:

O 1 2 3 atom
() array([[0, 1, 1, O], 0
3 < 1, 0, 1, 01, 1
O :11 1! Or 1:1 2
0, 0, 1, 017]) 3
1

SMILES: ClOC1C

Caveat: There is no inherent order in atoms/bonds: permutation invariance

17



Representing Reactions

reactants and products are sets of molecules

Reaction SMILES: reactants>reagents>products

O
/N + NH; = HO™ ™\ NH; C10C1.N>>0CCN
All reactants in one matrix Product matrix
O C C N O C C N
array([[0, 1, 1, 0], 0 array([[0, 1, O, O], O
1, o0, 1, 0], C 1, 0, 1, 0], C
i, 1, 0, O], C 0, 1, 0, 17, C
0, 0, O, O11) N 0, 0, 1, 0]1) N

18



Reaction Center

K T OF

the set of atoms and bonds that get changed overall in the course of the reaction
not necessarily related to the mechanism

19



Reaction Mapping

Automatic Reaction Mapping assignment is still not perfect
Manual Assignment significant work

20



Reaction Rules & Reaction Templates

Ph

Ph
a) Known reaction ﬁ l > @\
N >Cco,Me CO,Me

I !

b) Extraction of - H >
a general rule N

manual or automatic

Template: Usually refers to the reaction center + environment only
Rule: All templates are rules, but rules also contain additional information

Templates are a composition of graph edits (Ugi)

21



Reaction Rules & Reaction Templates

Work in both directions (forward/retro)

—

e
@

Rule application algorithm

1)

2)
3)
4)

Match left side of rule in starting graph
Cut out match

Glue in right side of rule

Return target graph

22



Reaction Rules & Reaction Templates: Advantages

O O

L+ Ry=NH, —— MR,

R, ~Cl R N

[#6:1]-[#6:2] ([C1:3])=[0:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2]1 (-[#6:1])=[0:4]

< Deeply rooted in chemists’language
% Perfect with perfect rule base, decent with good rule base
“»* NO copying errors

Kayala, M., Baldi, P; J. Chem. Inf. Model. 2012, 52, 2526—2540
B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937
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observed reaction

oversimple template

this reaction will fail

Activating Groups need to be captured

o 0 0 0
\o)v Y HC \OJ\/\)*

24



Tolerated Functional Groups need to be captured

Problem: Which is the correct rule to apply?

O
Xy H
(1) Query | P S ?
= 1
(2a) Rule A 1 0o S R1— + _R2
Suzuki R R R B(OH)2 Br—R

Kumada

25



Templates do not always capture intermediates

0 o 0
observed reaction ©) FhePNC w

What actually happens @j ' Hscfkﬁ - @fﬁiﬁ o w

26



Reaction Rules & Reaction Templates

O O

L+ Ry=NH, —— MR,

R, ~Cl R N
[#6:1]-[#6:2] ([C1:3])=[0:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2]1 (-[#6:1])=[0:4]

% Deeply rooted in chemists’'language

< Perfect with perfect rule base, decent with good rule base
“* NO copying errors

% rules have to be created (manually, automatically extracted)
% reactivity conflicts, selectivity have to be captured

< many reaction mechanisms and scope not well understood
% purification, solubility, stability not taken into account

% no inherent ranking mechanism

Kayala, M., Baldi, P,; J. Chem. Inf. Model. 2012, 52, 2526—2540
B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937
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Why are data driven approaches for reaction
modelling appealing?

28



Growth of Chemical Data is unbroken!

log scale 10"

10

total N reactions

1940 1960 1980 2000

year
Analysis of Reaxys Database

2020

29



Chemists’ creativity does not slow down!

Number of unique reaction types / year

[
log scale .
o b
L)
O
(7))
2 .
> ¢« of
o
S 10°° o
5 ¢ °
4y}
-
()
-
g .
-
® )
p ..
o
L W ® <
e o %,
4 b i ®
6x10 1 e® o *
1980 1985 1990 1995 2000 2005 2010 2015
year

Via extracted reaction rules/templates, Analysis of Reaxys Database
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log scale

broad

broad
narrow

Chemists’ creativity does not slow down!

Number of new reaction types / year

5x10"

4%x10"

3x10"

I | I |

2000 2005 2010 2015
year

1980 1985 1990 1995

Via extracted reaction rules/templates, Analysis of Reaxys Database

-8x10°

4
7x10

6x10

5% 10"

4x10°

narrow
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New reactions types grow parallel to novel reactions

. . ) new
New reaction types vs total reactions
o total
O @
O
8x 10" .
o & i 5
4 .. 6x 10
7)(10 i o i)
i)
i
o @ 5
. . 4% 10
= 6x104' @ e @ @©
) 5 * e, =
- 5 +
3% 10
b
5x104 ¢ .. ® ¢
O o 5
o 2% 10
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Analysis of Reaxys Database



Automatic Template Extraction via Algorithms

Il
/
Reaction . O
from database _ | O\
NN

>0
Second Shell +
Rule |

O
First Shell +
Rule | =

Zero Shell Rule AN
(Reaction Center) (\ + = —

.

Law et al. JCIM 2009, 593-602
Christ, Zentgraf, Kriegl JCIM 2012 1745
Saller et al. Org. Process Res. Dev. 2015, 357—368
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Manual coding vs Automatic Template Extraction

Method

Human Effort

Requirements

Scalability to new reactions

Updating Rulebase

Error Sources

Manual Coding Automatic Extraction

Very high (decades) Very Little

A large team of organic chemists

. Reaction Database (depends)
(expensive)

Low, need to be encoded anew 15 million reactions over night (laptop)

Complex, need to revisit old rules Simple (see above)

Current extraction algorithms often do
not capture activating groups and scope
well, [ack of negative data

Expertise of chemist, many reactions
are not well enough understood

Law et al. JCIM 2009, 593-602
Christ, Zentgraf, Kriegl JCIM 2012 1745
Saller et al. Org. Process Res. Dev. 2015, 357—-368
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DFT

Supervised Machine Learning

HY = EW F=ma

Quantum Chemist Molecular Mechanics
I B focus on physical reality 1

focus on data

CF;
BocN
Br
Data
Point .
CF, @Encodmg
1 X
NH,
COOH —
2 X1 X2 X3
Boc \ X1 X2 X3
HO Sk __———» X1 X2 X3
STEEE N | G S RN | JPERE N e
X1 X2 X3

OH
Br\(j /
n |
N™ °F

OH
CF, ey [X1 X2 X3]
Br BocN

Features Targets

Features

y
property, reactivity, ...

| Machine Learning |

@ Application

Machine
Learning
Model

..........rp[y]

Model Optimisation and Cross Validation

OZ—-Z—-> 0+

—mm-

Nested Cross Validation

- internal validation
- optimization of hyperparameters

e.g. 5-fold cross validation

internal average over
training set 5 splits for
selecting best
internal model
test set

Performance Evaluation

A ~ Metrics:
o
§ ~ g O4 R2 = (Cov(obs,pred))?
9 o o o Gzobs ; Gzpred
S| oo
o — MAE or RMSE
predicted
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Molecular Representations for Machine Learning: Featurization

f:./\/l%]RD

the set of all D-dimensional real vectors

possible
molecules (graphs or 3D)

. fingerprints (often sparse)
» physicochemical/topological descriptor vectors
« Graph Neural Networks

36



Reaction Representations for Machine Learning

. reaction difference fingerprints (sum of products - sum of reactants)
- Reaction Graph Neural Networks based on reaction center
« Seq2Seq Descriptors based on Reaction SMILES

37



Supervised Machine Learning: Classification and Regression

y = fo(o(m))

Regression Binary Classification Multi-Class Classification
Yy — real number probability [0,1] probability vector [0,1]€
%Yield, e.r. reactive/unreactive Reaction Class

[DielsAlder: 0.2, Suzuki: 0.7, Aldol: 0.1]

38



(Mechanistic) QSRR Modeling

&l R 2.5 mol% peptide

R
2 equiv. Ac,O
" >
CHCI,, =35 °C, 20h
1 OH HO 2 OAC

HO
/~NMe Peptide catalyst
¢ Stretches affect?ng ring torsion (sterics). N H Oq~H O Ph
¢ Strejtches affecting the phelnol (electronics) BocHN N\)LN N\)LNJ\/Ph
¢ Sterimol values for R and six molecular - H - H =
. . . O O I
vibrations were used for modelling >=O _r,, NHTs
Ot-Bu
TrtHN
b Sterimol analysis C Vibrational analysis
AAG* = 0.11 + 1.04B, - 0.23L AAG* = -0.05 + 0.42B, - 0.51v,
- 0.92v, + 0.34v,
2.07 u Training set 2.07 u Training set
N 1 X Previous validations - T 1 X Previous validations -
g 1.64 4 New validations A g 1.6 4 New validations .7
ERER CClimsyrBuph -~ Ei P
2 1.2 - < 1.2- .’
3 0.8 - 3 0.8- 2
5 | 4FPh 5 vy
Qg A X TaX 4 i) x!zl/X AA
9 04_ P - A L_) 0.4- 7/
3 - y=082x+018 @ | 7 y = 0.99x - 0.01
T 50- R2 = 0.60 O god « d R2 = 0.94
00 04 08 12 16 20 00 04 08 12 16 20
Measured AAG* (kcal mol™7) Measured AAG* (kcal mol™7)

Milo, Sigman, Doyle, Gensch, Gasteiger, Glorius, ....
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Ingredients of Computer-Aided Synthesis Planning Algorithms

% Module to propose feasible retrosynthetic disconnections (now ML)
% efficient search algorithm
< stop criteria (building blocks) and ranking

Target or .
. Ranked List of 1-step
Intermediate . - . Precursor Sets
Molecule

FtO,C Et0,C.__~
‘ | > ‘ \ > ‘
OH \)

OH
Target Intermediate Starting materials

40



Brief History of Computer-Aided Synthesis Planning

1963
Vladuts (USSR) 1970ies
Proposes Computer- Uqgi (D)
Aided Formal Logic

Synthesis Planning

1967
Corey (USA)
Formalises 1970-1990
Retrosynthesis & First Expert Expert Systems

System Implementation

1990-2010
Automatic
Rule Extraction

1996

Gasteiger & lhlenfeldt

Current Approaches:
Dead End?

2016
Segler, Coley,
Schwaller, ...

Machine Learning

2016
Synthia (Expert
System, Grzybowski)

41



Nobel prize 1990

Write down al

Great for

“The synthetic chemist is more t
These added elements provide t

Vieduts (1963), Corey (1968)

| of chemical

knowledge in logic form

humans!

Not so much for machines?

nan a logician and strateqist; [...]
ne touch of artistry which can hardly

be included in a cataloguing of t
they are very real and extremely

ne basic principles of synthesis, but
important.” (Corey)

Vléduts, G. Inform. Storage Retrieval 1, 117-146 (1963).
Corey, The Logic of Chemical Synthesis
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ldea: Machine Learning & Reinforcement Learning for Search

@ @ <+ Module to propose feasible retrosynthetic disconnections
- Learn to predict disconnections
- Learn to predict reactions

< modern efficient search

< ML provides a rigorous metrics framework!

43



Assigning Molecules to Rules gives Labels for ML
Ph

Ph
a) Known reaction ﬁ l >~ @\
N Sco,Me CO,Me

l |

b) Extraction of ( H > @ 987128 (Diels Alder)
a general rule e
This product X can be made with this rule y: P(Y|X)
Ph

@\ Label: #987128 (Diels Alder)
COZMG

Rule assignment gives us labeled dataset for classification »



Data of our entire discipline!

« 11 M reactions

Successful Reactions contain implicit knowledge!

Data: Reaxys

45



Challenges

+» learn the rules

% predict likely disconnections
% filter out infeasible reactions
% efficient search

46



Retrosynthetic disconnection prediction: Multi-class Classification

47



How to make this molecule?

| /\/\/\/O)
O

48



Pattern Recognition

49



Retrosynthetic disconnection prediction: Multi-class Classification

Mimics Chemical Intuition & Allows to learn tolerated molecular context!

1‘ oy

X —) =P p(1,x)

Molecular
Descriptor most probable
(ECFP4) Deep Neural Network reaction rules

Segler, Waller, Chem. Eur. J. 2017, DOI: 10.1002/chem.201605499
Deep Highway Networks (Schmidhuber), ELU nonlinearity (Clevert, Unterthiner, Hochreiter)

50



Challenges

+» learn the rules

< focus on most promising routes first
» filter out infeasible reactions

% efficient search

51



Reaction Prediction: In-scope Filter

Reaction Product

\

Score

Binary Classification using real positive and mined negative data [1, 2]

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. 5ci. 2017, 434



Reaction Prediction

No failed reaction in literature?

Make your own![1,2]
? OH
+ MeMgBr » |
MeO 9 O
O O
O
| |
+ MeMagBr >
MeO 9 ><
O OH

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. Sci. 2017, 434



Reaction Prediction: In-scope Filter

No failed reaction in literature?
Make your own!

Reaction Product A + B — > C

\ /
— A + B —F#— D

] — A + B —F— E

Score

Neural Network: ROCAUC 0.986

False positive rate: 1.5%

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. 5ci. 2017, 434



In-scope Filter
f: (ProductFP ReactionFP) -> [0, 1]

a) Diels-Alder reactions with Cyclopentadiene b) para-Bromination of benzenes

Score vs LUMO energy, r*2=0.74 Score vs Hammond params, r*2=0.78

0.02 —

0.8 -

0.00

-0.02

-0.04 -

-0.06 —

-0.08 -

LUMO energy/Hartree
Hammond Sigma

-0.10 -

-0.12

-0.4 -
-0.14 -

-0.16 [ [ [ [ [ [ [ | -0.6 [ [ [ [ [ [ |

5 6 7 8 9 10 11 12 13 -1 0 1 2 3 4 5 6
in-scope filter logit score in-scope filter logit score

Output correlates with LUMO energies and Hammett parameters!



Challenges

+» learn the model

< focus on most promising actions first
% filter out infeasible reactions

% efficient search
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Heuristic Best First Search

ldea: Define strong heuristic function to score nodes

For example: Split up molecules in equally sized parts, simplify molecule, cleave strategic
bonds first...

Problems:

« Chemists disagree about good solutions, intuition
is not addressed
. Synthesis only solved at the end

- Molecular complexity needs to be tactically
increased (Protecting groups!)

57



Monte Carlo Tree Search (MCTYS): Idea

» Approximate values online by random MC simulation (Agent picks
transforms randomly until end of synthesis)
« Use these approximated values to build search tree

=> Not dependent on strong heuristic!
=> Can deal with very high branching factors
=> can be guided by predicted value or probability of disconnection

R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search,”in Proc. 5th Int. Conf. Comput. and Games, 2006, pp. 72-83.
L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo Planning,”in Euro. Conf. Mach. Learn. Berlin, Germany: Springer, 2006, pp. 282-293.
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Quantitative analysis on 500 random molecules

Method Scoring solved/% time per molecule/s
BFS Heuristics [1]

BFS Neural Net

MCTS Neural Net

trained on data < 2015, molecules first reported >= 2015
[1] B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937



Quantitative analysis on 500 random molecules

Method Scoring solved/% time per molecule/s
BFS Heuristics [1] 56 422

BFS Neural Net 84 39

MCTS Neural Net 95 13

trained on data < 2015, molecules first reported >= 2015
[1] B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937



How to test the quality of a retrosynthesis system?

Null Hypothesis: Experts won’t like Computer’s solutions



Qualitative Analysis: Chemical Turing Test

For molecule © l

www. angesandte.org

Route A Route B Route A RouteB
QS =] ACS C
© _\G) Angewandte .

~— mrgaiio, Chemie

« Double Blind
« 45 PhD students, postdocs,++ from Shanghai (CN) and Munster (DE)



ASe L
© © N O O h w N

0.1

3N-MCTS vs literature routes

MCTS preference ratio
0.3 0.5 0.7 0.9

Segler, Preuss, Waller, Nature, 2018, (555), 604-610

57:43
insignificant!

=> Expert & Computer
routes cannot be
distinguished!
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o B
I
O-5N
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O, O,N NO
+ o O 2
4

in 6 sec with MCTS + DNN

Segler, Preuss, Waller, Nature, 2018, (555), 604-610
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Alternative Approaches for Reaction and Retrosynthesis Prediction

Rule-free Prediction of Reaction Products
a) Graph-edit-based prediction of most likely bond changes

bond changes

3 1 atoms 1-13
N Br+H2N 4 2 H 9 11 -
ﬁ a
0 s
)
5 5 7 141312 N
l I
BrH H
+ N N
Yo sholens
Z Z
| N N" N Z SN
®
80% 10% N

probability distribution

b) Translation of SMILES strings
N7 O

Brc1ccenc1.Nciccccec1l =P | Encoder

Coley et al. Chem. Sci, 2019; Schwaller et al. Chem. Sci. 2020;



Machine Learning now core part of Computer Aided Synthesis Planning

RESEARCH ARTICLE

ARTICLE S — ORGANIC CHEMISTRY Predicting retrosynthetic pathways using
. . . A robotic platform for flow synthesis transformer-based models and a hyper-graph
Planning chemical syntheses with deep of organic compounds informed exploration strategyf

neural networks and symbolic Al

Marwin H. S. Segler"-?, Mike Preuss® & Mark P. Waller*

by Al planning Philippe Schwaller, @ *2 Riccardo Petraglia,? Valerio Zullo.? Vishnu H. Nair.?
Connor W. Coley™, Dale A. Thomas IIT>**+, Justin A. M. Lummiss®™, Rico Andreas Haeuselmann,® Riccardo Pisoni,” Costas Bekas,® Anna luliano

Jonathan N. Jaworski®{, Christopher P. Breen®, Victor Schultz', Travis Hart, and Teodoro Laino®
Joshua S. Fishman?, Luke Rogers'S, Hanyu Gao', Robert W. Hicklin?||,

Pieter P. Plehiers'Y, Joshua Byington'#, John S. PiottiZ2, William H. Green,

A. John Hart?, Timothy F. Jamison®**, Klavs F. Jensen'**

b

Seqgler et al. Nature, 2018; Coley et al. Science, 2019; Schwaller et al. Chem. 5ci. 2020;
Genheden, Thakkar et al. J.Cheminf. 2020; Grzybowski et al. Angew. Chem. 2016;
open source (e.g. AiZynthfinder, ASKCOS),
commercial tools (Reaxys, CAS, IBM, MoleculeOne, Iktos, ...)
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Comparison of Different Approaches for Reaction and Retrosynthesis Prediction

Method Purely Rule-based ML + Graph Manipulation Seq2Seq
Classification Symbolic Neural-Symbolic Neural
Uses Machine Learning No Yes Yes
Molecule Repr. Graphs Graphs SMILES

Rules, Graph-Manipulation

Reaction Repr. Rules at different granularity

Implicit within neural network

Predicting with parts of
Works by Applying Rules graph to manipulate with
ML, then apply rule or edits

Generate target molecule from
scratch with ML

Need to Specify Exact Need to Specify Rough

Bottleneck Rules Rules, Data hungry Very data hungry
Ease of getting started - 0 +
Rule Base, Chemical Rule/Edit Base, Chemical Copy Errors, Chemical Errors (+),

Error Sources And Types Errors (-) Errors (0), Data Data



Recent Directions in ML for Reactions/Retrosynthesis

Disconnection Prediction with Modern Hopfield Networks

=@ MHN/FPF

Somnath, Coley, et al arXiv:2006.07038 2021

- NeuralSym/FPF

Learning Graph Models for Retrosynthesis Prediction

Synthons

\ o N—
—/S'—<— \ /g

Reactants

— @& = MHN - & = NeuralSym
e (5N Transformer a Edit Prediction
N= i N ! N
DO—=5 — o= - S <
/ N‘N N EN\N % \ 7/ E \ N—
\ - \ ! —
4 y& R N\ //
>\80 ; Product
@)
(© b Synthon Completion
© N-N " - N-N : N-N
(@) i \ _ o — E \ E — \
'_.'60 Y % — [\\l_/'
ICSL Synthons : B _/_ ________________________
50 - ‘
103 102 101

sec/reaction

Seidl, Renz et al, MS, arXiv:2104.03279 2021
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Recent Directions in ML for Reactions/Retrosynthesis

A Dataset of reaction SMILES Unsupervised training on dataset (without labels)

DreCnBnprec. 2= Schwaller et al, Extraction of organic chemistry grammar from
CO.Nclcccc([N+]...>>... Transformer
cCRONENL s Siode! unsupervised learning of chemical reactions, Sciences Adv. 2021
(OC(C)=0)0C(C)=0..>>...
precursors>>products
without atom-mapping

Discovery & utilization Unboxing-trained transformer model

'Tl'anSfOl’mel'S 123“:?678 C.SCCfC?S.Ch(C)C:U.Fclcccnc}F ;‘c(,i-j?:,.j_(‘._j(‘,)‘:cc(C)Sclnccccl

capture the hidden . ) A\ /

grammar of chemical 3 | , =

reactions. % s ? : N ""/

« Reactions follow H ~N

consistent rules 10 \

« Atom rearrangements 12 ,

canbeextractedfrom oo_w ICC(C)S.C&(C)C'U.Ic1cccncl'F.O-C():-j)-:-j.‘b.,lnlntc(C)SclncccchE’

model —p RXNMapper Aton;-igmnzl:pmg Heads learn different functionalities

Supervised chemical reaction tasks benefit from improved atom-mapping

Forward prediction

Chemical reactions » Template-based: « Availability of
4§ s predict rules to apply | | training data
oo 2 ‘i — 2| || - Graph-based: - Better mapping,

predict bond changes | | better performance

Atom- mapping

? s>— .= « Interpretabilty
pa— - * SMILES-based: - Reactant-reagent role
molecules « Reaction classification

Retrosynthetic prediction

Task Common approach How it is affected

C Affected downstream applications

d& YF HsY—»Y\( HY(x) = EY(x) EQ

Automatic reaction rule Quantum mechanical Reaction searchability

Synthesis planning and center extraction simulations and accessibility




How to integrate Synthesis Planning with De Novo Design?

2) Synthesizability Scoring
. Reaction-driven
3) De Novo Design Molecule Generation

Gao, Coley JCIM 2020, Boda et al JCAMD 2007, Vinkers et al J. Med. Chem. 2003; Segler, Preuss, Waller, ICLR Workshop 2017
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Synthesizability Scoring

Boda/Gasteiger => Fragments
SAScore - Ertl, Schuffenhauer => Fragments
SCScore - Coley et al => ML, Heuristic for Synthesis Planning

Boda; Seidel, Gasteiger, J. Comput.-Aided. Mol. Des. 2007 10.1007/s10822-006-9099-2
Ertl, Schuffenhauer, J. Cheminf. 2009 10.1186/1758-2946-1-8
Coley, Rogers, Green, Jensen, JCIM 2018 10.1021/acs.jcim.7b00622
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Synthesizability: Not a well-defined concept

Not fully defined by structure
Context dependent — hit expansion vs. late lead opt vs. scale-up
Starting-material dependent — Availability reduces complexity

Bz(é) AcO
10-deacetylbaccatin |1l

Gilead’s GS-CA]1

Image Credits: Ingo Hartung, C&EN Mag, Wikipedia
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Learning to approximate a full synthesis planner

Synthe5|s Planning Fit ML Model to predlct
Random Molecules CASP —) CASP output

slow
O
Score with ML Model O
\
fast

Liu, Korablyov, Jastrzebski, Wtodarczyk-Pruszynski, Bengio, Segler, arXiv:2011.13042, 2020
Parallel work: Thakkar et al. Chem. 5ci. 2021
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Generative Models for Synthesis Trees?

Generative models for Molecules Alternative:
build atom by atom build synthesis tree by picking reactants and
predicting reactions

O

7 \

oL

O -

FsC

~
N
~CO,H

Non-Neural:Vinkers et al - SYNOPSIS, J. Med. Chem. 2003; Hartenfeller, Schneider, WIRES, 2011;
Neural: Bradshaw et al. NeurlPS, 2019, Gottipatti ICML 2020, Horwood, Noutahi, ACS Omega, 2020
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Retrosynthesis vs Forward Synthesis

Retrosynthesis Actual Synthesis
Backward chaining Forward chaining

) Q- J\ )

l Product

O«+—
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Generative Models for Synthesis Trees?

DAG (Directed Acyclic Graph) of Graphs

C\/O T Building Blocks

& ); Intermediates

@ LT O Product
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Generative Models for Synthesis Trees?

DAG (Directed Acyclic Graph) of Graphs

C\f T Building Blocks

& ); Intermediates

L 0 Product
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DoG Algorithm

Provide Building Library & Reaction Predictor (MT; Schwaller et al. 2019)

Model chooses steps:

1) Pick Reactants

2) Pick Intermediates

3) Predict Reaction Q\h
O -

4) Stop

O

F3C CO,H

/8



DoG Algorithm
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DoG Algorithm

g Pick reactants v

80



g Predict reaction

DoG Algorithm
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DoG Algorithm

O«—O0
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§ Predict reaction

DoG Algorithm

O«——{1«—"30
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g Pick intermediates

DoG Algorithm

34



DoG Algorithm
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DoG Algorithm
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Optimisation Experiments

DoG-Generator + Cross-Entropy Method
Guacamol Optimisation Benchmarks

Guacamol: Brown et al. JCIM 2019;

37



Score

Maximum Scores vs Quality Tradeoff

unrestricted de
novo design

O

Quiality

Guacamol: Brown et al. JCIM 2019;

Virtual Screening
enum. Libraries

O HTS Deck

38



Score

It's not just about leaderboard performance...

Quiality
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tion Tasks

Imisa

Performance on Guacamol Opt

Valsartan

Scaffold Hop

Deco Hop

Aripiprazole

Best in train

Ranolazine

Osimertinib

Sitagliptin

ua9n-90d

V9 STTINS
WL1S1 SITINS
v9 ydei

Zaleplon

uanH-90

VO SITINS
W1S1 STTINS
v9 ydeio

u39-90(

VO SITINS
W1S1 SITNS
- v9 ydeus

us9H-90Q
V9 SIS

- WLST STTWS
V9 ydeug

N39-90Q
V9O STTINS
W1ST SITINS
V9 ydeto

Perindopril

us9nH-90Q

VO SITINS

- WLST SIS
[ vO udeis

us9-90Qg
V9 SIS
“WLST STTNS
V9 ydeio

uanH-90

VO SITINS

- WLST SITINS
v9 ydei

us9n-90d
V9 STTINS
W1S1 STTINS
- v9 ydeus

u39-90(d
V9 SITNS

- WLST STTWS
V9 ydeun

Amlodipine

1.0 -

0.2 -
0.0

21005

Guacamol: Brown et al. JCIM 2019;
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Synthesizable against CASP oracle [1]

Fraction of top 100 synthesizable

O
o

=
o

o o o
A O O

O
N

Performance on Guacamol Optimisation Tasks

higher better

©
N

Fraction passing quality filters
o
(@)

Graph GA -

SMILES LSTM -

SMILES GA -

©
o

DoG-Gen

Quality Score [2]

=
o

O
N

- == training dataset

Graph GA -

SMILES LSTM -

SMILES GA -
DoG-Gen

[1] Gao, Coley, JCIM, 2020; Segler et al. ICLR Workshop, 2017

[2] Guacamol: Brown et al. JCIM 2019;
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Score

10 4

Performance on Guacamol Optimisation Tasks

0.9 1

0.8 1

0.7 4

0.6 1

0.5 1

.GrathA

Unrestricted De Novo

.crem .CDDD

o SYNOPSIis

LSTM

.BoCh

Virtual Screening
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0.6
Quality
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10
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Score

Performance on Guacamol Optimisation Tasks

10 +
.GrathA o TEM .CDDD
: LSTM
09 4 Unrestricted De Novo
od00_hc
0.8 1
0.7 1
.BoCh
0.6 1 Virtual Screening
.synopsis

0.5 1
04 4 T T T T T T T

0.2 0.3 04 0.5 0.6 0.7 0.8 0.9

Quality
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