
RECURRENT NEURAL
NETWORKS
Introduction to RNNs, LSTMs, Transformers

Michael Widrich
Institute for Machine Learning

Overview

Standard recurrent neural networks (RNNs) and their great potentials

Sequence learning settings - using RNNs for different tasks

Classic RNNs and the Vanishing Gradients Problem

Long Short-Term Memory networks (LSTM)

Quick introduction to Transformers and modern Hopfield networks

1/55

Basics of Recurrent
Neural Networks
(RNNs)

Feedforward Neural Networks

� Size of input vector x is fixed
� Spatial relations of elements in sequence of inputs lost

� No direct information about order of features
� Restricted work-around:

Windowing via convolution (1D CNN)

2/55

Recurrent Neural Networks (RNNs) (1)

� Assume a sample is a sequence of length T with D

features at each timestep t.
� Each sample represented by matrix X of shape T ×D

� T may vary between samples but D is constant

� To address the mentioned limitations of feedforward
networks, our network needs to:

1. be able to handle variable sequence lengths T ,
2. remember previous inputs within a sequence

3/55

Recurrent Neural Networks (RNNs) (1)

� Assume a sample is a sequence of length T with D

features at each timestep t.
� Each sample represented by matrix X of shape T ×D

� T may vary between samples but D is constant

� To address the mentioned limitations of feedforward
networks, our network needs to:

1. be able to handle variable sequence lengths T ,
2. remember previous inputs within a sequence

3/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)

� Feed input sequence X timestep by timestep into network
(= vector xt with D features at each timestep t)

� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

x1

...
RNN layer

h1

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

4/55

Recurrent Neural Networks (RNNs) (2)

� Solution: Recurrent Neural Networks (RNNs)
� Feed input sequence X timestep by timestep into network

(= vector xt with D features at each timestep t)
� Add previous output ht−1 (=hidden state) to current input xt

→ xt and ht−1 are inputs to compute new ht: ht = f(xt,ht−1)

xt

...
RNN layer

ht
ht-1

4/55

Recurrent Neural Networks (RNNs) (3)

� Typically only single layers recursively connected
� Layer weight matrix W reused (=shared) for all timesteps
� Computation of ht similar to feedforward networks:

ht = act

(
WT ·

(
xt

ht−1

)
+ b

)

xt

...
RNN layer

ht
ht-1

5/55

Power of RNNs

� RNNs are in essence a state-space model: yt = f(x, yt−1)

� Could be used for sequence classification, sequence
generation, control systems, meta learning, . . .

� RNNs are theoretically Turing Complete
� For each program in a turing complete programming

language, you could find an RNN that executes the code
correctly (=you can simulate anything)

� Like the Universal Approximation Theorem, this is mostly
useless in practice

� The hard problem is not “what can we represent?” but
finding a good representation

6/55

Power of RNNs

� RNNs are in essence a state-space model: yt = f(x, yt−1)

� Could be used for sequence classification, sequence
generation, control systems, meta learning, . . .

� RNNs are theoretically Turing Complete
� For each program in a turing complete programming

language, you could find an RNN that executes the code
correctly (=you can simulate anything)

� Like the Universal Approximation Theorem, this is mostly
useless in practice

� The hard problem is not “what can we represent?” but
finding a good representation

6/55

Power of RNNs

� RNNs are in essence a state-space model: yt = f(x, yt−1)

� Could be used for sequence classification, sequence
generation, control systems, meta learning, . . .

� RNNs are theoretically Turing Complete
� For each program in a turing complete programming

language, you could find an RNN that executes the code
correctly (=you can simulate anything)

� Like the Universal Approximation Theorem, this is mostly
useless in practice

� The hard problem is not “what can we represent?” but
finding a good representation

6/55

Power of RNNs

� RNNs are in essence a state-space model: yt = f(x, yt−1)

� Could be used for sequence classification, sequence
generation, control systems, meta learning, . . .

� RNNs are theoretically Turing Complete
� For each program in a turing complete programming

language, you could find an RNN that executes the code
correctly (=you can simulate anything)

� Like the Universal Approximation Theorem, this is mostly
useless in practice

� The hard problem is not “what can we represent?” but
finding a good representation

6/55

Power of RNNs

� RNNs are in essence a state-space model: yt = f(x, yt−1)

� Could be used for sequence classification, sequence
generation, control systems, meta learning, . . .

� RNNs are theoretically Turing Complete
� For each program in a turing complete programming

language, you could find an RNN that executes the code
correctly

� Like the Universal Approximation Theorem, this is mostly
useless in practice

� The hard problem is not “what can we represent?” but
finding a good representation

6/55

RNN Training

Unrolling an RNN

� RNN can be viewed as feed forward network with shared
weights = unrolled over time

xt

...
RNN layer

ht
ht-1

7/55

Unrolling an RNN

� RNN can be viewed as feed forward network with shared
weights = unrolled over time

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

8/55

Back-Propagation Through Time (BPTT)

� Most common way to train RNNs: Back-Propagation
Through Time (BPTT)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

� Complexity: O(N2T)

� N : number of hidden units
� T : Length of sequence

� Truncated BPTT: only unfold n timesteps into the past

9/55

Back-Propagation Through Time (BPTT)

� Most common way to train RNNs: Back-Propagation
Through Time (BPTT)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

� Complexity: O(N2T)

� N : number of hidden units
� T : Length of sequence

� Truncated BPTT: only unfold n timesteps into the past

9/55

Back-Propagation Through Time (BPTT)

� Most common way to train RNNs: Back-Propagation
Through Time (BPTT)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

� Complexity: O(N2T)

� N : number of hidden units
� T : Length of sequence

� Truncated BPTT: only unfold n timesteps into the past

9/55

Real-Time Recurrent Learning (RTRL)

� Alternative to BPTT

� Computes all gradient information during forward pass

� Complexity O(N4)⇒ Independent of sequence length

� Very rarely used today

10/55

Sequence Learning
Settings

Sequence Learning Settings (1)

� Alex Graves (2012) distinguishes 3 types of classification
tasks for sequence data:

11/55

Sequence Learning Settings (2)

� Processing data using RNN layers (Karpathy, 2015)

[Taken with modifications from The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

12/55

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)

→ Vanishing or Exploding Gradients (Hochreiter, 1991)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

13/55

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)

→ Vanishing or Exploding Gradients (Hochreiter, 1991)

...

xT

...
RNN layer

hT

x1

...
RNN layer

h1

x2

...
RNN layer

h2

x0

...
RNN layer

h0

13/55

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

13/55

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

Gradient

13/55

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

Gradient

13/55

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Derivative of sigmoid function

sigmoid
derivative of sigmoid

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

Gradient

13/55

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Derivative of sigmoid function

sigmoid
derivative of sigmoid

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

Gradient

13/55

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Derivative of sigmoid function

sigmoid
derivative of sigmoid

Vanishing Gradients Problem

� BPTT generates very deep networks (T ∼= depth)
→ Vanishing or Exploding Gradients (Hochreiter, 1991)

xT

...
RNN layer

hT

x1

...
RNN layer

h1 x2

...
RNN layer

h2

x0

...
RNN layer

h0

...

Gradient

13/55

4 2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0
Derivative of sigmoid function

sigmoid
derivative of sigmoid

Vanishing Gradients Problem -
Consequences

� RNNs tend to forget events that happened a long time ago
� Learning long-term dependencies depends on the

recurrent weights
� If |f ′| < 1, we will forget things over time
� If |f ′| > 1, our system is unstable
→ we would need |f ′| = 1

14/55

Long Short-Term Memory
(LSTM)

Long Short-Term Memory (LSTM)

� Idea: Store information indefinitely but be selective about
what to store

� Solution:
1. Integrator

• add up information over time
• store information indefinitely
• identity function, no vanishing gradients

2. Gates
• hidden units
• activations multiplied with input
• write-access (remembering)
• read-access (communicating)
• reset (forgetting)

� This system is called Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997)

15/55

Long Short-Term Memory (LSTM)

� Idea: Store information indefinitely but be selective about
what to store

� Solution:
1. Integrator

• add up information over time
• store information indefinitely
• identity function, no vanishing gradients

2. Gates
• hidden units
• activations multiplied with input
• write-access (remembering)
• read-access (communicating)
• reset (forgetting)

� This system is called Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997)

15/55

Long Short-Term Memory (LSTM)

� Idea: Store information indefinitely but be selective about
what to store

� Solution:
1. Integrator

• add up information over time
• store information indefinitely
• identity function, no vanishing gradients

2. Gates
• hidden units
• activations multiplied with input
• write-access (remembering)
• read-access (communicating)
• reset (forgetting)

� This system is called Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997)

15/55

Long Short-Term Memory (LSTM)

� Idea: Store information indefinitely but be selective about
what to store

� Solution:
1. Integrator

• add up information over time
• store information indefinitely
• identity function, no vanishing gradients

2. Gates
• hidden units
• activations multiplied with input
• write-access (remembering)
• read-access (communicating)
• reset (forgetting)

� This system is called Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997)

15/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC)

� New information netin is
squashed to scalar cin via
function fin

� New cell state:
c∗st = c∗s(t−1)

+ cint

⇒ simple integrator, no
vanishing gradients!

� fin: e.g. tanh

� fs∗ : e.g. tanh, linear

 CEC

fgfin

fin

h

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

netin

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC)

� New information netin is
squashed to scalar cin via
function fin

� New cell state:
c∗st = c∗s(t−1)

+ cint

⇒ simple integrator, no
vanishing gradients!

� fin: e.g. tanh

� fs∗ : e.g. tanh, linear

 CEC

fgfin

fin

h

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

netin

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC)

� New information netin is
squashed to scalar cin via
function fin

� New cell state:
c∗st = c∗s(t−1)

+ cint

⇒ simple integrator, no
vanishing gradients!

� fin: e.g. tanh

� fs∗ : e.g. tanh, linear

 CEC

fgfin

fin

h

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

netin

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC)

� New information netin is
squashed to scalar cin via
function fin

� New cell state:
c∗st = c∗s(t−1)

+ cint

⇒ simple integrator, no
vanishing gradients!

� fin: e.g. tanh

� fs∗ : e.g. tanh, linear

 CEC

fgfin

fin

h

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

netin

16/55

Long Short-Term Memory (LSTM)

More terminology

� CEC and gates constitute
LSTM block or LSTM unit

� Cell output h (hidden state)
is output of LSTM block

� Multiple LSTM blocks in one
layer are referred to as
LSTM layer

 CEC

fgfin

fin

h

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

netin

17/55

Long Short-Term Memory (LSTM)

More terminology

� CEC and gates constitute
LSTM block or LSTM unit

� Cell output h (hidden state)
is output of LSTM block

� Multiple LSTM blocks in one
layer are referred to as
LSTM layer

 CEC

netin

fgfin

fin

h

fout

fgfs*

cs
*

cin

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

17/55

Long Short-Term Memory (LSTM)

Input gate

� Input gate serves as
gating/attention mechanism

� cin is multiplied by input gate
activation gig before entering
CEC

� fig: e.g. sigmoid

 CEC

netin

fgfin

gig
fin

h

fout

fgfs*

fig

cs
*

cin
input gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netig

18/55

Long Short-Term Memory (LSTM)

Recurrent hidden state

� Input gate and cell input may
receive old hidden state
h(t−1) as recurrent input

� In an LSTM layer, the hidden
states of all LSTM blocks are
the recurrent input per block

� But: fully connected LSTM
might not always be the best
way to go!

 CEC

netin

fgfin

gig
fin

h

fout

fgfs*

fig

cs
*

cin
input gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netig

h(t-1)h(t-1)

19/55

Long Short-Term Memory (LSTM)

Output gate

� Output gate mechanism
analogous to input gate

� Output gate controls if cell
state cs is visible to rest of
network

� fog: e.g. sigmoid

 CEC

netin

fgfin

gig
fin

h

gog
foutfog

fgfs*

fig

cs

cs
*

cin
input gate

output gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netog

netig

h(t-1)h(t-1)

20/55

Long Short-Term Memory (LSTM)

Forget gate

� Forget gate mechanism
analogous to other gates

� Can reset or decrease CEC
content

� fϕ: e.g. sigmoid

⇒ Problem: this re-introduces
vanishing gradients! Only
use if necessary!

 CEC

netin

fgfin

gig
fin

h

gog
foutfog

fgfs*

fφ
gφ

fig

cs

cs
*

cin

forget gate

input gate

output gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netog

netig

netφ

h(t-1)h(t-1)h(t-1)

21/55

Long Short-Term Memory (LSTM)

Forget gate

� Forget gate mechanism
analogous to other gates

� Can reset or decrease CEC
content

� fϕ: e.g. sigmoid

⇒ Problem: this re-introduces
vanishing gradients! Only
use if necessary!

 CEC

netin

fgfin

gig
fin

h

gog
foutfog

fgfs*

fφ
gφ

fig

cs

cs
*

cin

forget gate

input gate

output gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netog

netig

netφ

h(t-1)h(t-1)h(t-1)

21/55

Long Short-Term Memory (LSTM)

Learning behavior

� LSTM core (CEC) is an
integrator

� Gates introduce complex
dynamics

� LSTM blocks (de)activate
and complement each other
dynamically

 CEC

netin

fgfin

gig
fin

h

gog
foutfog

fgfs*

fφ
gφ

fig

cs

cs
*

cin

forget gate

input gate

output gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netog

netig

netφ

h(t-1)h(t-1)h(t-1)

22/55

Long Short-Term Memory (LSTM)

Tricks of the trade

� Plot your LSTM cell- and
hidden states & start small

� Fully connected LSTM not
always needed

� Negative input gate bias
helps for long sequences

� Use forget gate only if
necessary

 CEC

netin

fgfin

gig
fin

h

gog
foutfog

fgfs*

fφ
gφ

fig

cs

cs
*

cin

forget gate

input gate

output gate

cell input

cell output

cell state

cs(t-1)

*

LSTM block

fs

Output
node

Input
node

netog

netig

netφ

h(t-1)h(t-1)h(t-1)

23/55

LSTM example: Task description

23/55

LSTM example: Task description

23/55

LSTM example: 1 LSTM (fully connected)

Created with: https://github.com/widmi/widis-lstm-tools

24/55

https://github.com/widmi/widis-lstm-tools

LSTM example: 1 LSTM (fully connected)

Created with: https://github.com/widmi/widis-lstm-tools

24/55

https://github.com/widmi/widis-lstm-tools

LSTM example: 2 LSTM (fully connected)

Created with: https://github.com/widmi/widis-lstm-tools

25/55

https://github.com/widmi/widis-lstm-tools

LSTM example: 32 LSTM (fully connected)

Created with: https://github.com/widmi/widis-lstm-tools

26/55

https://github.com/widmi/widis-lstm-tools

LSTM Formulas

+

+

forget gate

input gate

cell input

+

output gate

LSTM cell

input recurrent

input

recurrent

input

recurrent
output recurrent

cell output

... ...

...

...

...

...

+

+

......

input

recurrent
...

...

h

g

Legend

gate activation function
(usually sigmoid)

g input activation function
(usually tanh or sigmoid)

h
output activation function
(usually tanh or sigmoid)

+ sum over all inputs

branching point

mutliplication

feedforward data flow

recurrent data flow

recurrent weights

feedforward weights

27/55

Gated Recurrent Units
(GRUs)

Gated Recurrent Units (GRUs)

� Reduced LSTM with merged gates (Cho et al, 2014)

� Suffers from Vanishing Gradients (always forgets)

� Less parameters, easier to use, lower complexity

[Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

28/55

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Applications

LSTM Applications

� LSTM can effectively learn long-term dependencies
� One of the most-used models today
� State of the Art in many applications

� Speech/Text generation and recognition
� Amino acid sequence classification
� Time-Series classification/generation
� . . .

29/55

Handwriting Generation

[Generating Sequences With Recurrent Neural Networks, A. Graves, arxiv 2013]

Online interactive example: https://www.cs.toronto.edu/~graves/handwriting.html

30/55

https://www.cs.toronto.edu/~graves/handwriting.html

Source Code Generation

[The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

Many more examples: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

31/55

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Image Captioning

[Show and Tell: A Neural Image Caption Generator, Vinyals & Toshev & Bengio & Erhan, arxiv 2015]

32/55

Language Translation

[Sequence to Sequence Learning with Neural Networks, Sutskever & Vinyals & Le, NIPS 2014]
33/55

Hydrology Forecasts

[Sequence to Sequence Learning with Neural Networks, Kratzert & Herrneggerr & Klotz & Hochreiter & Klambauer]

34/55

Transformers, Attention,
and Modern Hopfield
Networks

Differentiable Attention

� Assume we have a set or bag of instances per sample
X = {x0, . . . ,xT }

� We can compute an attention weight a for each instance
and combine the instances
� Function g computes attention weight:

a∗i = g(xi)

� Normalization e.g. via softmax:
a = softmax (a∗)

� Combination of instances, e.g. via weighted sum:
h =

∑T
0 (ai ∗ xi)

→ We can attend to (=retrieve) specific instances in X

35/55

Differentiable Attention

36/55

Differentiable Attention

37/55

Differentiable Attention

38/55

Differentiable Attention

39/55

Transformer self-attention (1)

� Assume we want a∗i to incorporate information about other
instances in the bag

. . . we could compute a outer product of our instance
representations (combine everything with everything)

40/55

Transformer self-attention (1)

41/55

Transformer self-attention (1)

42/55

Transformer self-attention (1)

43/55

Transformer self-attention (1)

44/55

Transformer self-attention (1)

45/55

Transformer self-attention (1)

46/55

Transformer self-attention (1)

47/55

Transformer self-attention (1)

48/55

Transformer self-attention (1)

49/55

Transformer self-attention (2)

� Assume we want a∗i to incorporate information about other
instances in the bag

. . . we could compute a outer product of our instance
representations. . .

or better yet:

� Map our instances X to queries Q, keys K, and values V

before the product! →Transformer self-attention (Vaswani
et al, 2017)

More details on Transformers: https://www.youtube.com/watch?v=iDulhoQ2pro

50/55

https://www.youtube.com/watch?v=iDulhoQ2pro

Transformer self-attention (2)

� Assume we want a∗i to incorporate information about other
instances in the bag

. . . we could compute a outer product of our instance
representations. . . or better yet:

� Map our instances X to queries Q, keys K, and values V

before the product! →Transformer self-attention (Vaswani
et al, 2017)

More details on Transformers: https://www.youtube.com/watch?v=iDulhoQ2pro

50/55

https://www.youtube.com/watch?v=iDulhoQ2pro

Modern Hopfield Networks (1)

� At closer inspection, such attention and memory
mechanisms seem familiar?

� Classic binary Hopfield networks:
Sum of outer products is a simple associative memory!
(Hebbian learning rule)

1. Store patterns X in matrix W

W =
∑N

i xix
T
i with x ∈ {−1, 1}D

2. Retrieve pattern ξ∗ based on query ξ
ξ∗ = sgn(Wξt − b)

51/55

Modern Hopfield Networks (1)

� At closer inspection, such attention and memory
mechanisms seem familiar?

� Classic binary Hopfield networks:
Sum of outer products is a simple associative memory!
(Hebbian learning rule)

1. Store patterns X in matrix W

W =
∑N

i xix
T
i with x ∈ {−1, 1}D

2. Retrieve pattern ξ∗ based on query ξ
ξ∗ = sgn(Wξt − b)

51/55

Modern Hopfield Networks (2)

� Ramsauer et al (2020) generalized binary modern Hopfield
networks to continuous modern Hopfield networks (MHN)
� Differentiable and can be used as memory-equipped layers

or pooling layers in NNs
� Very large memory capacity (Widrich et al, 2020)
� Special case of MHN: Transformer self-attention

More details on MHN: https://ml-jku.github.io/hopfield-layers,
https://www.youtube.com/watch?v=nv6oFDp6rNQ

52/55

https://ml-jku.github.io/hopfield-layers
https://www.youtube.com/watch?v=nv6oFDp6rNQ

MHN: Tricks of the trade (1)

� MHN are order-invariant w.r.t. instances X = {x0, . . . ,xT }
� Instances might need position information
� Might need to mask out future information in the sequence

� Associative memory of MHN can retrieve specific
instances or meta-stable states
� Interpolate between instances in high-dimensional space

� LSTM integrate information along sequence, MHN rather
pinpoint sequence positions
� LSTM or MHN better depending on task

53/55

MHN: Tricks of the trade (2)

� Attention matrix creates dynamic virtual weights
� Relations between intances/features can be freely learned,

e.g. learning to behave like CNN (Dosovitskiy et al, 2020)
� Less assumptions on input relations BUT requires more

data to learn the relations
� Fast computation (parallel) if embedding allows for

parallelization
� Reduction of memory consumption exist, e.g. via

Performers (Choromanski et al, 2021)

� MHN allow for different realizations
� From very sample efficient (similar to SVM or KNN) to high

complexity like Transformers
https://ml-jku.github.io/hopfield-layers

54/55

https://ml-jku.github.io/hopfield-layers

Summary

Summary

� Recurrent Neural Networks (RNNs):
� Can handle sequence data of variable length
� Turing Complete but Vanishing Gradients problem

� Long Short-Term Memory (LSTM):
� Integrator with gating mechanisms
� Solves Vanishing Gradients problem

� Transformers, attention, modern Hopfield networks:
� Sample is set/bag of instances (feature vectors)
� Attention weight computed for each instance and used for

weighted sum over instances
� Requires information about instance position in sequences

Slides:
https://github.com/widmi/aidd-school-2021-rnn-lstm-mhn

55/55

https://github.com/widmi/aidd-school-2021-rnn-lstm-mhn

	Standard recurrent neural networks (RNNs) and their great potentials
	Sequence learning settings - using RNNs for different tasks
	Classic RNNs and the Vanishing Gradients Problem
	Long Short-Term Memory networks (LSTM)
	Quick introduction to Transformers and modern Hopfield networks

