RECURRENT NEURAL NETWORKS

Introduction to RNNs, LSTMs, Transformers

Michael Widrich Institute for Machine Learning

Standard recurrent neural networks (RNNs) and their great potentials

Sequence learning settings - using RNNs for different tasks

Classic RNNs and the Vanishing Gradients Problem

Long Short-Term Memory networks (LSTM)

Quick introduction to Transformers and modern Hopfield networks

Basics of Recurrent Neural Networks (RNNs)

Feedforward Neural Networks

Size of input vector x is fixed

Spatial relations of elements in sequence of inputs lost

- No direct information about order of features
- □ Restricted work-around:

Windowing via convolution (1D CNN)

layer output
$$\mathbf{h} = \mathrm{act}\left(\mathbf{W}^T\mathbf{x}
ight)$$

M hidden units with activation function act() weigth matrix $\mathbf{W} \in \mathbb{R}^{D \times M}$ input vector $\mathbf{x} \in \mathbb{R}^{D \times 1}$

- Assume a sample is a sequence of length T with D features at each timestep t.
 - \Box Each sample represented by matrix **X** of shape $T \times D$
 - \Box T may vary between samples but D is constant

Assume a sample is a sequence of length T with D features at each timestep t.

- \Box Each sample represented by matrix **X** of shape $T \times D$
- \Box T may vary between samples but D is constant
- To address the mentioned limitations of feedforward networks, our network needs to:
 - 1. be able to handle variable sequence lengths T,
 - 2. remember previous inputs within a sequence

- □ Feed input sequence \mathbf{X} timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- □ Feed input sequence \mathbf{X} timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- □ Feed input sequence \mathbf{X} timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- □ Feed input sequence \mathbf{X} timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- □ Feed input sequence \mathbf{X} timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- □ Feed input sequence **X** timestep by timestep into network (= vector \mathbf{x}_t with *D* features at each timestep *t*)
- \Box Add previous output \mathbf{h}_{t-1} (=hidden state) to current input \mathbf{x}_t
- $\rightarrow \mathbf{x}_t$ and \mathbf{h}_{t-1} are inputs to compute new \mathbf{h}_t : $\mathbf{h}_t = f(\mathbf{x}_t, \mathbf{h}_{t-1})$

- Typically only single layers recursively connected
- Layer weight matrix W reused (=shared) for all timesteps
- Computation of h_t similar to feedforward networks:

$$\mathbf{h}_{t} = \operatorname{act}\left(\mathbf{W}^{T} \cdot \begin{pmatrix} \mathbf{x}_{t} \\ \mathbf{h}_{t-1} \end{pmatrix} + \mathbf{b}\right)$$

$$\mathbf{h}_{t} \quad \mathbf{h}_{t-1}$$
RNN layer
$$\mathbf{x}_{t}$$

- **RNNs** are in essence a state-space model: $y_t = f(x, y_{t-1})$
- Could be used for sequence classification, sequence generation, control systems, meta learning, ...

- **RNNs** are in essence a state-space model: $y_t = f(x, y_{t-1})$
- Could be used for sequence classification, sequence generation, control systems, meta learning, ...
- RNNs are theoretically Turing Complete
 - For each program in a turing complete programming language, you could find an RNN that executes the code correctly (=you can simulate anything)

- **RNNs** are in essence a state-space model: $y_t = f(x, y_{t-1})$
- Could be used for sequence classification, sequence generation, control systems, meta learning, ...
- RNNs are theoretically Turing Complete
 - For each program in a turing complete programming language, you could find an RNN that executes the code correctly (=you can simulate anything)
 - Like the Universal Approximation Theorem, this is mostly useless in practice

- **RNNs** are in essence a state-space model: $y_t = f(x, y_{t-1})$
- Could be used for sequence classification, sequence generation, control systems, meta learning, ...
- RNNs are theoretically Turing Complete
 - For each program in a turing complete programming language, you could find an RNN that executes the code correctly (=you can simulate anything)
 - Like the Universal Approximation Theorem, this is mostly useless in practice
 - The hard problem is not "what can we represent?" but finding a good representation

- **RNNs** are in essence a state-space model: $y_t = f(x, y_{t-1})$
- Could be used for sequence classification, sequence generation, control systems, meta learning, ...
- RNNs are theoretically Turing Complete
 - For each program in a turing complete programming language, you could find an RNN that executes the code correctly
 - Like the Universal Approximation Theorem, this is mostly useless in practice
 - □ The hard problem is not "what can we represent?" but finding a good representation

RNN Training

Unrolling an RNN

RNN can be viewed as feed forward network with shared weights = unrolled over time

Unrolling an RNN

RNN can be viewed as feed forward network with shared weights = unrolled over time

Back-Propagation Through Time (BPTT)

Most common way to train RNNs: Back-Propagation Through Time (BPTT)

Back-Propagation Through Time (BPTT)

Most common way to train RNNs: Back-Propagation Through Time (BPTT)

Complexity: $\mathcal{O}(N^2T)$

- \Box N: number of hidden units
- \Box T: Length of sequence

Back-Propagation Through Time (BPTT)

Most common way to train RNNs: Back-Propagation Through Time (BPTT)

Complexity: $\mathcal{O}(N^2T)$

- \Box N: number of hidden units
- \Box T: Length of sequence

Truncated BPTT: only unfold *n* timesteps into the past

Real-Time Recurrent Learning (RTRL)

- Alternative to BPTT
- Computes all gradient information during forward pass
- Complexity $\mathcal{O}(N^4) \Rightarrow$ Independent of sequence length
- Very rarely used today

Sequence Learning Settings

Sequence Learning Settings (1)

Alex Graves (2012) distinguishes 3 types of classification tasks for sequence data:

Sequence Classification: 1 label per sequence

Predict color of rose:	The rose is red.	→	{"white", "red"}
------------------------	------------------	---	------------------

Segment Classification: 1 label per part of sequence

Segment colors in sequence:	The rose is red.	-	The rose is red.
-----------------------------	------------------	---	------------------

Temporal Classification: Sequence of labels per sequence

Translate to German:	The rose is red.	٠	Die Rose ist rot.
Task	Input		Prediction

Sequence Learning Settings (2)

Processing data using RNN layers (Karpathy, 2015)

[Taken with modifications from The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

BPTT generates very deep networks ($T \cong \text{depth}$)

→ Vanishing or Exploding Gradients (Hochreiter, 1991)

Vanishing Gradients Problem

BPTT generates very deep networks ($T \cong$ depth) \rightarrow Vanishing or Exploding Gradients (Hochreiter, 1991)

Vanishing Gradients Problem -Consequences

- RNNs tend to forget events that happened a long time ago
- Learning long-term dependencies depends on the recurrent weights
 - \Box If |f'| < 1, we will forget things over time

$$\Box$$
 If $|f'| > 1$, our system is unstable

 \rightarrow we would need |f'| = 1

Idea: Store information indefinitely but be selective about what to store

- Idea: Store information indefinitely but be selective about what to store
- Solution:
 - 1. Integrator
 - · add up information over time
 - store information indefinitely
 - · identity function, no vanishing gradients

- Idea: Store information indefinitely but be selective about what to store
- Solution:
 - 1. Integrator
 - · add up information over time
 - store information indefinitely
 - · identity function, no vanishing gradients
 - 2. Gates
 - hidden units
 - · activations multiplied with input
 - write-access (remembering)
 - read-access (communicating)
 - reset (forgetting)

Idea: Store information indefinitely but be selective about what to store

Solution:

1. Integrator

- · add up information over time
- store information indefinitely
- · identity function, no vanishing gradients
- 2. Gates
 - hidden units
 - · activations multiplied with input
 - write-access (remembering)
 - read-access (communicating)
 - reset (forgetting)

This system is called Long Short-Term Memory (LSTM) (Hochreiter & Schmidhuber, 1997)

Constant Error Carousel (CEC)

Constant Error Carousel (CEC)

New information net_{in} is squashed to scalar c_{in} via function f_{in}

Constant Error Carousel (CEC)

- New information net_{in} is squashed to scalar c_{in} via function f_{in}
- New cell state:

 $c_{s_t}^* = c_{s_{(t-1)}}^* + c_{in_t}$

⇒ simple integrator, no vanishing gradients!

Constant Error Carousel (CEC)

- New information net_{in} is squashed to scalar c_{in} via function f_{in}
- New cell state:

 $c_{s_t}^* = c_{s_{(t-1)}}^* + c_{in_t}$

- ⇒ simple integrator, no vanishing gradients!
- fin: e.g. tanh
- **f**_{s*}: e.g. tanh, *linear*

More terminology

- CEC and gates constitute LSTM block or LSTM unit
- Cell output h (hidden state) is output of LSTM block
- Multiple LSTM blocks in one layer are referred to as LSTM layer

More terminology

- CEC and gates constitute LSTM block or LSTM unit
- Cell output h (hidden state) is output of LSTM block
- Multiple LSTM blocks in one layer are referred to as LSTM layer

Input gate

- Input gate serves as gating/attention mechanism
- c_{in} is multiplied by input gate activation g_{ig} before entering CEC
- *f_{ig}*: e.g. *sigmoid*

Recurrent hidden state

- Input gate and cell input may receive old hidden state h_(t-1) as recurrent input
- In an LSTM layer, the hidden states of all LSTM blocks are the recurrent input per block
- But: fully connected LSTM might not always be the best way to go!

Output gate

- Output gate mechanism analogous to input gate
- Output gate controls if cell state c_s is visible to rest of network

Forget gate

- Forget gate mechanism analogous to other gates
- Can reset or decrease CEC content
- **I** f_{φ} : e.g. sigmoid

Forget gate

- Forget gate mechanism analogous to other gates
- Can reset or decrease CEC content
- **I** f_{φ} : e.g. sigmoid
- ⇒ Problem: this re-introduces vanishing gradients! Only use if necessary!

Learning behavior

- LSTM core (CEC) is an integrator
- Gates introduce complex dynamics
- LSTM blocks (de)activate and complement each other dynamically

Tricks of the trade

- Plot your LSTM cell- and hidden states & start small
- Fully connected LSTM not always needed
- Negative input gate bias helps for long sequences
- Use forget gate only if necessary

LSTM example: Task description

LSTM example: Task description

LSTM example: 1 LSTM (fully connected)

LSTM example: 1 LSTM (fully connected)

LSTM example: 2 LSTM (fully connected)

LSTM example: 32 LSTM (fully connected)

LSTM Formulas

Gated Recurrent Units (GRUs)

Gated Recurrent Units (GRUs)

- Reduced LSTM with merged gates (Cho et al, 2014)
- Suffers from Vanishing Gradients (always forgets)
- Less parameters, easier to use, lower complexity

[Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

LSTM Applications

LSTM Applications

Π...

- LSTM can effectively learn long-term dependencies
- One of the most-used models today
- State of the Art in many applications
 - □ Speech/Text generation and recognition
 - Amino acid sequence classification
 - □ Time-Series classification/generation

Handwriting Generation

from his travels it night have been from his travels it night have been from his travels it night have been from his provide it might have been grown and howels it might have been

more of national temperament nore of national temperament where of national temperament where of national temperament more of national temperament more of instiguent remforchness

[Generating Sequences With Recurrent Neural Networks, A. Graves, arxiv 2013]

Online interactive example: https://www.cs.toronto.edu/~graves/handwriting.html

Source Code Generation

```
static void do command(struct seg file *m, void *v)
int column = 32 << (cmd[2] & 0x80);</pre>
if (state)
  cmd = (int)(int state ^ (in 8(&ch->ch flags) & Cmd) ? 2 : 1);
else
  seg = 1:
for (i = 0; i < 16; i++) {
  if (k & (1 << 1))
    pipe = (in use & UMXTHREAD UNCCA) +
       ((count & 0x0000000fffffff8) & 0x000000f) << 8:
  if (count == 0)
    sub(pid, ppc md.kexec handle, 0x20000000);
  pipe set bytes(i, \Theta);
3
/* Free our user pages pointer to place camera if all dash */
subsystem info = &of changes[PAGE SIZE];
rek controls(offset, idx, &soffset):
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)</pre>
  seg puts(s, "policy "):
```

[The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

Many more examples: http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Image Captioning

A person riding a motorcycle on a dirt road.

A group of young people playing a game of frisbee. india Biogeff

A herd of elephants walking

across a dry grass field.

Two dogs play in the grass.

Two hockey players are fighting over the puck.

A little girl in a pink hat is blowing bubbles.

A red motorcycle parked on the

side of the road.

A dog is jumping to catch a

A refrigerator filled with lots of food and drinks.

A vellow school bus parked

Describes without errors

Describes with minor errors

Somewhat related to the image

[Show and Tell: A Neural Image Caption Generator, Vinyals & Toshev & Bengio & Erhan, arxiv 2015]

Language Translation

Туре	Sentence
Our model	Ulrich UNK, membre du conseil d'administration du constructeur automobile Audi,
	affirme qu' il s' agit d' une pratique courante depuis des années pour que les téléphones
	portables puissent être collectés avant les réunions du conseil d'administration afin qu'ils
	ne soient pas utilisés comme appareils d'écoute à distance .
Truth	Ulrich Hackenberg, membre du conseil d'administration du constructeur automobile Audi,
	déclare que la collecte des téléphones portables avant les réunions du conseil , afin qu' ils
	ne puissent pas être utilisés comme appareils d'écoute à distance , est une pratique courante
	depuis des années .
Our model	"Les téléphones cellulaires , qui sont vraiment une question , non seulement parce qu' ils
	pourraient potentiellement causer des interférences avec les appareils de navigation , mais
	nous savons , selon la FCC , qu' ils pourraient interférer avec les tours de téléphone cellulaire
	lorsqu' ils sont dans l' air ", dit UNK .
Truth	"Les téléphones portables sont véritablement un problème, non seulement parce qu'ils
	pourraient éventuellement créer des interférences avec les instruments de navigation, mais
	parce que nous savons , d' après la FCC , qu' ils pourraient perturber les antennes-relais de
	téléphonie mobile s' ils sont utilisés à bord ", a déclaré Rosenker.
Our model	Avec la crémation, il y a un " sentiment de violence contre le corps d' un être cher ",
	qui sera "réduit à une pile de cendres " en très peu de temps au lieu d' un processus de
	décomposition " qui accompagnera les étapes du deuil ".
Truth	Il y a , avec la crémation , " une violence faite au corps aimé " ,
	qui va être " réduit à un tas de cendres " en très peu de temps , et non après un processus de
	décomposition, qui "accompagnerait les phases du deuil".

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth translations. The reader can verify that the translations are sensible using Google translate.

Hydrology Forecasts

[Sequence to Sequence Learning with Neural Networks, Kratzert & Herrneggerr & Klotz & Hochreiter & Klambauer]
Transformers, Attention, and Modern Hopfield Networks

- Assume we have a set or bag of instances per sample $\mathbf{X} = \{\mathbf{x}_0, \dots, \mathbf{x}_T\}$
- We can compute an attention weight a for each instance and combine the instances
 - \Box Function *g* computes attention weight:

$$a_i^* = g(\mathbf{x}_i)$$

□ Normalization e.g. via softmax:

 $\mathbf{a}=\text{softmax}\left(\mathbf{a}^{*}\right)$

- □ Combination of instances, e.g. via weighted sum: $\mathbf{h} = \sum_{i=1}^{T} (a_i * \mathbf{x}_i)$
- $\rightarrow\,$ We can attend to (=retrieve) specific instances in ${\bf X}$

Assume we want a^{*}_i to incorporate information about other instances in the bag

... we could compute a outer product of our instance representations (combine everything with everything)

Assume we want a^{*}_i to incorporate information about other instances in the bag

... we could compute a outer product of our instance representations...

Assume we want a^{*}_i to incorporate information about other instances in the bag

... we could compute a outer product of our instance representations... or better yet:

■ Map our instances X to queries Q, keys K, and values V before the product! →Transformer self-attention (Vaswani et al, 2017)

More details on Transformers: https://www.youtube.com/watch?v=iDulhoQ2pro

Modern Hopfield Networks (1)

At closer inspection, such attention and memory mechanisms seem familiar?

Modern Hopfield Networks (1)

At closer inspection, such attention and memory mechanisms seem familiar?

Classic binary Hopfield networks:

Sum of outer products is a simple associative memory! (Hebbian learning rule)

1. Store patterns X in matrix W

$$W = \sum_{i}^{N} x_{i} x_{i}^{T}$$
 with $x \in \{-1, 1\}^{D}$
2. Retrieve pattern ξ^{*} based on query ξ

$$\boldsymbol{\xi^*} = \operatorname{sgn}(\boldsymbol{W}\boldsymbol{\xi}^t - \boldsymbol{b})$$

Modern Hopfield Networks (2)

Ramsauer et al (2020) generalized binary modern Hopfield networks to continuous modern Hopfield networks (MHN)

- Differentiable and can be used as memory-equipped layers or pooling layers in NNs
- □ Very large memory capacity (Widrich et al, 2020)
- Special case of MHN: Transformer self-attention

More details on MHN: https://ml-jku.github.io/hopfield-layers, https://www.youtube.com/watch?v=nv6oFDp6rNQ

MHN: Tricks of the trade (1)

MHN are order-invariant w.r.t. instances $\mathbf{X} = {\mathbf{x}_0, \dots, \mathbf{x}_T}$

□ Instances might need position information

□ Might need to mask out future information in the sequence

Associative memory of MHN can retrieve specific instances or meta-stable states

Interpolate between instances in high-dimensional space

LSTM integrate information along sequence, MHN rather pinpoint sequence positions

LSTM or MHN better depending on task

MHN: Tricks of the trade (2)

Attention matrix creates dynamic virtual weights

- Relations between intances/features can be freely learned,
 e.g. learning to behave like CNN (Dosovitskiy et al, 2020)
- Less assumptions on input relations BUT requires more data to learn the relations
- Fast computation (parallel) if embedding allows for parallelization
- Reduction of memory consumption exist, e.g. via Performers (Choromanski et al, 2021)
- MHN allow for different realizations
 - From very sample efficient (similar to SVM or KNN) to high complexity like Transformers https://ml-jku.github.io/hopfield-layers

Summary

Recurrent Neural Networks (RNNs):

- □ Can handle sequence data of variable length
- Turing Complete but Vanishing Gradients problem
- Long Short-Term Memory (LSTM):
 - □ Integrator with gating mechanisms
 - Solves Vanishing Gradients problem
- Transformers, attention, modern Hopfield networks:
 - □ Sample is set/bag of instances (feature vectors)
 - Attention weight computed for each instance and used for weighted sum over instances
 - Requires information about instance position in sequences

Slides:

https://github.com/widmi/aidd-school-2021-rnn-lstm-mhn 55/55