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Background Reading for this talk
Reviews 
Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 link 
Coley, Eyke, Jensen, Angew. Chem. Int. Ed. 2020, 51, 22858 link 
Johanson et al. (AZ), Drug Discovery Today: Technologies, 2019, 32–33, 65, link  

Key Papers - Reaction ML 
Segler, Waller, Chem. Eur. J., 2017, 23, 5966 - Reaction & Retrosynthesis Prediction 
Coley et al ACS Cent Sci. 2017, 5, 434- Reaction Prediction 
Segler, Preuss, Waller, Nature, 2018, 555, 604 - ML-Driven Multi-Step Retrosynthesis 
Coley et al. Science 2019, 365, 6453- ML-based Retrosynthesis, Reaction & Condition Prediction + Robot 
Implementation 
Schwaller et al ACS Cent. Sci 2019, 11, 3316 - Molecular Transformer 
Segler, M. P. Waller, Chem. Eur. J., 2017, 23, 6118 - Reaction Knowledge Graphs 

Molecular Design 
Bradshaw, Paige, Kusner, Segler, Hernandez-Lobato, NeurIPS 2020 - Reaction-Driven Generative Models 
Segler, Kogej, Tyrchan, Waller, ACS Cent. Sci., 2017, 4, 120 - SMILES RNN

4. 

https://doi.org/10.1039/C9CS00786E
https://doi.org/10.1002/anie.201909987
https://doi.org/10.1016/j.ddtec.2020.06.002
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Neue Anwendungsgebiete fur Computer in der Chemie 

Von Ivar Ugi, Johannes Bauer, Josef Brandt, Josef Friedrich, Johann Gasteiger, 
Clemens Jochum und Wolfgang Schubert[*l 

Das hier beschriebene mathematische Model1 der konstitutionellen Chemie beruht auf einer 
Erweiterung des Begriffs der Isomerie auf Ensembles von Molekulen. Damit ist eine chemische 
Reaktion die Umwandlung eines Ensembles von Molekiilen in ein isomeres Ensemble. Ein 
Ensemble von Molekiilen kann reprasentiert werden durch einen Atomvektor und eine zuge- 
ordnete Bindungs/Elektronen-(BE-)Matrix, eine Reaktion durch eine Reaktions-(R-)Matrix. Die 
Algebra der BE- und R-Matrizen dient als Grundlage von Computer-Programmen zur de- 
duktiven Losung chemischer Probleme. Diskutiert werden Algorithmen und Computerpro- 
gramme auf der Grundlage von BE- und R-Matrizen. Sie ermoglichen eine Klassifikation und 
Dokumentation von Strukturen, Substrukturen und Reaktionen, die Voraussage von Folge- 
produkten, die Planung von Synthesen, die Konstruktion von Netzwerken fur Reaktions- 
mechanismen und Synthesewege sowie die Voraussage chemischer Reaktionen. 

1. Wege zur deduktiven Losung chemischer Probleme 

Der Gebrauch von Computern ist in der Chemie seit langem 
ublich. Trotzdem wird bei den heutigen Anwendungen in 
der Chemie erst ein bescheidener Teil der Moglichkeiten mo- 
derner Computer genutzt. Entweder werden numcrische Pro- 
bleme bearbeitet wie quantenmechanische Rechnungen und 
die Erfassung und Auswertung von MeRdaten, oder es wcrden 
groi0ere Datenmengen gespeichert und wieder abgerufen. 
Die Herausforderung, chemische Probleme durch Algorithmen 
zu losen, wclche menschliche Intelligenzleistungen im Sinne 
von Entscheidungsprozessen und deduktivem Denken simulie- 
ren, wurde fruhzeitig erkannt und fuhrte zu einer Arbeitsrich- 
tung, die man heute mit der Bezeichnung ,,artificial intelligen- 
ce" assoziiert. 

Diese Entwicklung begann vor mehr als zehn Jahren mit 
Computerprogrammcn m r  Strukturermittlung von Molekii- 
len aus physikalisch-chemischen MeBdaten"] (Massenspek- 
trcn) und auch mit retrievalorientierten Computerprogram- 
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men zur Syntheseplanung'']. Bei diesen Syntheseplanungspro- 
gramnien erzeugt man aus einem eingegebenen Syntheseziel 
Vorstufen, welche sich durch eingespeicherte chemische Reak- 
tionen in das Syntheseziel iiberfiihren lassen. Hierbei wird 
anhand der Strukturmerkmale des Syntheseziels untersucht. 
oh eine der in der Reaktionsbibliothek gespeichertcn bekann- 
ten Reaktionen zum Syntheseziel fiihren kann und welches 
gegebenenfalls die zugehorigen Vorstufen sind. 

Um Syntheseplanungsprogramme zu erstellen, welche auch 
Synthesewege mit prazedenzlosen Reaktionsschritten vor- 
schlagen klinnen, benotigt man eine Theorie der konstitutio- 
nellen Chemie, welche es ermoglicht ~ ohne detaillierte Reak- 
tionskenntnis - von einem gegebenen molekularen System 
aus andere Systeme zu finden, aus denen es durch chemische 
Reaktionen entstehen kann oder in welche es sich umwandelii 
lafit. 

Eine solche Theorie der konstitutionellen Chemie cignet 
sich nicht nur zur Erstcllung von Syntheseplanungsprogram- 
men, sondern sie ermoglicht auch die Losung einer Vielfalt 
anderer chemischer Probleme. 

Deduktive Computerprogramme auf der Grundlage logi- 
scher Strukturmodelle und matheinatischer Darstellungen 
werden kiinftig in der Chemie eine wesentliche Rolle spielen, 
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“In chemistry the use of computers has been customary for a long time. Nevertheless, only a 
modest part of the inherent capabilities of modern computers is utilized for the solving of 
chemical problems. Numerical problems are solved, such as the ones encountered in quantum 
chemistry, and in the collection and evaluation of experimental data, or large sets of data are 
subjected to storage and retrieval operations.  

The challenge to solve chemical problems by algorithms which simulate human intelligence in 
the sense of decision processes and deductive thought was felt at a rather early stage. It led to 
studies in a direction which is now associated with the term ‘artificial intelligence’. “

New Applications of computers in Chemistry
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Two Paradigms for Program Solving with Computers

Input Output

Programming: Encode all instructions to solve problem

Machine Learning: Use example data + simple algorithm to derive 
problem solving instructions
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Reactants Products
Reagents, Catalysts

Solvents 
Conditions

Chemical Reactions
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Experimental 
Data

The Trinity of Organic Chemistry

Theory

Knowledge 
Patterns  

Rules

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 

(We need all three!)



 8Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 

Pattern recognition in Organic Chemistry goes a long way.

OMe

Br

B(OH)2

F

[Pd]
?+

Do you need ab-initio theory to 
predict the likely outcome of this reaction?



 9Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 

Pattern recognition in Organic Chemistry goes a long way. But Not All…

OMe

Br

B(OH)2

F

[Pd]
?+

Do you need ab-initio theory to 
predict the likely outcome of this reaction?

Will matching function groups give you an exact 
picture of the potential energy surface and 
transition states?
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Experimental 
Data

The Trinity of Organic Chemistry

Theory

Knowledge 
Patterns  

Rules

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 

Machine Learning

We need all three!

Simulations 
(+ ML)

Simulations +  
Machine Learning
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Chemical Reactions

NHO Boc N OBoc

OEt

OEt

O

O

O
EtO

O
OEt

+
TEMPO

CH2Cl2 70 ºC

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060  
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NHO Boc N OBoc

OEt

OEt

O

O

O
EtO

O
OEt

+
TEMPO

CH2Cl2 70 ºC

General procedure:  
In a screw-cap Schlenk tube, the corresponding N-protected N-
benzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH2Cl2 (2.00 
mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv) 
were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent 
was re- moved under reduced pressure and the obtained crude product was 
purified by flash column chromatography on silica gel eluting with pentane/
AcOEt to give the corresponding N-protected isoxazoline 3.  

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According 
to the general procedure, N-Boc N-benzyl hydrox- ylamine (1 a) (0.25 mmol, 63.3 
mg, 1.00 equiv), dry CH2Cl2 (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and 
TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was 
puri- fied by flash column chromatography on silica gel eluting with pentane/
AcOEt ((%AcOEt): 1 (30) ; 5 (50) ; 15 (300) 25 % (200 mL)) to give 3 a as a viscous 
oil (0.218 mmol, 79.3 mg, 87 %). 
(300 MHz, CDCl3): d = 7.34–7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H), 

1.39ppm (s, 9H); 13CNMR (75MHz, CDCl3): d=161.4, 158.1, 155.2, 149.9, 138.7, 
128.8, 127.4, 111.0, 84.3, 68.9 53.6, 52.2, 28.1 ppm; MS-ESI: m/z: calcd for 
[C18H21NO7Na]+: 386.1210; found: 386.1207.  

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060  

Yield: 87%

Experimental Procedures describe how to reproduce reactions
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The Reaction Mechanism is the sequence of  
elementary steps from reactants to products

NHO Boc N OBoc

OEt

OEt

O

O

O
EtO

O
OEt

+
TEMPO

CH2Cl2 70 ºC

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060  

ate by a SET process followed by deprotonation to form
nitrone 11 and hydroxylamine 1,[22] the later entering again in
the oxidation cycle. Lastly, the cycloaddition between the
generated nitrone 11 and 2 a takes place to form the final
isoxazoline product 3.

Finally, to obtain more mechanistic insights into the two
proposed possible pathways a) and b) for the formation of the
nitroxide intermediate 10, byproduct 4 a and nitrone 11, and
the subsequent 1,3-DC step, DFT-calculations were performed
(Scheme 6).[23]

Consequently, to complete the formation of nitroxide 10,
one of the two possible endothermic intermediate steps has
to take place. However, pathways a) and b) are similar in
energy, not allowing the exclusion of one of them since no

transition state (TS) could be found for the formation of the
radicals 9 and 10, respectively. The calculations also indicate
that the following disproportionation of 10 is an exothermic
process. Additionally, the subsequent cycloaddition has an acti-
vation barrier of just 4.4 kcal molˇ̌1. Nitrone 11 should then
react fast in the 1,3-DC step and thus, as previously postulated,
only be present in low concentrations in the reaction media.
This explains why nitrone 11 could not be detected by NMR
spectroscopy, GC or MS analysis during the mechanistic stud-
ies. Furthermore, all this implies that the final cycloaddition
step is not likely to be the rate-determining, but instead one
involved in the formation of the intermediate nitroxide 10 or
nitrone 11.

Conclusion

In summary, we have presented an effective method for the
synthesis of N-carbamoyl/-acyl 4-isoxazolines by a TEMPO-
mediated in situ formation and trapping by 1,3-dipolar cyclo-
addition of unstable N-protected nitrones. Carbamates were
superior to simple acyl protecting groups, leading to good
yields on the corresponding aryl, vinyl, and alkyl substituted
isoxazolines (up to 87 %). Moreover, the employed
dipolarophile showed an important assisting role in the slow
generation of the active, unstable N-protected nitrone.

Experimental Section

General information and materials

1H-, 13C- and 19F NMR spectra were recorded in CDCl3, (reference
signal : 1H = 7.26, 13C = 77.16 ppm, CDCl3) on a Bruker Avance
300 MHz spectrometer. Chemical shifts (d) are given in ppm and
spin–spin coupling constants (J) are given in Hz. Analytical thin
layer chromatography was performed using silica gel 60 F254 and
a solution of KMnO4 or an iodine camera served as a staining
agent. Column chromatography was performed on silica gel 60
(0.040–0.063 mm). Exact masses (HRMS (ESI +)) were recorded on
an Agilent Q-TOF 6540 UHD spectrometer (samples in CH3OH as
the solvent). CH2Cl2 and Et3N were dried over molecular sieves. THF
was distilled and dried over Na. TEMPO was purified by sublima-
tion under reduced pressure. Other solvents and commercially
available reagents were used without further purification. All the
flasks were dried under vacuum using a heating gun.

Synthesis of N-protected 4-isoxazolines 3

General procedure : In a screw-cap Schlenk tube, the correspond-
ing N-protected N-benzylhydroxyamine derivative 1 (1.00 equiv)
was dissolved in dry CH2Cl2 (2.00 mL). Dimethyl acetylenedicarbox-
ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv) were added and the
reaction mixture was stirred at 70 8C for 24 h. The solvent was re-
moved under reduced pressure and the obtained crude product
was purified by flash column chromatography on silica gel eluting
with pentane/AcOEt to give the corresponding N-protected
isoxazoline 3.

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate
(3 a): According to the general procedure, N-Boc N-benzyl hydrox-
ylamine (1 a) (0.25 mmol, 63.3 mg, 1.00 equiv), dry CH2Cl2 (2 mL),
2 a (122 mL, 1.00 mmol, 4.00 equiv), and TEMPO (78.8 mg,

Scheme 5. Mechanistic proposal.

Scheme 6. DFT gas phase (B2PLYP-D3/def2-TZVP//BP86-D3/def2-TZVP) calcu-
lated relative enthalpy profiles for the formation of nitroxide 10, nitrone 11,
and byproduct 4 a, as well as for the 1,3-DC reaction.

Chem. Eur. J. 2015, 21, 12053 – 12060 www.chemeurj.org ⌫ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim12057

Full Paper
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Retrosynthetic Analysis in Synthesis Planning

OH

OH

EtO2C EtO2C

OH

OH

EtO2CEtO2C

Starting materials Intermediate Target

Target Intermediate Starting materials

a) Retrosynthesis (backward)

b) Synthetic route (forward)
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Retrosynthesis vs Forward Synthesis: Synthesis Trees

Building Blocks/ 
Starting materials

Intermediates

Desired Target Product

Retrosynthesis 
Backward

Actual Synthesis 
Forward

Reactions

Reaction
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NHO Boc N OBoc

OEt

OEt

O

O

O
EtO

O
OEt

+
TEMPO

CH2Cl2 70 ºC

General procedure:  
In a screw-cap Schlenk tube, the corresponding N-protected N-
benzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH2Cl2 (2.00 
mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv) 
were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent 
was re- moved under reduced pressure and the obtained crude product was 
purified by flash column chromatography on silica gel eluting with pentane/
AcOEt to give the corresponding N-protected isoxazoline 3.  

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According 
to the general procedure, N-Boc N-benzyl hydrox- ylamine (1 a) (0.25 mmol, 63.3 
mg, 1.00 equiv), dry CH2Cl2 (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and 
TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was 
puri- fied by flash column chromatography on silica gel eluting with pentane/
AcOEt ((%AcOEt): 1 (30) ; 5 (50) ; 15 (300) 25 % (200 mL)) to give 3 a as a viscous 
oil (0.218 mmol, 79.3 mg, 87 %). 
(300 MHz, CDCl3): d = 7.34–7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H), 

1.39ppm (s, 9H); 13CNMR (75MHz, CDCl3): d=161.4, 158.1, 155.2, 149.9, 138.7, 
128.8, 127.4, 111.0, 84.3, 68.9 53.6, 52.2, 28.1 ppm; MS-ESI: m/z: calcd for 
[C18H21NO7Na]+: 386.1210; found: 386.1207.  

87%

Different Questions in Reaction Modelling

• What is the (major) product? 
• What are the conditions? 
• How can I make this product? 
• What will be the yield, e.r., d.r.? 
• Will this reaction run at all? 
• What is the class of this reaction? 
• Can I help to understand the mechanism? 
• What is the procedure?
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How to represent molecules with computers

1
0

Adjacency Matrix 
(does not always specify bond order!)

atom:   0  1  2  3       atom
array([[0, 1, 1, 0],     0
       [1, 0, 1, 0],     1 
       [1, 1, 0, 1],     2
       [0, 0, 1, 0]])    3

2

3

SMILES: C1OC1C

Caveat: There is no inherent order in atoms/bonds: permutation invariance 

Molecular Graph 
atoms & bonds as objects
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Representing Reactions

reactants and products are sets of molecules

O NH3 HO NH2+

All reactants in one matrix

        O  C  C  N 
array([[0, 1, 1, 0],    O
       [1, 0, 1, 0],    C
       [1, 1, 0, 0],    C
       [0, 0, 0, 0]])   N

Product matrix

        O  C  C  N
array([[0, 1, 0, 0],   O
       [1, 0, 1, 0],   C
       [0, 1, 0, 1],   C
       [0, 0, 1, 0]])  N

C1OC1.N>>OCCN

Reaction SMILES: reactants>reagents>products
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Reaction Center

O

H3C

O O

+

the set of atoms and bonds that get changed overall in the course of the reaction 
not necessarily related to the mechanism
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Reaction Mapping

1
2

O
3

4

5

6

7

8

H3C9

10

O
11

12

CH3 13

CH314

CH3 15

1

28

7

6

5

4

9

10

O
11

12

CH3 13

CH315

CH3 14

CH4

+

+

Automatic Reaction Mapping assignment is still not perfect 
Manual Assignment significant work
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Ph

CO2Me CO2Me

Ph

Me

CO2EtCO2Et

Me

a) Known reaction

b) Extraction of 
  a general rule

c) Reversing rule
    yields transform

d) Apply transform
    to novel targets

Target Starting Materials

Reaction Rules & Reaction Templates

manual or automatic

Template: Usually refers to the reaction center + environment only 
Rule: All templates are rules, but rules also contain additional information 

Templates are a composition of graph edits (Ugi)
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Work in both directions (forward/retro)

extract

CO2Et CO2Et
+

+

+
Cl Cl

apply

?

Reaction Rules & Reaction Templates

Rule application algorithm 
1) Match left side of rule in starting graph 
2) Cut out match 
3) Glue in right side of rule 
4) Return target graph



Reaction Rules & Reaction Templates: Advantages
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R1 Cl

O
NH2R2 R1

O

N
H
R2+

❖ Deeply rooted in chemists’ language 
❖ Perfect with perfect rule base, decent with good rule base 
❖ no copying errors

[#6:1]-[#6:2]([Cl:3])=[O:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2](-[#6:1])=[O:4]

Kayala, M., Baldi, P.; J. Chem. Inf. Model. 2012, 52, 2526−2540 
B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937
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Activating Groups need to be captured

observed reaction

oversimple template

H3C

O O
+

O

O O

O

H3C
+

O O

H3C
+

this reaction will fail
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(1) Query

(2a) Rule A
Suzuki

(2b) Rule B
Kumada

?

Problem: Which is the correct rule to apply?
Retrosynthesis

H

O

R1 B(OH)2 R2Br

R1 MgBr R2Br

R1 R2

R1 R2

+

+

F 1

Tolerated Functional Groups need to be captured 



 26

Templates do not always capture intermediates

O

H3C

O O

+

O

H3C

O O

+

OOH

observed reaction

What actually happens



Reaction Rules & Reaction Templates
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R1 Cl

O
NH2R2 R1

O

N
H
R2+

❖ Deeply rooted in chemists’ language 
❖ Perfect with perfect rule base, decent with good rule base 
❖ no copying errors  
❖ rules have to be created (manually, automatically extracted) 
❖ reactivity conflicts, selectivity have to be captured 
❖ many reaction mechanisms and scope not well understood 
❖ purification, solubility, stability not taken into account 
❖ no inherent ranking mechanism

[#6:1]-[#6:2]([Cl:3])=[O:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2](-[#6:1])=[O:4]

Kayala, M., Baldi, P.; J. Chem. Inf. Model. 2012, 52, 2526−2540 
B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937



Why are data driven approaches for reaction 
modelling appealing?
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Growth of Chemical Data is unbroken!

Analysis of Reaxys Database

log scale
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Chemists’ creativity does not slow down!

Via extracted reaction rules/templates, Analysis of Reaxys Database

Number of unique reaction types / year

log scale
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Chemists’ creativity does not slow down!

Via extracted reaction rules/templates, Analysis of Reaxys Database

Number of new reaction types / year

log scale
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New reactions types grow parallel to novel reactions

Analysis of Reaxys Database

New reaction types vs total reactions
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Automatic Template Extraction via Algorithms

Law et al. JCIM 2009, 593–602  
Christ, Zentgraf, Kriegl JCIM 2012 1745 
Saller et al. Org. Process Res. Dev. 2015, 357−368
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+

Reaction
from database
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First Shell
Rule

Zero Shell Rule 
(Reaction Center)
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Manual coding vs Automatic Template Extraction

Law et al. JCIM 2009, 593–602  
Christ, Zentgraf, Kriegl JCIM 2012 1745 
Saller et al. Org. Process Res. Dev. 2015, 357−368

Method Manual Coding Automatic Extraction

Human Effort Very high (decades) Very Little

Requirements
A large team of organic chemists 
(expensive) Reaction Database (depends)

Scalability to new reactions Low, need to be encoded anew 15 million reactions over night (laptop)

Updating Rulebase Complex, need to revisit old rules Simple (see above)

Error Sources
Expertise of chemist, many reactions 
are not well enough understood

Current extraction algorithms often do 
not capture activating groups and scope 
well, lack of negative data
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Supervised Machine Learning

This journal is©The Royal Society of Chemistry 2020 Chem. Soc. Rev.

programmer, ML algorithms learn this function from problem-
specific data, usually by optimising internal parameters of a
general model. ML models improve with more training data,
and the improvement can be measured via its performance on a
specific (prediction) task. The goal is to find models that
generalise, meaning they perform well on yet unseen data.

In the language of ML, the input values are called features,
and will be symbolized as xi within this review, similar to the
arguments of a simple function y = f (x). Good featurisation –
also known as encoding, that is representing raw chemical data
(e.g. molecular structures) in a form that a computer can
process (usually a vector/matrix) – is crucial for building
successful ML models. Therefore, different molecular represen-
tations will be discussed in Section 3.4 The output values are
called targets, and are labelled yi. Targets can be discrete values –
i.e. ‘‘yes’’ or ‘‘no’’, or the answers ‘‘ester’’, ‘‘amide’’ or ‘‘acid’’ to
the question of substance classes. In ML, this is a so-called
classification task. For continuous, real-valued variables as
targets (e.g. solubilities or yields), the problem is called a
regression task. Although intrinsically different, classification
and regression can be addressed with similar algorithms, as
summarized in Section 2. The general workflow of applying ML to
chemical challenges thus consists of (1) featurisation, (2) training
and validation of a suitable ML model, and (3) applying the model
to make predictions (Fig. 1).

2. Fundamentals of supervised ML
algorithms
In the process of building supervised ML models, the aim is
that the algorithm uncovers the essential structure in the
training data, while ignoring noise, minor fluctuations and
spurious correlations. The phenomenon that the training data
is fitted too accurately, and that the model also ‘‘learns’’ the
noise within the data, is called overfitting, and is a common

pitfall in machine learning. This becomes particularly relevant
upon feature selection: if the number of features per data point
significantly exceeds the number of data points, the model can
essentially be fit to any set of target values, since it (simply
speaking) ‘‘memorizes’’ the whole data set instead of learning
the underlying patterns. Therefore, the predictive performance
of ML models beyond the data set it was trained on, is of crucial
importance. Using a held back test set, success is measured by
comparing the predicted outcomes with the observed target
values. A prominent metric for regression is the squared
Pearson correlation coefficient R2, which is a measure of how
much of the variance in the real outcomes is explained by the
predicted outcomes. Additional measures, as the mean average
error (MAE) or the root mean square error (RMSE), are directly
interpretable in the unit of the variable of interest.5,6 Similar
metrics for classification tasks are disussed in the ESI.†
To mitigate overfitting, various regularisation techniques
(e.g. ridge regularization) have been proposed, which help to
reduce the complexity of models and thus can avoid too specific
fitting behaviour.6

The general workflow of validating a machine learning
model (see Fig. 2) starts with splitting the available data set
into test and training set. This choice of train and test split is of
utmost importance, since it must allow for meaningful conclu-
sions regarding the tasks the ML model will be applied to.
Often, this is done randomly. Another strategy, which has been
used in validating retrosynthesis prediction algorithms, is time-
split validation: as a training set, all data points reported before
a certain point in time (i.e. 2010) are used to train the model,
and then to predict new reactions published after 2010. It is
good practice to consider multiple train-test splits (e.g. k-fold
splitting) to cross-validate the model, and only if these show
satisfactory predictive performance, the model can be consi-
dered valid for application to unknown problem sets.5,6

For each train-test split, the model needs to be built using
solely the training data. If a series of specific settings of the ML
model (so-called hyperparameters) are available, their influence
on the performance should be evaluated by so-called nested

Fig. 1 General workflow for building and applying a supervised, machine
learning models for predictions.

Fig. 2 Building and validating a supervised machine learning model for
regression using nested cross validation (NCV). Cov = covariance.
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programmer, ML algorithms learn this function from problem-
specific data, usually by optimising internal parameters of a
general model. ML models improve with more training data,
and the improvement can be measured via its performance on a
specific (prediction) task. The goal is to find models that
generalise, meaning they perform well on yet unseen data.

In the language of ML, the input values are called features,
and will be symbolized as xi within this review, similar to the
arguments of a simple function y = f (x). Good featurisation –
also known as encoding, that is representing raw chemical data
(e.g. molecular structures) in a form that a computer can
process (usually a vector/matrix) – is crucial for building
successful ML models. Therefore, different molecular represen-
tations will be discussed in Section 3.4 The output values are
called targets, and are labelled yi. Targets can be discrete values –
i.e. ‘‘yes’’ or ‘‘no’’, or the answers ‘‘ester’’, ‘‘amide’’ or ‘‘acid’’ to
the question of substance classes. In ML, this is a so-called
classification task. For continuous, real-valued variables as
targets (e.g. solubilities or yields), the problem is called a
regression task. Although intrinsically different, classification
and regression can be addressed with similar algorithms, as
summarized in Section 2. The general workflow of applying ML to
chemical challenges thus consists of (1) featurisation, (2) training
and validation of a suitable ML model, and (3) applying the model
to make predictions (Fig. 1).

2. Fundamentals of supervised ML
algorithms
In the process of building supervised ML models, the aim is
that the algorithm uncovers the essential structure in the
training data, while ignoring noise, minor fluctuations and
spurious correlations. The phenomenon that the training data
is fitted too accurately, and that the model also ‘‘learns’’ the
noise within the data, is called overfitting, and is a common

pitfall in machine learning. This becomes particularly relevant
upon feature selection: if the number of features per data point
significantly exceeds the number of data points, the model can
essentially be fit to any set of target values, since it (simply
speaking) ‘‘memorizes’’ the whole data set instead of learning
the underlying patterns. Therefore, the predictive performance
of ML models beyond the data set it was trained on, is of crucial
importance. Using a held back test set, success is measured by
comparing the predicted outcomes with the observed target
values. A prominent metric for regression is the squared
Pearson correlation coefficient R2, which is a measure of how
much of the variance in the real outcomes is explained by the
predicted outcomes. Additional measures, as the mean average
error (MAE) or the root mean square error (RMSE), are directly
interpretable in the unit of the variable of interest.5,6 Similar
metrics for classification tasks are disussed in the ESI.†
To mitigate overfitting, various regularisation techniques
(e.g. ridge regularization) have been proposed, which help to
reduce the complexity of models and thus can avoid too specific
fitting behaviour.6

The general workflow of validating a machine learning
model (see Fig. 2) starts with splitting the available data set
into test and training set. This choice of train and test split is of
utmost importance, since it must allow for meaningful conclu-
sions regarding the tasks the ML model will be applied to.
Often, this is done randomly. Another strategy, which has been
used in validating retrosynthesis prediction algorithms, is time-
split validation: as a training set, all data points reported before
a certain point in time (i.e. 2010) are used to train the model,
and then to predict new reactions published after 2010. It is
good practice to consider multiple train-test splits (e.g. k-fold
splitting) to cross-validate the model, and only if these show
satisfactory predictive performance, the model can be consi-
dered valid for application to unknown problem sets.5,6

For each train-test split, the model needs to be built using
solely the training data. If a series of specific settings of the ML
model (so-called hyperparameters) are available, their influence
on the performance should be evaluated by so-called nested

Fig. 1 General workflow for building and applying a supervised, machine
learning models for predictions.

Fig. 2 Building and validating a supervised machine learning model for
regression using nested cross validation (NCV). Cov = covariance.
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Molecular Representations for Machine Learning: Featurization

the set of all  
possible  
molecules (graphs or 3D)

D-dimensional real vectors

• fingerprints (often sparse) 
• physicochemical/topological descriptor vectors 
• Graph Neural Networks
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Reaction Representations for Machine Learning

• reaction difference fingerprints (sum of products - sum of reactants) 
• Reaction Graph Neural Networks based on reaction center 
• Seq2Seq Descriptors based on Reaction SMILES
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Supervised Machine Learning: Classification and Regression

Regression 

real number 

%Yield, e.r.

Binary Classification 

probability [0,1] 

reactive/unreactive

Multi-Class Classification 

probability vector [0,1]C 

Reaction Class 
[DielsAlder: 0.2, Suzuki: 0.7, Aldol: 0.1]

y = f✓(�(m))

y = f✓(�(m))
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(Mechanistic) QSRR Modeling

Because the steric and electronic features of R modulate enantioselec-
tivity, we speculated that stretches of the bisphenol ring would be sen-
sitive to enantioselectivity trends. These stretches are influenced by the
mass and charge of R, incorporate various secondary C–H and C–C
bends and affect the O–H group. Thus, the frequencies selected for
modelling were six computationally derived, distinct sp2 C5C stretches
in the 1,700–1,500 cm21 spectral region, which involve either one or
both rings20–24 (Methods and Supplementary Information). The most
predictive, statistically significant model developed (slope, 0.99; inter-
cept, –0.01; R2 5 0.94) contains four parameters (Fig. 2c). These include
Sterimol parameter B1, which describes the minimal radius of R, and
three computationally derived infrared frequencies (Fig. 2c, d). The
derived model is highly predictive for both isolated steric effects and
substrates containing concomitant steric and electronic changes.

The extreme outliers in the Sterimol analysis are R 5 –CCl3, –F5Ph
and –4t-Bu-Ph (where t-Bu is tert-butyl) (Fig. 2b). If we consider the
Sterimol parameters as descriptors of repulsive steric interactions
within the catalytic reaction site, a geometry-based parameter would

not suffice to define the first two substituents. Because vibrational anal-
ysis takes charge distribution into account, and adds a directional
aspect to steric interactions, it is able to address electronically diverse
substituents. These results are consistent with a mechanistic hypo-
thesis asserting a direct interaction between the peptide catalyst and
the bisphenol substituent at the selectivity-determining step of the
reaction14,19; such an interaction would be sensitive to substituent elec-
tronegativity. Inspecting the model reveals that in the cases of R 5
–CCl3 and –F5Ph, all three vibrations are shifted to a higher frequency
relative to their respective non-halogenated steric homologues, –CMe3
and –Ph (Fig. 2e). This generalized trend could indicate that the vibra-
tional parameters are functioning as an electronic correction to the
steric description.

It has been proposed that the minimum radius B1 (Fig. 1a) describes
steric effects proximal to the phenol rings, wherein the substituent applies
torsion on the rings in a propeller-like strain14 (Fig. 2a). However, the
inability to predict the enantioselectivity of –4t-Bu-Ph using Sterimol
analysis points to a limitation in applying this parameter to substituted
aromatic rings. Sterimol values define this group similarly to a –CMe3
group in terms of B1. However, on the basis of both the distal location
of the –CMe3 group in –4t-Bu-Ph and the empirically observed enan-
tioselectivity (enantiomeric ratio of 82:18 for –4t-Bu-Ph versus 97.5:2.5
for –CMe3), this substituent more closely resembles an unsubstituted
phenyl ring (enantiomeric ratio, 75:25). This significantly restricts the
use of Sterimol values for evaluating steric effects in aromatic systems.
Because infrared ring-stretching vibrations are modulated in response
to substituent steric effects, they represent an auxiliary, directional aspect
of the substituent geometry and allow for the prediction of groups such
as –4t-Bu-Ph.

To explore the potential of infrared vibrational analysis further, as a
second case study we evaluated our recently reported enantioselective
hydrogenation of 1,1-diarylalkenes25 (Fig. 3a). The original scope in-
cluded 1,1-diarylalkenes in which ring substitution patterns were mod-
ulated to explore the origin of enantioselectivity (Fig. 3d). An unusual
observation was that 3,5-dimethoxy substitutions were required to achieve
high enantioselectivity (Fig. 3b). We began examining the origin of this
observation using our new technology by including twelve of the ori-
ginally reported substrates in the training set. This set was selected on
the basis of both the rings’ substitution patterns, in terms of substituent
position (that is, meta or para), and the diversity of steric and electronic
effects, as well as a significant enantioselectivity range. For external
validation, four of the original substrates were combined with eight new
substrates, which were specifically designed to introduce additional
structural patterns.

Mechanistically relevant infrared vibrations were proposed accord-
ing to structural features of the various substrates. Potential parameters
for modelling enantioselectivity were six ring vibrations analogous to
those used to describe the bisphenol rings in the previous case study.
Additionally, three alkene vibrations were included, because the alkene
is directly engaged with the catalyst during the transformation. Eval-
uating the minimized structures of the diarylalkenes showed that aryl
substitution affects ring torsion. Therefore, the measured distance bet-
ween adjacent ortho-carbons on the geminal aryl rings was introduced
into the parameter set (Fig. 3c). Finally, considering conjugation bet-
ween the aryl rings and the alkene, we incorporated intensities and
frequencies of two vibration modes that involve both groups (Fig. 3c).

A predictive model (slope, 0.95; intercept, 0.06; R2 5 0.88) with three
parameters was determined (Fig. 3b, Supplementary Information). Of
particular note is that vibrational intensities were identified as relevant
descriptors, in contrast to the bisphenol model, where frequencies are
sufficient. Intensity and frequency measure different, but interrelated,
effects; frequency is dependent on force constants, bond energy and
molecular distances, whereas intensity is a derivative of the dipole mo-
ment influenced by molecular symmetry and electronic structure7,16,17,26.
The three parameters included in the model are the torsion distance,
two infrared intensities and a cross-term between these intensities. The
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CHCl3, –35 °C, 20h
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Figure 2 | Using infrared vibrations and Sterimol values to correlate
enantioselectivity. a, Reaction scheme for the desymmetrization of bisphenols.
Reactant torsion is proposed to have a role in the mechanism. b, Correlation
between Sterimol values and enantioselectivity (normalized model),
including the training set, previous sterically modulated validations,
and new simultaneously sterically and electronically modulated validations.
c, Correlation between Sterimol B1 (minimal width), vibrations and
enantioselectivity (normalized model). d, Illustration of the vibrational
frequencies used for the correlation of enantioselectivity: v1, antisymmetric ring
stretch with secondary C–H bends and a C–O stretch; v2, symmetric ring
stretch with a secondary O–H bend; v3, antisymmetric ring stretch with
secondary C–C bends and a C–O stretch. e, Parameter values for the steric
model outliers (CCl3, F5Ph and p-t-BuPh) and for two sterically homologous
but electronically divergent substituents (CMe3 and Ph).
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Ingredients of Computer-Aided Synthesis Planning Algorithms
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❖  Module to propose feasible retrosynthetic disconnections (now ML) 
❖  efficient search algorithm 
❖  stop criteria (building blocks) and ranking

Target or 
Intermediate 

Molecule

Ranked List of 1-step 
Precursor Sets

OH

OH

EtO2C EtO2C

OH

OH

EtO2CEtO2C

Starting materials Intermediate Target

Target Intermediate Starting materials
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Brief History of Computer-Aided Synthesis Planning

1963 
Vladuts (USSR) 

Proposes Computer-
Aided 

Synthesis Planning

1967 
Corey (USA) 
Formalises 

Retrosynthesis & First Expert 
System Implementation

1970ies 
Ugi (D) 

Formal Logic

1970-1990 
Expert Systems

1990-2010 
Automatic 

Rule Extraction

1996 
Gasteiger & Ihlenfeldt 
Current Approaches: 

Dead End?

2016 
Segler, Coley, 
Schwaller, … 

Machine Learning

2016 
Synthia (Expert 

System, Grzybowski)
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Vleduts (1963), Corey (1968) 
Write down all of chemical  

knowledge in logic form

Vléduts, G. Inform. Storage Retrieval 1, 117–146 (1963). 
Corey, The Logic of Chemical Synthesis

EJ Corey 
Nobel prize 1990

Great  for humans! 
Not so much for machines?

“The synthetic chemist is more than a logician and strategist; […] 
These added elements provide the touch of artistry which can hardly 
be included in a cataloguing of the basic principles of synthesis, but 
they are very real and extremely important.” (Corey)
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❖ Module to propose feasible retrosynthetic disconnections 
•  Learn to predict disconnections 
•  Learn to predict reactions 

❖ modern efficient search 
❖ ML provides a rigorous metrics framework!

Idea: Machine Learning & Reinforcement Learning for Search
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Assigning Molecules to Rules gives Labels for ML
Ph

CO2Me CO2Me

Ph

Me

CO2EtCO2Et

Me

a) Known reaction

b) Extraction of 
  a general rule

c) Reversing rule
    yields transform

d) Apply transform
    to novel targets

Target Starting Materials

Rule assignment gives us labeled dataset for classification

Ph

CO2Me CO2Me

Ph

Me

CO2EtCO2Et

Me

a) Known reaction

b) Extraction of 
  a general rule

c) Reversing rule
    yields transform

d) Apply transform
    to novel targets

Target Starting Materials

#987128 (Diels Alder) 

Label: #987128 (Diels Alder) 

This product X can be made with this rule y: P(Y|X)
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• 11 M reactions

Data of our entire discipline!

Data: Reaxys

Successful Reactions contain implicit knowledge! 



Challenges
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❖ learn the rules 
❖ predict likely disconnections 
❖ filter out infeasible reactions 
❖ efficient search
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Retrosynthetic disconnection prediction: Multi-class Classification

?
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How to make this molecule?

O

O

O
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Pattern Recognition

O

O

O

O
OH O

Cl

O

O

OX

M
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Retrosynthetic disconnection prediction: Multi-class Classification

Segler, Waller, Chem. Eur. J. 2017, DOI: 10.1002/chem.201605499 
Deep Highway Networks (Schmidhuber), ELU nonlinearity (Clevert, Unterthiner, Hochreiter)

Mimics Chemical Intuition & Allows to learn tolerated molecular context!



Challenges
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❖ learn the rules 
❖ focus on most promising routes first 
❖ filter out infeasible reactions 
❖ efficient search



Reaction Prediction: In-scope Filter

Binary Classification using real positive and mined negative data [1, 2]

ARTICLE
RESEARCH
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follow-up positions of the current position are selected by applying the 
expansion procedure. The predicted follow-up positions are added to 
the tree as children of the leaf node, and the m

ost prom
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ere, bespoke scoring functions for the problem
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be supplied. Eventually, the tree is updated to incorporate the achieved 
reward by updating the position values.

These four phases of 3N
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e budget or 

m
axim

al iteration count is exceeded. Finally, to obtain the synthesis 
plan, we repeatedly select the retrosynthetic step w

ith the highest 
value until a solved position is reached, or a m

axim
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 depth has been 
exceeded, in which case the problem

 is unsolved.
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ance characteristics of 3N
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ethod, w

hich is BFS with the hand-
coded SM
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Figure 2 | Schem
atic of M

CTS m
ethodology. a, M

CTS searches by 
iterating over four phases. In the selection phase (1), the m

ost urgent 
node for analysis is chosen on the basis of the current position values. 
In phase (2) this node m

ay be expanded by processing the m
olecules of 

the position A with the expansion procedure (b), which leads to new 
positions B and C, which are added to the tree. Then, the m

ost prom
ising 

new position is chosen, and a rollout phase (3) is perform
ed by random

ly 
sam

pling transform
ations from

 the rollout policy until all m
olecules 

are solved or a certain depth is exceeded. In the update phase (4), the 
position values are updated in the current branch to reflect the result of the 

rollout. b, Expansion procedure. First, the m
olecule (A

) to retroanalyse is 
converted to a fingerprint and fed into the policy network, which returns a 
probability distribution over all possible transform

ations (T
1  to T

n ). Then, 
only the k m

ost probable transform
ations are applied to m

olecule A
. This 

yields the reactants necessary to m
ake A

, and thus com
plete reactions R

1  
to R

k . For each reaction, the reaction prediction is perform
ed using the 

in-scope filter, returning a probablity score. Im
probable reactions are then 

filtered out, which leads to the list of adm
issible actions and corresponding 

precursor positions B and C.
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Reaction Prediction
No failed reaction in literature? 

Make your own![1,2]

[1] Segler, Waller, Chem. Eur. J. 2017, 6118  [2] Coley, Jensen, ACS Cent. Sci. 2017, 434
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Reaction Prediction: In-scope Filter

No failed reaction in literature? 
Make your own!
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A + B D

A + B E

Neural Network: ROC AUC      0.986

False positive rate:     1.5%
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(1) Selection. In the first 3N
-M

CTS phase, starting at the root node 
(the target m

olecule) of the search tree, the algorithm
 sequentially 

selects the m
ost prom

ising next position within the tree until a leaf 
node is reached (Fig. 2a). The algorithm

 balances the selection of high-
value positions and unexplored positions. If a leaf node is visited for 
the first tim

e, it is directly evaluated by a rollout. If it is visited for the 
second tim

e, it is expanded by processing via the expansion policy.
(2) Expansion. N

ow, the possible transform
ations determ

ining the 
follow-up positions of the current position are selected by applying the 
expansion procedure. The predicted follow-up positions are added to 
the tree as children of the leaf node, and the m

ost prom
ising position 

is selected for rollout.
(3) Rollout. This phase starts with checking the status of the position. 

If it is already solved, the algorithm
 directly receives a reward greater 

than 1 to encourage exploitation. N
on-term

inal states are subjected to 
a rollout, where actions are sam

pled from
 the rollout network recur-

sively, until the state has been deconstructed into building blocks or a 
m

axim
al depth is reached.

(4) U
pdate. If a solution has been found during rollout, a reward 

of 1 is received. Partial rewards are given if som
e, but not all, m

ole-
cules in the state are solved. If no solution was found, a reward of –1 
is received. H

ere, bespoke scoring functions for the problem
 at hand, 

such as process chem
istry or sm

all-scale m
edicinal chem

istry, can also 
be supplied. Eventually, the tree is updated to incorporate the achieved 
reward by updating the position values.

These four phases of 3N
-M

CTS are iterated until a tim
e budget or 

m
axim

al iteration count is exceeded. Finally, to obtain the synthesis 
plan, we repeatedly select the retrosynthetic step w

ith the highest 
value until a solved position is reached, or a m

axim
um

 depth has been 
exceeded, in which case the problem

 is unsolved.

Evaluating the perform
ance characteristics of 3N

-M
CTS

To evaluate the perform
ance of 3N

-M
CTS, we com

pare our algorithm
 

to the state-of-the-art search m
ethod, w

hich is BFS with the hand-
coded SM

ILES 3/2 heuristic cost function (‘heuristic BFS’) 13. This func-
tion assigns the lowest cost to steps that split up the m

olecule into 
equally sized parts. Additionally, we perform

 BFS with the cost cal-
culated by the policy network (‘neural BFS’). A
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s use the 

sam
e set of autom

atically extracted transform
ations. The evaluation is 

again tim
e-split, as follows. M

odels were trained only on data published 
before 2015. As test data, only m

olecules first reported in or after 2015 
were considered (which were not contained in the training dataset). 
Provided with the target m

olecules, the algorithm
s then had to find a 

synthesis route to given building blocks.
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In-scope Filter
f: (ProductFP, ReactionFP) -> [0,1]

Output correlates with LUMO energies and Hammett parameters! 

b) para-Bromination of benzenesa) Diels-Alder reactions with Cyclopentadiene



Challenges

 56

❖ learn the model 
❖ focus on most promising actions first 
❖ filter out infeasible reactions 
❖ efficient search



Heuristic Best First Search

 57

Idea: Define strong heuristic function to score nodes 
For example: Split up molecules in equally sized parts, simplify molecule, cleave strategic 

bonds first…

Problems:
• Chemists disagree about good solutions, intuition 

is not addressed 
• Synthesis only solved at the end 
• Molecular complexity needs to be tactically 

increased (Protecting groups!)



Monte Carlo Tree Search (MCTS): Idea

 58

• Approximate values online by random MC simulation (Agent picks 
transforms randomly until end of synthesis) 

• Use these approximated values to build search tree 

=> Not dependent on strong heuristic! 
=> Can deal with very high branching factors 
=> can be guided by predicted value or probability of disconnection

R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search,” in Proc. 5th Int. Conf. Comput. and Games, 2006, pp. 72–83.  
L. Kocsis and C. Szepesvari, “Bandit based Monte-Carlo  Planning,” in Euro. Conf. Mach. Learn. Berlin, Germany:  Springer, 2006, pp. 282–293.



trained on data < 2015, molecules first reported >= 2015

[1] B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937

Method Scoring solved/% time per molecule/s

BFS Heuristics [1]

BFS Neural Net

MCTS Neural Net

Quantitative analysis on 500 random molecules



Quantitative analysis on 500 random molecules

[1] B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937

trained on data < 2015, molecules first reported >= 2015

Method Scoring solved/% time per molecule/s

BFS Heuristics [1] 56 422

BFS Neural Net 84 39

MCTS Neural Net 95 13



How to test the quality of a retrosynthesis system?

Null Hypothesis: Experts won’t like Computer’s solutions



Qualitative Analysis: Chemical Turing Test

• Double Blind 
• 45 PhD students, postdocs,++ from Shanghai (CN) and Münster (DE)



Double-blind AB tests233

The central criticism of retrosynthesis systems has been that the proposed routes often contain what234

chemists immediately recognize as chemically unreasonable steps. Therefore, to assess the quality235

of the solutions we conducted two AB tests, in which 45 graduate level organic chemists from two236

world-leading organic chemistry institutes in China and Germany had to choose one of two routes237

leading to the same molecule based on personal preference and synthetic plausibility. The tests were238

double blind, meaning that neither participants nor conductors were aware of the origin of the routes.239

The test molecules were selected randomly from a set of drug-like compounds first published after 2014240

(see SI for the entire list of the targets and routes).241

0.1 0.3 0.5 0.7 0.9

MCTS preference ratio

0.1 0.3 0.5 0.7 0.9

MCTS preference ratio

a) b)

Fig. 5. a) Chemists did not prefer literature routes over routes found by MCTS b) Chemists significantly prefer

routes by 3N-MCTS over routes by heuristic BFS without policy network and in-scope filter. As ratio above 0.5

indicates that more than 50% of participants preferred the MCTS solution.

In the first test, the participants had the choice between a route reported by expert chemists in the242

literature, and a route generated by our 3N-MCTS algorithm for the same target molecule. Routes to243

nine di↵erent target molecules were o↵ered. Routes towards the same molecule were required to have244

the same number of steps.245

Here, one might expect that the participants can clearly identify the routes suggested by the machine246

as inferior. Surprisingly, this is not the case. We found that the experts did not significantly prefer the247

literature route (43.0%) over our programs’ route (57.0%). Figure 5 a) shows the preferences ratios on248

the individual routes. Here, the preference is generally balanced, with a slight trend towards MCTS. In249

some cases, the participants have clear preferences (see Fig. 6a and Extended Methods for a examples250

where the chemists did not prefer MCTS).251

11

57:43 
insignificant!

=> Expert & Computer 
routes cannot be 
distinguished!

Segler, Preuss, Waller, Nature, 2018, (555), 604–610



Example
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in 6 sec with MCTS + DNN
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Alternative Approaches for Reaction and Retrosynthesis Prediction

This journal is©The Royal Society of Chemistry 2020 Chem. Soc. Rev.

the reaction, specific rules also include neighbouring atoms. A too
general rule would then suggest unfeasible disconnections,
whereas a too specific rule would not be generalizable to further
similar reaction types.

For training a machine learning model on rule-based
disconnections, mainly two possibilities exist: (a) application
of the full library of reaction rules, and then ranking the
candidate molecules (Fig. 11).29 (b) Direct ranking of the
reaction rules based on the target molecule, using a classifica-
tion approach.30 After applying the most feasible suggested
rules, this model can be refined by re-ranking the resulting
candidates. The latter approach is computationally less expen-
sive, and allows for suggesting the top-n most probable rules
on a millisecond timescale.30 As such, retrosynthesis predic-
tion via template ranking by neural networks is included in
most state-of-the-art CASP programs (often based on ECFP4
representations).33,34

Two major drawbacks of rule-based approaches are the
requirement to define the reaction rules, as well as the exclusion
of rare reaction types with only few literature examples.29,30 Some
of these limitations can be circumvented by rule-free approaches,
which directly map starting material and product. One approach,
pioneered by Baldi and co-workers, builds on mechanistic
considerations including electron sources and sinks within a
molecule, but requires hand-coded elementary steps.5,35 A more
general approach by Jensen and co-workers is building on graph
edits: a graph-based neural network is used to identify the most
likely bond changes between atom pairs within the overall
reaction graph (Fig. 12a).28 Combinatorial enumeration of the
most likely k bond changes generates a set of candidate products
which is filtered by applying chemical valence rules. A second,
independent GCNN is trained to rank these candidates to give a
probability distribution over possible reaction products.

Whereas all of the previously discussed approaches use
‘‘chemical principles’’, a reaction can formally only be consi-
dered a ‘‘translation’’ of SMILES strings of reactants (and
reagents) to products36 (or vice versa for retrosynthesis37). From
an ML perspective, this corresponds to machine translation for
natural languages (e.g. English to German) and is based on
specific types of neural networks called sequence-to-sequence
models, as they take a sequence of characters as features, and
predict a sequence of characters as targets using a so-called
attention mechanism (Fig. 12b).36 In analogy to (natural)

languages, each atom in a SMILES string (= sentence) would
correspond to one word. Initial studies under random splitting
show excellent results, even without separate treatment of
reactants and reagents. However, more rigorous time-split
validation has not yet been performed.

Evaluation and scoring of synthetic routes – tree search in CASP

The assessment of synthetic intermediates and disconnections
in a retrosynthetic tree is a major challenge – particularly
because a final evaluation cannot be made unless the whole
route is solved. Since full enumeration of all routes is impos-
sible due to the exponentially growing tree size, a mechanism is
needed to guide tree search. Early approaches have focused on
heuristic rules, e.g. favouring the breaking of strategic bonds, or
preferentially splitting the molecule into equally sized parts.31

However, synthetic strategies to tactically increase molecular
complexity (i.e. through installing protecting groups), as well as
the need to hand-code such rules, have prevented a widely
successful implementation.

A different approach to tree search in retrosynthesis can be
reinforcement learning (RL), which rephrases the problem as
decision making under uncertainty. Different RL strategies
have recently been proven to solve the ‘‘synthesis game’’ not
only faster but also with higher confidence than traditional
heuristic approaches.33,34 In 2018, Segler et al. reported the first
fully ML-based CASP program, using Monte-Carlo tree search
(MCTS) as follows: starting from the target molecule in the root
node, the most promising next position (i.e. disconnection) is
picked, until a leaf node is reached. If this leaf node is visited
for the first time, the value of this disconnection (position
value) is directly determined using a rapid rollout procedure.
This includes a rule-ranking neural network, which samples
from the most likely disconnection rules, until the molecule is
fully solved (or a maximum depth is reached). Depending on
the result of the rollout, the position values of the whole path
are updated. If the node had been assigned a position value
before, new retrosynthetic disconnections are added via an
expansion policy, which is again a rule-ranking neural network,

Fig. 11 Rule-based machine learning models exemplified for the predic-
tion of retrosynthetic disconnections.

Fig. 12 Rule-free machine learning models exemplified for the prediction
of reaction products.

Chem Soc Rev Tutorial Review
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Machine Learning now core part of Computer Aided Synthesis Planning

Segler et al. Nature, 2018; Coley et al. Science,  2019; Schwaller et al. Chem. Sci. 2020;  
Genheden, Thakkar et al. J.Cheminf. 2020; Grzybowski et al. Angew. Chem. 2016; 

open source (e.g. AiZynthfinder, ASKCOS),  
commercial  tools (Reaxys, CAS, IBM, MoleculeOne, Iktos, …)
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Planning chemical syntheses with deep 
neural networks and symbolic AI
Marwin H. S. Segler1,2, Mike Preuss3 & Mark P. Waller4

Retrosynthetic analysis is the canonical technique used to plan the 
synthesis of small organic molecules1,2. In retrosynthesis, a search tree 
is built by ‘working backwards’, analysing molecules recursively and 
transforming them into simpler precursors until one obtains a set of 
known or commercially available building-block molecules (Fig. 1)3,4. 
Given that transformations are formally reversed chemical reactions, 
the plan can be then carried out in the laboratory in the forward direc-
tion to synthesize the target compound3,4. Transformations are derived 
from successfully conducted series of similar reactions with analogous 
starting materials, and are often named after their discoverers (‘named 
reactions’)5. At each retrosynthetic step, a small set out of hundreds of 
thousands of transformations known in modern chemistry has to be 
selected. In a pattern recognition process, chemists intuitively prioritise 
the most promising transformations, which they then consider, with-
out actively thinking about the less promising ones6. However, when 
a transformation is applied to a new molecule, there is no guarantee 
that the corresponding reaction will proceed in the expected way7.  
A molecule failing to react as predicted is called ‘out of scope’. This 
can be due to steric or electronic effects, an incomplete understanding 
of the reaction mechanism, or conflicting reactivity in the molecular 
context. Predicting which molecules are ‘in scope’ can be challenging 
even for the best human chemists4,7.

Computer-assisted synthesis planning (CASP) could help chemists  
to find better routes faster, and is a missing component in virtual  
de novo design and robot systems performing molecular design– 
synthesis–test cycles8–10. To perform CASP, the knowledge that humans 
gain must be transferred into an executable program11–16. Despite 
60 years of research, attempts to formalize chemistry by manual encod-
ing by experts have not convinced synthetic chemists, and it does not 
scale to exponentially growing knowledge15–19. Methods of algorith-
mically extracting transformations from reaction datasets20–22 have 
been criticized for high noise and lack of ‘chemical intelligence’13,14. 
However, we recently showed that deep neural networks can learn to 
rank extracted symbolic transformations, and to avoid reactivity con-
flicts, which mimics the expert’s intuitive decision-making23. To guide 
the search in promising directions, heuristic best first search (BFS) has 
been employed, in which hand-designed heuristic functions determine 

position values13. Unfortunately, unlike in chess, it is difficult to define 
strong heuristics in chemistry for three reasons. First, chemists tend 
to disagree on what constitutes a good position24,25. Second, although 
it is generally desirable to simplify the molecules, it can be tactically 
beneficial to temporarily increase complexity by the use of protecting 
or directing groups. Finally, the position value depends highly on the 
availability of suitable precursors13,15. Even complex molecules can be 
made in a few steps if precursors are readily available. Therefore, one 
cannot reliably estimate the value of a synthetic position without com-
pletely ‘playing the molecules until the end of the game’.

Monte Carlo tree search (MCTS) has emerged as a general search 
technique for sequential decision problems with large branching 
factors without strong heuristics, such as games or automated theo-
rem proving26–28. MCTS uses rollouts to determine position values. 
Rollouts are Monte Carlo simulations, in which random search steps 
are performed without branching until a solution has been found or 
a maximum depth is reached. These random steps can be sampled 
from machine-learned policies p(t|s)29, which predict the probability 
of taking the move (applying the transformation) t in position s, and 
are trained to predict the winning move by using human games or 
self-play30–35.

In this work, we combine three different neural networks together 
with MCTS to perform chemical synthesis planning (3N-MCTS). 
The first neural network (the expansion policy) guides the search in 
promising directions by proposing a restricted number of automati-
cally extracted transformations. A second neural network then predicts 
whether the proposed reactions are actually feasible (in scope). Finally, 
to estimate the position value, transformations are sampled from a third 
neural network during the rollout phase. The neural networks were 
trained on essentially all reactions published in the history of organic 
chemistry.

Training the expansion and rollout policies
We extracted transformation rules from 12.4 million single-step reac-
tions from the Reaxys36 chemistry database23. Two sets of rules were 
extracted. The rollout set comprises rules that contain the atoms and 
bonds that changed in the course of the reaction (the reaction centre), 

To plan the syntheses of small organic molecules, chemists use retrosynthesis, a problem-solving technique in which 
target molecules are recursively transformed into increasingly simpler precursors. Computer-aided retrosynthesis 
would be a valuable tool but at present it is slow and provides results of unsatisfactory quality. Here we use Monte Carlo 
tree search and symbolic artificial intelligence (AI) to discover retrosynthetic routes. We combined Monte Carlo tree 
search with an expansion policy network that guides the search, and a filter network to pre-select the most promising 
retrosynthetic steps. These deep neural networks were trained on essentially all reactions ever published in organic 
chemistry. Our system solves for almost twice as many molecules, thirty times faster than the traditional computer-aided 
search method, which is based on extracted rules and hand-designed heuristics. In a double-blind AB test, chemists on 
average considered our computer-generated routes to be equivalent to reported literature routes.

1Institute of Organic Chemistry and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität, Münster, Germany. 2BenevolentAI, London, UK. 3European Research Center 
for Information Systems, Westfälische Wilhelms-Universität Münster, Germany. 4Department of Physics and International Centre for Quantum and Molecular Structures, Shanghai University, 
Shanghai, China.

© 2018 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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A robotic platform for flow synthesis
of organic compounds informed
by AI planning
Connor W. Coley1*, Dale A. Thomas III1,2*†, Justin A. M. Lummiss3*†,
Jonathan N. Jaworski3‡, Christopher P. Breen3, Victor Schultz1, Travis Hart1,
Joshua S. Fishman2, Luke Rogers1§, Hanyu Gao1, Robert W. Hicklin3||,
Pieter P. Plehiers1¶, Joshua Byington1#, John S. Piotti2, William H. Green1,
A. John Hart2, Timothy F. Jamison3**, Klavs F. Jensen1**

The synthesis of complex organic molecules requires several stages, from ideation
to execution, that require time and effort investment from expert chemists. Here,
we report a step toward a paradigm of chemical synthesis that relieves chemists from
routine tasks, combining artificial intelligence–driven synthesis planning and a
robotically controlled experimental platform. Synthetic routes are proposed through
generalization of millions of published chemical reactions and validated in silico
to maximize their likelihood of success. Additional implementation details are
determined by expert chemists and recorded in reusable recipe files, which are
executed by a modular continuous-flow platform that is automatically reconfigured
by a robotic arm to set up the required unit operations and carry out the reaction.
This strategy for computer-augmented chemical synthesis is demonstrated for
15 drug or drug-like substances.

T
he ability to synthesize organic compounds
on demand has the potential to transform
molecular discovery tasks. Such compounds
with typical molecular weights of 50 to
750 g/mol play a central role in a range of

disciplines, including specialty polymers, organic
photovoltaics, energetics, and medicines. Synthe-
sis is often a bottleneck in small-molecule drug
discovery (1), where design–synthesize–test iter-
ations have cycle times on the order of weeks and
where the scope of a compound library synthe-
sis can determine the accuracy of an empirical
structure–activity relationshipmodel (2). Materials
discovery researchers face similar limitations aris-
ing from their inability to synthesize diverse com-
pounds, e.g., candidate organic photovoltaics, and
to do so rapidly (3).

Many chemists and chemical engineers are
pursuing the promise of a machine capable of
synthesizing large numbers of molecules with
little to no human intervention (4, 5). Although
major advances in laboratory automation have
decreased the manual effort required to perform
some classes of chemical reactions (6–8), the iden-
tification and development of synthetic routes to
novel molecules remain a largely manual process
requiring a time investment from expert chem-
ists. Moreover, current automated synthesis plat-
forms must first be configured to accommodate
the necessary sequence of unit operations or be
constrained to a subset of otherwise-accessible
chemical space. The scope of chemical reactions
compatible with current automated platforms
tends to be limited by reaction type (9), solvent and
temperature (10), or concentration and time (11).
The ideal automated synthesis platformwould

be compatible with reaction conditions that can
be directly translated from small-scale process
development to gram or kilogram manufactur-
ing. Continuous-processing approaches, e.g., syn-
thesis in plug-flow reactors or continuous stirred
tank reactors, can offer such scalability and are
widely recognized as an enabling technology in
many respects, including for process quality im-
provement (12). The smaller length scales rela-
tive to batch synthesis enhance heat and mass
transfer and are amenable to more precise quan-
tification of the rates thereof before scale-up (13).
Moreover, flow platforms offer smaller footprints
compared with their batch counterparts and pro-

vide access to accelerated reaction rates through
process intensification (14, 15). Numerous multi-
step syntheses have been successfully implemented
in flow and offer substantial reductions in total
reaction time (14, 16–18).
The chemical development process for small

molecules can be divided into a number of dis-
tinct stages, including design (literature search,
retrosynthesis, condition selection, feasibility
estimation), route development (recipe formu-
lation), experimental configuration (platform re-
configuration), and execution (process execution,
scalable synthesis) (Fig. 1A). Previous studies
have sought to automate individual aspects of
this process but have not presented a path to full
automation. Retrosynthesis can be streamlined
using Chematica’s expert-encoded reaction rules
(19, 20) or Segler et al.’s algorithmically extracted
rules and learned search strategy (21), but the
former approach is difficult to scale with the
growing body of chemical literature and neither
explicitly proposes reaction conditions or eval-
uates feasibility of the forward reaction. Auto-
mated chemical synthesis using a predefined
instruction set is well proven (6, 8), but has been
restricted to batch and thus does not offer a clear
path to scaled-up synthesis. Whereas flow chem-
istry platforms have been developed for automated
screening, optimization, andproduction (5, 7,22–24),
they require manual reconfiguration to the exact
flow path required for each process.
Our approach toward automated, scalable syn-

thesis combines techniques in artificial intelli-
gence (AI) for planning and robotics for execution.
Specifically,wedescribe aplatform that candesign
synthetic routes by generalizing millions of previ-
ously published reactions (Fig. 1B), including par-
tial specification of reaction conditions and process
variables, and then execute human-refined chem-
ical recipe files (CRFs) using a robotically re-
configurable flow chemistry platform (Fig. 1C).
Adjustments to the AI-proposed synthetic route
required for compatibility with continuous flow
are recorded in these reusable recipes for scalable,
reproducible synthesis.
This development strategy augments a chemist’s

ability to approach target-oriented flow synthesis
while substantially reducing the necessary infor-
mation gathering and manual effort. We illus-
trate this paradigm of chemical development
by predicting and automating the synthesis of
15 drug or drug-like molecules.
In this workflow, we rely on expert input from

chemistusers,minimally including residence times,
equivalence ratios, and concentrations, to translate
recommendations into practice. In particular, anti-
cipating compatibility with flow necessitates solu-
bility predictions at a level of accuracy currently
achievable only empirically; identifying opportu-
nities for telescoped reaction sequences andplace-
ment of interstage separations requires quantitative
prediction of reaction outcomes and of reagent
compatibility. More practically, data describing
concentrations, equivalence ratios, and orders of
addition are not tabulated in any available reaction
databases, precluding data-driven approaches to
full process specification, flow or otherwise. In the
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Predicting retrosynthetic pathways using
transformer-based models and a hyper-graph
exploration strategy†

Philippe Schwaller, *a Riccardo Petraglia,a Valerio Zullo,b Vishnu H. Nair,a

Rico Andreas Haeuselmann,a Riccardo Pisoni,a Costas Bekas,a Anna Iuliano b

and Teodoro Lainoa

We present an extension of our Molecular Transformer model combined with a hyper-graph exploration

strategy for automatic retrosynthesis route planning without human intervention. The single-step

retrosynthetic model sets a new state of the art for predicting reactants as well as reagents, solvents and

catalysts for each retrosynthetic step. We introduce four metrics (coverage, class diversity, round-trip

accuracy and Jensen–Shannon divergence) to evaluate the single-step retrosynthetic models, using the

forward prediction and a reaction classification model always based on the transformer architecture. The

hypergraph is constructed on the fly, and the nodes are filtered and further expanded based on

a Bayesian-like probability. We critically assessed the end-to-end framework with several retrosynthesis

examples from literature and academic exams. Overall, the frameworks have an excellent performance

with few weaknesses related to the training data. The use of the introduced metrics opens up the

possibility to optimize entire retrosynthetic frameworks by focusing on the performance of the single-

step model only.

1 Introduction
The eld of organic chemistry has been continuously evolving,
moving its attention from the synthesis of complex natural
products to the understanding of molecular functions and
activities.1–3 These advancements were made possible thanks to
the vast chemical knowledge and intuition of human experts,
acquired over several decades of practice. Among the different
tasks involved, the design of efficient synthetic routes for a given
target (retrosynthesis) is arguably one of the most complex
problems. Key reasons include the need to identify a cascade of
disconnections schemes, suitable building blocks and func-
tional group protection strategies. Therefore, it is not surprising
that computers have been employed since the 1960s,4 giving rise
to several computer-aided retrosynthetic tools.

Rule-based or similarity-based methods have been the most
successful approach implemented in computer programs for
many years. While they suggest very effective5,6 pathways to
molecules of interest, these methods do not strictly learn
chemistry from data but rather encode synthon generation
rules. The main drawback of rule-based systems is the need for

laborious manual encoding, which prevents scaling with
increasing data set sizes. Moreover, the complexity in assessing
the logical consistency among all existing rules and the new
ones increases with the number of codied rules and may
sooner or later reach a level where the problem becomes
intractable.

1.1 The dawn of AI-driven chemistry

While human chemical knowledge will keep fueling the organic
chemistry research in the years to come, a careful analysis of
current trends5,7–20 and the application of basic extrapolation
principles undeniably shows that there are growing expecta-
tions on the use of Articial Intelligence (AI) architectures to
mimic human chemical intuition and to provide research
assistant services to all bench chemists worldwide.

Concurrently to rule-based systems, a wide range of AI
approaches have been reported for retrosynthetic analysis,9,12

prediction of reaction outcomes21–26 and optimization of reaction
conditions.27 All these AI models superseded rule-based methods
in their potential of mimicking the human brain by learning
chemistry from large data sets without human intervention.

This extensive production of AI models for organic chemistry
was made possible by the availability of public data.28,29

However, the noise contained in this data generated by the text-
mining extraction process heavily holds back their potential. In
fact, while rule-based systems30 demonstrated, through wet-lab
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bDepartment of Chemistry and Industrial Chemistry, University of Pisa, Pisa, Italy
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Comparison of Different Approaches for Reaction and Retrosynthesis Prediction

Method Purely Rule-based ML + Graph Manipulation Seq2Seq

Classification Symbolic Neural-Symbolic Neural

Uses Machine Learning No Yes Yes

Molecule Repr. Graphs Graphs SMILES

Reaction Repr. Rules
Rules, Graph-Manipulation 
at different granularity Implicit within neural network

Works by Applying Rules
Predicting with parts of 
graph to manipulate with 
ML, then apply rule or edits

Generate target molecule from 
scratch with ML

Bottleneck Need to Specify Exact 
Rules

Need to Specify Rough 
Rules, Data hungry

Very data hungry

Ease of getting started - 0 +

Error Sources And Types Rule Base, Chemical  
Errors (-)

Rule/Edit Base, Chemical 
Errors (0), Data

Copy Errors, Chemical Errors (+), 
Data 
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Recent Directions in ML for Reactions/Retrosynthesis

Seidl, Renz et al, MS, arXiv:2104.03279 2021

Disconnection Prediction with Modern Hopfield Networks Learning Graph Models for Retrosynthesis Prediction 
Somnath, Coley, et al arXiv:2006.07038 2021 
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Figure 1: Overview of Our Approach. a. Edit Prediction. We train a model to learn a distribution
over possible graph edits. In this case, the correct edit corresponds to breaking the bond marked in
red. Applying this edit produces two synthons. b. Synthon Completion. Another model is trained
to pick candidate leaving groups (blue) for each synthon from a discrete vocabulary, which are then
attached to produce the final reactants.

reactant atoms1, and (ii.) the molecular graph topology is largely unaltered from products to reactants.
For example, in the standard retrosynthesis dataset, only 6.3% of the atoms in the product undergo
any change in connectivity.

This consideration has received more attention in recent semi-template-based methods [20, 26], that
generate reactants from a product in two stages: (i.) first identify intermediate molecules called
synthons, (ii.) and then complete synthons into reactants by sequential generation of atoms or
SMILES characters.. Our model GRAPHRETRO also uses a similar workflow. However, we avoid
sequential generation for completing synthons by instead selecting subgraphs called leaving groups

from a precomputed vocabulary. This vocabulary is constructed during preprocessing by extracting
subgraphs that differ between a synthon and the corresponding reactant. The vocabulary has a small
size (170 for USPTO-50k) indicating remarkable redundancy, while covering 99.7% of the test set.
Operating at the level of these subgraphs greatly reduces the complexity of reactant generation, with
improved empirical performance. This formulation also simplifies our architecture, and makes our
predictions more transparent, interpretable and amenable to manual correction.

The benchmark dataset for evaluating retrosynthesis models is USPTO-50k [18], which consists of
50000 reactions across 10 reaction classes. The dataset contains an unexpected shortcut towards
predicting the edit, in that the product atom with atom-mapping 1 is part of the edit in 75% of the
cases, allowing predictions that depend on the position of the atom to overestimate performance. We
canonicalize the product SMILES and remap the existing dataset, thereby removing the shortcut. On
this remapped dataset, GRAPHRETRO achieves a top-1 accuracy of 53.7% when the reaction class is
not known, outperforming both template-free and semi-template-based methods.

2 Related Work

Retrosynthesis Prediction Existing machine learning methods for retrosynthesis prediction can
be divided into template-based, template-free and recent semi-template-based approaches.

Template-Based: Templates are either hand-crafted by experts [10, 22], or extracted algorithmically
from large databases [3, 15]. Exhaustively applying large template sets is expensive due to
the involved subgraph matching procedure. Template-based methods therefore utilize different
ways of prioritizing templates, by either learning a conditional distribution over the template
set [19], ranking templates based on molecular similarities to precedent reactions [4] or directly

1ignoring impurities

2
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Recent Directions in ML for Reactions/Retrosynthesis

Schwaller et al, Extraction of organic chemistry grammar from 
unsupervised learning of chemical reactions, Sciences Adv. 2021
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How to integrate Synthesis Planning with De Novo Design?

Synthesis PlanningDe novo Design

Synthesizability ScoringDe novo Design

De Novo Design Reaction-driven 
Molecule Generation

Gao, Coley JCIM 2020 , Boda et al JCAMD 2007, Vinkers et al J. Med. Chem. 2003; Segler, Preuss, Waller, ICLR Workshop 2017

3)

2)

1)
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Boda; Seidel, Gasteiger, J. Comput.-Aided. Mol. Des. 2007 10.1007/s10822-006-9099-2 
Ertl, Schuffenhauer, J. Cheminf. 2009 10.1186/1758-2946-1-8 
Coley, Rogers, Green, Jensen, JCIM 2018 10.1021/acs.jcim.7b00622

Synthesizability Scoring

Boda/Gasteiger => Fragments 
SAScore - Ertl, Schuffenhauer => Fragments 
SCScore - Coley et al => ML, Heuristic for Synthesis Planning



 72Image Credits: Ingo Hartung, C&EN Mag, Wikipedia

Synthesizability: Not a well-defined concept

Not fully defined by structure 
Context dependent — hit expansion vs. late lead opt vs. scale-up 
Starting-material dependent — Availability reduces complexity

“Simple is the new Stupid” (Barry M. Trost, Stanford University)

Innovation in Small Molecule Drug Discovery

Hartung - RICT 2019

45

BMS-986142
BTK inhibitor
Rheumatoid arthritis
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K-Ras G12C inhibitor
i.a. lung cancer
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Voxilaprevir
NS3/4A inhibitor
HCV

AMG-176
Mcl1 inhibitor
Hematological cancer

TAK-981
SUMO inhibitor
Cancer

E7766
Sting agonist
Immunostimulator

Structural Complexity:
the Currency for Aiming High?

+ PROTACs, RNA-interacting SMOLs, Peptoids…
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Liu, Korablyov, Jastrzębski, Włodarczyk-Pruszyński, Bengio, Segler, arXiv:2011.13042, 2020  
Parallel work: Thakkar et al. Chem. Sci. 2021

Learning to approximate a full synthesis planner

Synthesis Planning 
(CASP)Random Molecules Fit ML Model to predict 

CASP output

Score with ML Model

De Novo Design

Virtual Library

1)

2)

slow

fast
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Generative Models for Synthesis Trees?
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Generative models for Molecules 
build atom by atom

Alternative: 
build synthesis tree by picking reactants and  
predicting reactions

Non-Neural: Vinkers et al - SYNOPSIS, J. Med. Chem. 2003; Hartenfeller, Schneider, WIRES, 2011;  
Neural: Bradshaw et al. NeurIPS, 2019, Gottipatti ICML 2020, Horwood, Noutahi, ACS Omega, 2020
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Retrosynthesis vs Forward Synthesis

Building Blocks

Intermediates

Product

Retrosynthesis 
Backward chaining

Actual Synthesis 
Forward chaining
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Generative Models for Synthesis Trees?

Building Blocks

Intermediates
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Generative Models for Synthesis Trees?

Building Blocks
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DoG Algorithm

H
N

O
S

Ph CO2H

CO2HF3C

F

O

F

O

O
H
N

O

O

Model chooses steps: 
1) Pick Reactants 
2) Pick Intermediates 
3) Predict Reaction 
4) Stop

Provide Building Library & Reaction Predictor (MT; Schwaller et al. 2019)
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DoG Algorithm
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DoG Algorithm

Pick reactants
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DoG Algorithm

Predict reaction
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DoG Algorithm

Pick reactants
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DoG Algorithm

Predict reaction
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DoG Algorithm

Pick intermediates
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DoG Algorithm

Predict reaction
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DoG Algorithm
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Optimisation Experiments

Guacamol: Brown et al. JCIM 2019;

DoG-Generator + Cross-Entropy Method 
Guacamol Optimisation Benchmarks
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Maximum Scores vs Quality Tradeoff

Quality

Score

Virtual Screening 
enum. Libraries

HTS Deck

unrestricted de 
novo design

???

Guacamol: Brown et al. JCIM 2019;
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It’s not just about leaderboard performance…

Quality

Score
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Performance on Guacamol Optimisation Tasks

Guacamol: Brown et al. JCIM 2019;
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Performance on Guacamol Optimisation Tasks

[1] Gao, Coley, JCIM, 2020; Segler et al. ICLR Workshop, 2017 
[2] Guacamol: Brown et al. JCIM 2019;
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Synthesizable against CASP oracle [1] Quality Score [2]
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Performance on Guacamol Optimisation Tasks

Virtual Screening

Unrestricted De Novo
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Performance on Guacamol Optimisation Tasks

Virtual Screening

Unrestricted De Novo
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