Introduction to Reaction ML

Marwin Segler

marwinsegler@microsoft.com Twitter: @marwinsegler

Background Reading for this talk

Reviews

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168 link Coley, Eyke, Jensen, *Angew. Chem. Int. Ed.* **2020**, 51, 22858 link Johanson et al. (AZ), Drug Discovery Today: Technologies, **2019**, 32–33, 65, **link**

Key Papers - Reaction ML

Segler, Waller, Chem. Eur. J., 2017, 23, 5966 - Reaction & Retrosynthesis Prediction Coley et al ACS Cent Sci. 2017, 5, 434- Reaction Prediction Segler, Preuss, Waller, Nature, 2018, 555, 604 - ML-Driven Multi-Step Retrosynthesis Coley et al. Science 2019, 365, 6453- ML-based Retrosynthesis, Reaction & Condition Prediction + Robot Implementation

Schwaller et al ACS Cent. Sci 2019, 11, 3316 - Molecular Transformer Segler, M. P. Waller, Chem. Eur. J., 2017, 23, 6118 - Reaction Knowledge Graphs

Molecular Design

Bradshaw, Paige, Kusner, Segler, Hernandez-Lobato, NeurIPS 2020 - Reaction-Driven Generative Models Segler, Kogej, Tyrchan, Waller, ACS Cent. Sci., 2017, 4, 120 - SMILES RNN

New Applications of computers in Chemistry Neue Anwendungsgebiete für Computer in der Chemie

Von Ivar Ugi, Johannes Bauer, Josef Brandt, Josef Friedrich, Johann Gasteiger, Clemens Jochum und Wolfgang Schubert^[*]

"In chemistry the use of computers has been customary for a long time. Nevertheless, only a modest part of the inherent capabilities of modern computers is utilized for the solving of chemical problems. Numerical problems are solved, such as the ones encountered in quantum chemistry, and in the collection and evaluation of experimental data, or large sets of data are subjected to storage and retrieval operations.

The challenge to solve chemical problems by algorithms which simulate human intelligence in the sense of decision processes and deductive thought was felt at a rather early stage. It led to studies in a direction which is now associated with the term 'artificial intelligence'."

Analytica Chimica Acta, 248 (1991) 1-30 Elsevier Science Publishers B V , Amsterdam

Neural networks: A new method for solving chemical problems or just a passing phase?

J. Zupan *.1 and J. Gasteiger

Organisch-chemisches Institut, Technische Universität München, D-8046 Garching (Germany)

(Received 3rd January 1991)

Review

1

Two Paradigms for Program Solving with Computers

Programming: Encode all instructions to solve problem

Machine Learning: Use example data + simple algorithm to derive problem solving instructions

Chemical Reactions

Reactants

Solvents Conditions

Reagents, Catalysts

Products

The Trinity of Organic Chemistry (We need all three!)

Experimental Data

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168

Theory

Knowledge Patterns Rules

Pattern recognition in Organic Chemistry goes a long way.

Do you need ab-initio theory to predict the likely outcome of this reaction?

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168

Pattern recognition in Organic Chemistry goes a long way. But Not All...

Do you need ab-initio theory to

transition states?

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168

predict the likely outcome of this reaction?

Will matching function groups give you an exact picture of the potential energy surface and

The Trinity of Organic Chemistry We need all three! Theory **Simulations + Machine Learning** Knowledge Patterns **Machine Learning** Rules

Strieth-Kalthoff, Sandfort, Segler, Glorius, Chem. Soc. Rev., 2020, 49, 6154-6168

Chemical Reactions

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060

Experimental Procedures describe how to reproduce reactions

Yield: 87%

General procedure:

In a screw-cap Schlenk tube, the corresponding N-protected Nbenzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH₂Cl₂ (2.00 mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv) were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent was re-moved under reduced pressure and the obtained crude product was purified by flash column chromatography on silica gel eluting with pentane/ AcOEt to give the corresponding N-protected isoxazoline 3.

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According to the general procedure, N-Boc N-benzyl hydrox-ylamine (1 a) (0.25 mmol, 63.3 mg, 1.00 equiv), dry CH₂Cl₂ (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was puri-fied by flash column chromatography on silica gel eluting with pentane/ AcOEt ((%AcOEt): 1 (30) ; 5 (50) ; 15 (300) 25 % (200 mL)) to give 3 a as a viscous oil (0.218 mmol, 79.3 mg, 87 %). (300 MHz, CDCl₃): d = 7.34–7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H),

1.39ppm (s, 9H); ¹³CNMR (75MHz, CDCl₃): d=161.4, 158.1, 155.2, 149.9, 138.7, 128.8, 127.4, 111.0, 84.3, 68.9 53.6, 52.2, 28.1 ppm; MS-ESI: m/z: calcd for [C₁₈H₂₁NO₇Na]⁺: 386.1210; found: 386.1207.

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060

The Reaction Mechanism is the sequence of elementary steps from react

Scheme 5. Mechanistic proposal.

Gini et al, Chem. Eur. J. 2015, 21, 12053 – 12060

Retrosynthetic Analysis in Synthesis Planning

a) Retrosynthesis (backward)

b) Synthetic route (forward)

Starting materials

Retrosynthesis vs Forward Synthesis: Synthesis Trees

Retrosynthesis Backward

Building Blocks/

Actual Synthesis Forward

- Starting materials
 - Reactions
- Intermediates
 - Reaction
- **Desired Target Product**

Different Questions in Reaction Modelling

- What is the (major) product?
- What are the conditions?
- How can I make this product?
- What will be the yield, e.r., d.r.?
- Will this reaction run at all?
- What is the class of this reaction?
- Can I help to understand the mechanism?
- What is the procedure?

General procedure:

In a screw-cap Schlenk tube, the corresponding N-protected Nbenzylhydroxyamine derivative 1 (1.00equiv) was dissolved in dry CH₂Cl₂ (2.00 mL). Dimethyl acetylenedicarbox- ylate (2 a) (4.00 equiv) and TEMPO (2.00 equiv) were added and the reaction mixture was stirred at 70 8C for 24 h. The solvent was re-moved under reduced pressure and the obtained crude product was purified by flash column chromatography on silica gel eluting with pentane/ AcOEt to give the corresponding N-protected isoxazoline 3.

2-tert-Butyl 4,5-dimethyl 3-phenylisoxazole-2,4,5-tricarboxylate (3a): According to the general procedure, N-Boc N-benzyl hydrox-ylamine (1 a) (0.25 mmol, 63.3 mg, 1.00 equiv), dry CH₂Cl₂ (2 mL), 2 a (122 mL, 1.00 mmol, 4.00 equiv), and TEMPO (78.8 mg, 0.50 mmol, 2.00 equiv) were reacted. The crude product was puri-fied by flash column chromatography on silica gel eluting with pentane/ AcOEt ((%AcOEt): 1 (30) ; 5 (50) ; 15 (300) 25 % (200 mL)) to give 3 a as a viscous oil (0.218 mmol, 79.3 mg, 87 %).

(300 MHz, CDCl₃): d = 7.34–7.20 (m, 5 H), 6.06 (s, 1 H), 3.87 (s, 3 H), 3.57 (s, 3H), 1.39ppm (s, 9H); ¹³CNMR (75MHz, CDCl₃): d=161.4, 158.1, 155.2, 149.9, 138.7, 128.8, 127.4, 111.0, 84.3, 68.9 53.6, 52.2, 28.1 ppm; MS-ESI: m/z: calcd for [C₁₈H₂₁NO₇Na]⁺: 386.1210; found: 386.1207.

How to represent molecules with computers

Molecular Graph atoms & bonds as objects

SMILES: C1OC1C

Caveat: There is no inherent order in atoms/bonds: permutation invariance

Adjacency Matrix (does not always specify bond order!)

atom: 0 1 2 3 atom array([[0, 1, 1, 0], 0 [1, 0, 1, 0], 1 [1, 1, 0, 1], 2 [0, 0, 1, 0]]) 3

Representing Reactions

reactants and products are sets of molecules

All reactants in one matrix

Reaction SMILES: reactants>reagents>products

C1OC1.N>>OCCN

Product matrix

 O
 C
 C
 N

 array([[0, 1, 0, 0], 0], 0], 0]
 0], 0
 0], 0
 0], 0
 0

 [1, 0, 1, 0], 1], 0], C
 [0, 1, 0, 1], 0]
 C

 [0, 0, 1, 0], 1], 0]
 N

the set of atoms and bonds that get changed overall in the course of the reaction not necessarily related to the mechanism

Reaction Center

Reaction Mapping

Automatic Reaction Mapping assignment is still not perfect Manual Assignment significant work

Reaction Rules & Reaction Templates

manual or automatic

Template: Usually refers to the reaction center + environment only Rule: All templates are rules, but rules also contain additional information

Templates are a composition of graph edits (Ugi)

Reaction Rules & Reaction Templates

Work in both directions (forward/retro)

Rule application algorithm

- Match left side of rule in starting graph
- Cut out match 2)
- Glue in right side of rule 3)
- Return target graph 4)

22

Reaction Rules & Reaction Templates: Advantages $\begin{array}{c} O \\ \downarrow \\ R_1 \end{array} + R_2 - NH_2 \end{array} \longrightarrow \begin{array}{c} O \\ H_1 \end{array} \begin{array}{c} O \\ \downarrow \\ R_1 \end{array} \begin{array}{c} O \\ \downarrow \\ R_1 \end{array} \begin{array}{c} O \\ \downarrow \\ R_2 \end{array}$

Deeply rooted in chemists' language Perfect with perfect rule base, decent with good rule base no copying errors

Kayala, M., Baldi, P.; J. Chem. Inf. Model. 2012, 52, 2526–2540 B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937

[#6:1]-[#6:2]([Cl:3])=[0:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2](-[#6:1])=[0:4]

Activating Groups need to be captured

oversimple template

Tolerated Functional Groups need to be captured

Problem: Which is the correct rule to apply?

 $R^1 - R^2$

(2a) Rule A Suzuki R¹-R²

(2b) Rule B *Kumada*

\implies R¹-B(OH)₂ + Br-R²

 \implies R¹-MgBr + Br-R²

Templates do not always capture intermediates

observed reaction

Reaction Rules & Reaction Templates

Deeply rooted in chemists' language Perfect with perfect rule base, decent with good rule base no copying errors rules have to be created (manually, automatically extracted) reactivity conflicts, selectivity have to be captured many reaction mechanisms and scope not well understood purification, solubility, stability not taken into account no inherent ranking mechanism

> Kayala, M., Baldi, P.; J. Chem. Inf. Model. 2012, 52, 2526–2540 B.A. Grzybowski et al. Angew. Chem. Int. Ed. 2016, 55, 5904-5937

[#6:1]-[#6:2]([Cl:3])=[0:4].[#6:6]-[#7;h2:5]>>[#6:6]-[#7;h1:5]-[#6:2](-[#6:1])=[0:4]

Why are data driven approaches for reaction modelling appealing?

Chemists' creativity does not slow down! Number of **unique** reaction types / year

Via extracted reaction rules/templates, Analysis of Reaxys Database

Via extracted reaction rules/templates, Analysis of Reaxys Database

Analysis of Reaxys Database

Automatic Template Extraction via Algorithms

Law et al. *JCIM* **2009**, 593–602 Christ, Zentgraf, Kriegl *JCIM* **2012** 1745 Saller et al. *Org. Process Res. Dev.* **2015**, 357–368

Manual coding vs Automatic Template Extraction

Method	Manual Coding	Automatic Extraction
Human Effort	Very high (decades)	Very Little
Requirements	A large team of organic chemists (expensive)	Reaction Database (depends)
Scalability to new reactions	Low, need to be encoded anew	15 million reactions over night (lapto
Updating Rulebase	Complex, need to revisit old rules	Simple (see above)
Error Sources	Expertise of chemist, many reactions are not well enough understood	Current extraction algorithms often d not capture activating groups and sco well, lack of negative data

Law et al. *JCIM* **2009**, 593–602 Christ, Zentgraf, Kriegl *JCIM* **2012** 1745 Saller et al. *Org. Process Res. Dev.* **2015**, 357–368

Supervised Machine Learning

This journal is © The Royal Society of Chemistry 2020

Chem. Soc. Rev.

Molecular Representations for Machine Learning: Featurization

possible

- fingerprints (often sparse)
- Graph Neural Networks

D-dimensional real vectors the set of all molecules (graphs or 3D)

physicochemical/topological descriptor vectors

Reaction Representations for Machine Learning

- Reaction Graph Neural Networks based on reaction center
- Seq2Seq Descriptors based on Reaction SMILES

reaction difference fingerprints (sum of products - sum of reactants)

37

Supervised Machine Learning: Classification and Regression

Multi-Class Classification Regression **Binary Classification**

y = real numberprobability [0,1]

%Yield, e.r.

reactive/unreactive

 $y = f_{\theta}(\phi(m))$

probability vector [0,1]^C

Reaction Class [DielsAlder: 0.2, Suzuki: 0.7, Aldol: 0.1]

- vibrations were used for modelling

Milo, Sigman, Doyle, Gensch, Gasteiger, Glorius,

(Mechanistic) QSRR Modeling

Ingredients of Computer-Aided Synthesis Planning Algorithms

efficient search algorithm stop criteria (building blocks) and ranking

Module to propose feasible retrosynthetic disconnections (now ML)

Brief History of Computer-Aided Synthesis Planning

1963 Vladuts (USSR) Proposes Computer-Aided Synthesis Planning

1970ies Ugi (D) Formal Logic

1967 Corey (USA) Formalises Retrosynthesis & First Expert System Implementation

1970-1990 **Expert Systems**

1990-2010 Automatic **Rule Extraction**

2016 Segler, Coley, Schwaller, ... **Machine Learning**

1996 Gasteiger & Ihlenfeldt **Current Approaches: Dead End?**

2016 Synthia (**Expert System**, Grzybowski)

Vleduts (1963), Corey (1968) Write down all of chemical knowledge in logic form **Great for humans!** Not so much for machines?

"The synthetic chemist is more than a logician and strategist; [...] These added elements provide the touch of artistry which can hardly be included in a cataloguing of the basic principles of synthesis, but they are very real and extremely important." (Corey)

Vléduts, G. Inform. Storage Retrieval 1, 117–146 (1963). Corey, The Logic of Chemical Synthesis

42

Idea: Machine Learning & Reinforcement Learning for Search

- Module to propose feasible retrosynthetic disconnections • Learn to predict disconnections
 - Learn to predict reactions •
- modern efficient search
- ML provides a rigorous metrics framework!

43

This product X can be made with this rule y: P(Y|X)

Label: #987128 (Diels Alder)

Rule assignment gives us labeled dataset for classification

Data of our entire discipline!

Successful Reactions contain implicit knowledge!

11 M reactions

Data: Reaxys

Challenges

learn the rules predict likely disconnections filter out infeasible reactions efficient search

46

Retrosynthetic disconnection prediction: Multi-class Classification

 \Rightarrow 2

How to make this molecule?

Pattern Recognition

Segler, Waller, Chem. Eur. J. 2017, DOI: 10.1002/chem.201605499 Deep Highway Networks (Schmidhuber), ELU nonlinearity (Clevert, Unterthiner, Hochreiter)

Challenges

learn the rules focus on most promising routes first *filter out infeasible reactions*efficient search

Reaction Prediction: In-scope Filter

Binary Classification using real positive and mined negative data [1, 2]

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. Sci. 2017, 434

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. Sci. 2017, 434

Neural Network: ROC AUC 0.986

[1] Segler, Waller, Chem. Eur. J. 2017, 6118 [2] Coley, Jensen, ACS Cent. Sci. 2017, 434

Reaction Prediction: In-scope Filter

No failed reaction in literature? Make your own!

False positive rate: 1.5%

In-scope Filter f: (ProductFP, ReactionFP) -> [0,1]

a) Diels-Alder reactions with Cyclopentadiene

Output correlates with LUMO energies and Hammett parameters!

b) para-Bromination of benzenes

Challenges

learn the model focus on most promising actions first filter out infeasible reactions efficient search

Heuristic Best First Search

Idea: Define strong heuristic function to score nodes For example: Split up molecules in equally sized parts, simplify molecule, cleave strategic

bonds first...

- is not addressed
- Synthesis only solved at the end
- Molecular complexity needs to be tactically increased (Protecting groups!)

Problems: Chemists disagree about good solutions, intuition

Monte Carlo Tree Search (MCTS): Idea

- Approximate values online by random MC simulation (Agent picks) transforms randomly until end of synthesis)
- Use these approximated values to build search tree
- => Not dependent on strong heuristic! => Can deal with very high branching factors => can be guided by predicted value or probability of disconnection

R. Coulom, "Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search," in Proc. 5th Int. Conf. Comput. and Games, 2006, pp. 72–83. L. Kocsis and C. Szepesvari, "Bandit based Monte-Carlo Planning," in Euro. Conf. Mach. Learn. Berlin, Germany: Springer, 2006, pp. 282–293.

Quantitative analysis on 500 random molecules

Method	Scoring	solved/%	time per molecule/s
BFS	Heuristics [1]		
BFS	Neural Net		
MCTS	Neural Net		

trained on data < 2015, molecules first reported >= 2015 [1] B.A. Grzybowski *et al. Angew. Chem. Int. Ed.* **2016**, *55*, 5904-5937

Quantitative analysis on 500 random molecules

Method	Scoring	solved/%	time per molecule/s
BFS	Heuristics [1]	56	422
BFS	Neural Net	84	39
MCTS	Neural Net	95	13

trained on data < 2015, molecules first reported >= 2015 [1] B.A. Grzybowski *et al. Angew. Chem. Int. Ed.* **2016**, *55*, 5904-5937

How to test the quality of a retrosynthesis system?

Null Hypothesis: Experts won't like Computer's solutions

Qualitative Analysis: Chemical Turing Test

- Double Blind

45 PhD students, postdocs,++ from Shanghai (CN) and Münster (DE)

Segler, Preuss, Waller, *Nature*, **2018**, (555), 604–610

57:43 insignificant!

=> Expert & Computer routes cannot be distinguished!

Segler, Preuss, Waller, *Nature*, **2018**, (555), 604–610

Example

in 6 sec with MCTS + DNN

Alternative Approaches for Reaction and Retrosynthesis Prediction

Coley et al. Chem. Sci, 2019; Schwaller et al. Chem. Sci. 2020;

View Article Online

Machine Learning now core part of Computer Aided Synthesis Planning

ARTICLE

doi:10.1038/nature25978

Planning chemical syntheses with deep neural networks and symbolic AI

Marwin H. S. Segler^{1,2}, Mike Preuss³ & Mark P. Waller⁴

RESEARCH ARTICLE

ORGANIC CHEMISTRY

A robotic platform for flow synthesis of organic compounds informed by AI planning

Connor W. Coley^{1*}, Dale A. Thomas $III^{1,2*+}$, Justin A. M. Lummiss^{3*+}, Jonathan N. Jaworski³[‡], Christopher P. Breen³, Victor Schultz¹, Travis Hart¹, Joshua S. Fishman², Luke Rogers¹§, Hanyu Gao¹, Robert W. Hicklin³||, Pieter P. Plehiers¹¶, Joshua Byington¹#, John S. Piotti², William H. Green¹, A. John Hart², Timothy F. Jamison^{3**}, Klavs F. Jensen^{1**}

Predicting retrosynthetic pathways using transformer-based models and a hyper-graph exploration strategy[†]

Philippe Schwaller, 🕩 * Riccardo Petraglia, Valerio Zullo, Vishnu H. Nair, Rico Andreas Haeuselmann,^a Riccardo Pisoni,^a Costas Bekas,^a Anna Iuliano ^b and Teodoro Laino^a

Segler et al. Nature, 2018; Coley et al. Science, 2019; Schwaller et al. Chem. Sci. 2020; Genheden, Thakkar et al. J. Cheminf. 2020; Grzybowski et al. Angew. Chem. 2016; open source (e.g. AiZynthfinder, ASKCOS), commercial tools (Reaxys, CAS, IBM, MoleculeOne, Iktos, ...)

Comparison of Different Approaches for Reaction and Retrosynthesis Prediction

Method	Purely Rule-based	ML + Graph Manipulation	Seq2Seq
Classification	Symbolic	Neural-Symbolic	Neural
Uses Machine Learning	No	Yes	Yes
Molecule Repr.	Graphs	Graphs	SMILES
Reaction Repr.	Rules	Rules, Graph-Manipulation at different granularity	Implicit within neural network
Works by	Applying Rules	Predicting with parts of graph to manipulate with ML, then apply rule or edits	Generate target molecule from scratch with ML
Bottleneck	Need to Specify Exact Rules	Need to Specify Rough Rules, Data hungry	Very data hungry
Ease of getting started	_	0	+
Error Sources And Types	Rule Base, Chemical Errors (-)	Rule/Edit Base, Chemical Errors (0), Data	Copy Errors, Chemical Errors (+ Data

Recent Directions in ML for Reactions/Retrosynthesis

Disconnection Prediction with Modern Hopfield Networks

Seidl, Renz et al, MS, arXiv:2104.03279 **2021**

Learning Graph Models for Retrosynthesis Prediction Somnath, Coley, et al arXiv:2006.07038 **2021**

a Edit Prediction

Recent Directions in ML for Reactions/Retrosynthesis

Schwaller et al, Extraction of organic chemistry grammar from unsupervised learning of chemical reactions, Sciences Adv. **2021**

How to integrate Synthesis Planning with De Novo Design?

Gao, Coley JCIM 2020, Boda et al JCAMD 2007, Vinkers et al J. Med. Chem. 2003; Segler, Preuss, Waller, ICLR Workshop 2017

Synthesizability Scoring

Boda/Gasteiger => Fragments SAScore - Ertl, Schuffenhauer => Fragments SCScore - Coley et al => ML, Heuristic for Synthesis Planning

Boda; Seidel, Gasteiger, J. Comput.-Aided. Mol. Des. **2007** 10.1007/s10822-006-9099-2 Ertl, Schuffenhauer, J. Cheminf. **2009** 10.1186/1758-2946-1-8 Coley, Rogers, Green, Jensen, JCIM **2018** 10.1021/acs.jcim.7b00622

Synthesizability: Not a well-defined concept

Not fully defined by structure

AMG-176

Gilead's GS-CA1

Context dependent — hit expansion vs. late lead opt vs. scale-up Starting-material dependent — Availability reduces complexity

Image Credits: Ingo Hartung, C&EN Mag, Wikipedia

72
Learning to approximate a full synthesis planner

Liu, Korablyov, Jastrzębski, Włodarczyk-Pruszyński, Bengio, Segler, *arXiv:2011.13042*, **2020** Parallel work: Thakkar et al. *Chem. Sci.* **2021**

Generative Models for Synthesis Trees?

Generative models for Molecules build atom by atom

Non-Neural: Vinkers et al - SYNOPSIS, J. Med. Chem. 2003; Hartenfeller, Schneider, WIRES, 2011; Neural: Bradshaw et al. NeurIPS, 2019, Gottipatti ICML 2020, Horwood, Noutahi, ACS Omega, 2020

Retrosynthesis vs Forward Synthesis

Retrosynthesis Backward chaining

Intermediates

Actual Synthesis Forward chaining

Building Blocks

Product

Generative Models for Synthesis Trees? DAG (Directed Acyclic Graph) of Graphs

Building Blocks

Intermediates

Product

Generative Models for Synthesis Trees? DAG (Directed Acyclic Graph) of Graphs

Building Blocks

Intermediates

Product

Provide Building Library & Reaction Predictor (MT; Schwaller et al. 2019)

Model chooses steps:

- 1) Pick Reactants
- 2) Pick Intermediates
- 3) Predict Reaction
- 4) Stop

Predict reaction

DoG Algorithm

Predict reaction

Pick intermediates

Predict reaction

Optimisation Experiments

DoG-Generator + Cross-Entropy Method **Guacamol Optimisation Benchmarks**

Guacamol: Brown et al. *JCIM* **2019**;

Maximum Scores vs Quality Tradeoff

Guacamol: Brown et al. JCIM 2019;

• HTS Deck

Quality

It's not just about leaderboard performance...

Score

Quality

Performance on Guacamol Optimisation Tasks

Performance on Guacamol Optimisation Tasks

Synthesizable against CASP oracle [1]

[1] Gao, Coley, JCIM, 2020; Segler et al. ICLR Workshop, 2017[2] Guacamol: Brown et al. JCIM 2019;

Quality Score [2]

