RECURRENT NEURAL
NETWORKS

Introduction to RNNs, LSTMs, Transformers

4

Michael Widrich
Institute for Machine Learning

J\eU JxU

EEEEEEEEEEEEEE
IIIIIIIIIIIIII

Overview

Standard recurrent neural networks (RNNs) and their great potentials
Sequence learning settings - using RNNs for different tasks

Classic RNNs and the Vanishing Gradients Problem

Long Short-Term Memory networks (LSTM)

Quick introduction to Transformers and modern Hopfield networks

1/55

Basics of Recurrent
Neural Networks
(RNNSs)

Feedforward Neural Networks

B Size of input vector x is fixed
B Spatial relations of elements in sequence of inputs lost
J No direct information about order of features
[J Restricted work-around:
Windowing via convolution (1D CNN)

layer output h = act (W”x)

M hidden units with
@ @ @ activation function act()
o X W weigth matrix W € RPXM

@ @ input vector x € RP*1

2/55

Recurrent Neural Networks (RNNs) (1)

B Assume a sample is a sequence of length T with D
features at each timestep t.

0 Each sample represented by matrix X of shape 7' x D
O T may vary between samples but D is constant

3/55

Recurrent Neural Networks (RNNs) (1)

B Assume a sample is a sequence of length T with D
features at each timestep t.

0 Each sample represented by matrix X of shape 7' x D
O T may vary between samples but D is constant

B To address the mentioned limitations of feedforward
networks, our network needs to:

1. be able to handle variable sequence lengths T,
2. remember previous inputs within a sequence

3/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep t)
[J Add previous output h;_; (=hidden state) to current input x;
— x¢ and h,_; are inputs to compute new h;: h; = f(x;,h;_1)

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep t)
[J Add previous output h;_; (=hidden state) to current input x;
— x¢ and h,_; are inputs to compute new h;: h; = f(x;,h;_1)

¥

RNN m%
QQ -

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep t)
[J Add previous output h;_; (=hidden state) to current input x;
— x¢ and h,_; are inputs to compute new h;: h; = f(x;,h;_1)

¢
B olBes

(&

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep t)
[J Add previous output h;_; (=hidden state) to current input x;
— x¢ and h,_; are inputs to compute new h;: h; = f(x;,h;_1)

®

RNN m%
QQ -

(&

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep t)
[J Add previous output h;_; (=hidden state) to current input x;
— x¢ and h,_; are inputs to compute new h;: h; = f(x;,h;_1)

®

RNN m%
QL :

4/55

Recurrent Neural Networks (RNNs) (2)

B Solution: Recurrent Neural Networks (RNNs)
[J Feed input sequence X timestep by timestep into network
(= vector x; with D features at each timestep ¢)
[J Add previous output h;_; (=hidden state) to current input x,
— x¢ and h;_; are inputs to compute new h;: h; = f(x;,h;_1)

h,
h:.,
RNN layef
/ / oo /
X

4/55

Recurrent Neural Networks (RNNs) (3)

B Typically only single layers recursively connected
B Layer weight matrix W reused (=shared) for all timesteps
B Computation of h; similar to feedforward networks:

h, = act [WT. Xt +b
h;

h,
h:.,

RNN layef

S)(S) e (S

X¢ 5/55

Power of RNNs

B RNNs are in essence a state-space model: y; = f(x,y:—1)

B Could be used for sequence classification, sequence
generation, control systems, meta learning, ...

6/55

Power of RNNs

B RNNs are in essence a state-space model: y; = f(x,y:—1)

B Could be used for sequence classification, sequence
generation, control systems, meta learning, ...
B RNNs are theoretically Turing Complete

[J For each program in a turing complete programming
language, you could find an RNN that executes the code

correctly (=you can simulate anything)

6/55

Power of RNNs

B RNNs are in essence a state-space model: y; = f(x,y:—1)

B Could be used for sequence classification, sequence
generation, control systems, meta learning, ...
B RNNs are theoretically Turing Complete
[J For each program in a turing complete programming
language, you could find an RNN that executes the code
correctly (=you can simulate anything)
[J Like the Universal Approximation Theorem, this is mostly

useless in practice

6/55

Power of RNNs

B RNNs are in essence a state-space model: y; = f(x,y:—1)

B Could be used for sequence classification, sequence
generation, control systems, meta learning, ...

B RNNs are theoretically Turing Complete
[J For each program in a turing complete programming
language, you could find an RNN that executes the code
correctly (=you can simulate anything)
[J Like the Universal Approximation Theorem, this is mostly

useless in practice
O The hard problem is not “what can we represent?” but
finding a good representation

6/55

Power of RNNs

B RNNs are in essence a state-space model: y; = f(x,y:—1)

B Could be used for sequence classification, sequence
generation, control systems, meta learning, ...
B RNNs are theoretically Turing Complete

[J For each program in a turing complete programming
language, you could find an RNN that executes the code

correctly
[J Like the Universal Approximation Theorem, this is mostly

useless in practice
O The hard problem is not “what can we represent?” but
finding a good representation

6/55

RNN Training

Unrolling an RNN

B RNN can be viewed as feed forward network with shared
weights = unrolled over time

7/55

Unrolling an RNN

B RNN can be viewed as feed forward network with shared
weights = unrolled over time

PO I T

G I

8/55

Back-Propagation Through Time (BPTT)

B Most common way to train RNNs: Back-Propagation

Through Time (BPTT)

b

RNN lay

&
200

RNN layer

Y
)0

=

%

v
290
c

9/55

Back-Propagation Through Time (BPTT)

B Most common way to train RNNs: Back-Propagation
Through Time (BPTT)

PN

@ _ G
5 6 6

B Complexity: O(N?T)
0 N: number of hidden units
J T: Length of sequence

9/55

Back-Propagation Through Time (BPTT)

B Most common way to train RNNs: Back-Propagation
Through Time (BPTT)

PN

@ _ G
5 6 6

B Complexity: O(N?T)
0 N: number of hidden units
J T: Length of sequence

B Truncated BPTT: only unfold n timesteps into the past

9/55

Real-Time Recurrent Learning (RTRL)

B Alternative to BPTT

B Computes all gradient information during forward pass
B Complexity O(N*) = Independent of sequence length
B Very rarely used today

10/55

Sequence Learning
Settings

Sequence Learning Settings (1)

B Alex Graves (2012) distinguishes 3 types of classification
tasks for sequence data:

Sequence Classification: 1 label per sequence

Predict color of rose: The rose is red. |==| {"white", "red"}

Segment Classification: 1 label per part of sequence

Segment colors in sequence: | The rose is red. || The rose is red.

Temporal Classification: Sequence of labels per sequence

Translate to German: The rose is red. || Die Rose ist rot.

Task Input Prediction

11/55

Sequence Learning Settings (2)

B Processing data using RNN layers (Karpathy, 2015)

Feed-Forward Temporal Sequence Temporal / Segment Segment
I\\J Classification Classification Classification/ Classificati Classification
one to one one to many many to one many to many many to many

~= 10§ "9 “ji 90
e [[HH) CHH]

e [] OO0 OO0 DOO

sequence posntlons

[Taken with modifications from The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

12/55

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Vanishing Gradients Problem

B BPTT generates very deep networks (T = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (T = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

[N
TS Gl AR AT
% &6 &

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

(hy

RNN layer

G
6%

80 0

alopie)

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

Gradien@

RNN layef

G
6%

alopie)

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

el
20 >0

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

20 >0

RNN m\%

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

200

RNN m\%

13/55

Vanishing Gradients Problem

B BPTT generates very deep networks (7" = depth)
— Vanishing or Exploding Gradients (Hochreiter, 1991)

200

LloPe

13/55

Vanishing Gradients Problem -
Consequences

B RNNs tend to forget events that happened a long time ago

B Learning long-term dependencies depends on the
recurrent weights
O If | f'| < 1, we will forget things over time
O If |f’| > 1, our system is unstable
— we would need |f'| =1

14/55

Long Short-Term Memory
(LSTM)

Long Short-Term Memory (LSTM)

B Idea: Store information indefinitely but be selective about
what to store

15/55

Long Short-Term Memory (LSTM)

B Idea: Store information indefinitely but be selective about
what to store
B Solution:
1. Integrator
+ add up information over time
« store information indefinitely
* identity function, no vanishing gradients

15/55

Long Short-Term Memory (LSTM)

B Idea: Store information indefinitely but be selective about
what to store
B Solution:
1. Integrator
+ add up information over time
« store information indefinitely
* identity function, no vanishing gradients
2. Gates
* hidden units
« activations multiplied with input
+ write-access (remembering)
» read-access (communicating)
« reset (forgetting)

15/55

Long Short-Term Memory (LSTM)

B Idea: Store information indefinitely but be selective about
what to store
B Solution:
1. Integrator
+ add up information over time
« store information indefinitely
* identity function, no vanishing gradients
2. Gates
* hidden units
« activations multiplied with input
+ write-access (remembering)
» read-access (communicating)
« reset (forgetting)

B This system is called Long Short-Term Memory (LSTM)
(Hochreiter & Schmidhuber, 1997)

15/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC) cell output Th

LSTM block

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC) cell omput Th

B New information net;, is LSTM block
squashed to scalar ¢;,, via
function f;,

cell input

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC) cell output Th

B New information net;, is LSTM block
squashed to scalar ¢;,, via
function f;,

B New cell state:

— o X
Cst = Csu T Ciny

= simple integrator, no
vanishing gradients!

cell input

16/55

Long Short-Term Memory (LSTM)

Constant Error Carousel (CEC)

B New information net;, is
squashed to scalar ¢;,, via
function f;,

B New cell state:
c, = c:(t_l) + Cin,

= simple integrator, no
vanishing gradients!

B f;,,: e.g. tanh

B f,-: e.g. tanh, linear

cell output Th

LSTM block

cell input

16/55

Long Short-Term Memory (LSTM)

More terminology

B CEC and gates constitute
LSTM block or LSTM unit

B Cell output & (hidden state)
is output of LSTM block

B Multiple LSTM blocks in one
layer are referred to as
LSTM layer

cell output Th

LSTM block

17/55

Long Short-Term Memory (LSTM)

More terminology

B CEC and gates constitute
LSTM block or LSTM unit

B Cell output & (hidden state)
is output of LSTM block

B Multiple LSTM blocks in one
layer are referred to as
LSTM layer

17/55

Long Short-Term Memory (LSTM)

Input gate

B Input gate serves as
gating/attention mechanism

H ¢, is multiplied by input gate
activation g;, before entering
CEC

B f,,: eg. sigmoid

18/55

Long Short-Term Memory (LSTM)

Output
node
hy hiy

cell output |h

Recurrent hidden state

B Input gate and cell input may LSTM block
receive old hidden state
h(—1) as recurrent input

B In an LSTM layer, the hidden
states of all LSTM blocks are
the recurrent input per block

B But: fully connected LSTM
might not always be the best
way to go!

19/55

Long Short-Term Memory (LSTM)

Output gate

B Output gate mechanism
analogous to input gate

B Output gate controls if cell
state ¢, is visible to rest of
network

B f,,: eq. sigmoid

by

Output
node
hery

cell output |h

LSTM block Sog

A,
S
output gate

* s*
Cs,, *
s

CEC (8 cell state

8ig
A,
Cin -
input gate

cell input /

f
/)

net,,

n

ety

20/55

Long Short-Term Memory (LSTM)

Forget gate

B Forget gate mechanism
analogous to other gates

B Can reset or decrease CEC
content

B f,:e.g. sigmoid

Output
node
hen Doy hiy

cell output |h

LSTM block Sog net
fos
N0

output gate

* s*

\ G o
net,;

jw B¢ CEC A cell state

forget gate
Sig net
v

ig
Ciu .
input gate

cell input [
n
" nety,

|

Input
node

21/55

0g

g

Long Short-Term Memory (LSTM)

Output
node
hey hey h1y

Forget gate cell output |h
B Forget gate mechanism LSTM block B (Ynls
(i og
analogous to other gates output gate
B Can reset or decrease CEC \ S c
content pete j“ 8s. ¢ CEC A cell state
. . forget gate g A
B f,:e.q. sigmoid o AR
Gn input gate
= Problem: this re-introduces cell input (_/f-
vanishing gradients! Only et

use if necessary! -—
node

21/55

Long Short-Term Memory (LSTM)

Learning behavior

B LSTM core (CEC) is an
integrator

B Gates introduce complex
dynamics

B LSTM blocks (de)activate
and complement each other
dynamically

Output
node
hen By Ny

cell output |h

C 5 \
output gate

* s*

\ Csen
net,;

CS
j{.) B¢ CEC A cell state

forget gate
Sig net
A,
Cin 2
input gate
cell input fm

S~ ng{in
]

Input
node

22/55

LSTM block Zog [net,,
o

g

Long Short-Term Memory (LSTM)

Output
node
hey ey h1y

Tricks of the trade

B Plot your LSTM cell- and
hidden states & start small

B Fully connected LSTM not

always needed

B Negative input gate bias
helps for long sequences

H Use forget gate only if

necessary

cell output |h

LSTM block

j B¢ CEC

forget gate

cell input

*
\ Csen
net,

[net,,
= (ol

output gate
A,

o*
-
Cs

f,)cellstate

i net,,
AN

Cin -
input gale\
A,

f
Ik,
!

Input
node

23/55

LSTM example: Task description

class 1

class 0

1.04

input os;

0.0+

feature 1
L/ [\

N\

featljre 2‘

23/55

LSTM example: Task description

class 1

class 0

1.04

input os;

0.0+

n

featljre 2‘

feature 1
L/ [\

/

class 0: feature 1 and feature 2 active at same time

23/55

LSTM example: 1 LSTM (fully connected)

class 1

class 0

1.04

input os;

0.0+

0.0

output -os+

~1.04

cell input ™’]

—~0.84

input gate 055:

0.60

1.0

output gate o3

0.0+

/A

N/
cellstare *|
L
/\—’\\’

Created with: https://github.com/widmi/widis-1stm-tools

https://github.com/widmi/widis-lstm-tools

LSTM example: 1 LSTM (fully connected)

class 1 class 0
1.0 1.0
input osq 05
0.0 0.0
0.0 0.0
Output -0.51 -0.5
-1.0+ -1.0
0+ 0

cellstate

cell input ™’]

—~0.84

input gate 055:

0.60

MG

1.0

output gate o3

0.0+

-

0

2

4

6

10

Created with: https://github.com/widmi/widis-1stm-tools

https://github.com/widmi/widis-lstm-tools

LSTM example: 2 LSTM (fully connected)

class 1 class 0

1.0
0.0

1.04

input os;

0.0+
19

output of

—14

254
cellstate oo

254

19

cell input oy

14
1.0

input gate o1

0.8

1.0

output gate]

i
a

10 0 2 4 6 8 10

Created with: https://github.com/widmi/widis-1stm-tools

https://github.com/widmi/widis-lstm-tools

LSTM example: 32 LSTM (fully connected)

input

output

cellstate

cell input

input gate

output gate ..

class 1 class 0

1.0

0.5

0.0
1

04

Created with: https://github.com/widmi/widis-1lstm-tools

https://github.com/widmi/widis-lstm-tools

LSTM Formulas

cell output
output o . recurrent
27

LSTM cell

recurrent

ANY

o
'\ recurrent
cell input

z = g(sz’ + RZyF1 + bz)
c(Wix' + Riy'"™ ! + b)

(
f' = c(Wex' + Ry y’_1 + b))
¢

1

oz + o
o = (J'(W,:, x' + R,

v =o' @ h(c)

¢ =i

4 ba)

recurrent
’
Jo

Legend

feedforward data flow
recurrent data flow

feedforward weights
recurrent weights
branching point
mutliplication

sum over all inputs

gate activation function
(usually sigmoid)

input activation function
(usually tanh or sigmoid)

:
@
@
c

cell input

output activation function
(usually tanh or sigmoid)

input gate
forget gate
cell state
output gate

cell output

27/55

Gated Recurrent Units
(GRUs)

Gated Recurrent Units (GRUs)

B Reduced LSTM with merged gates (Cho et al, 2014)
B Suffers from Vanishing Gradients (always forgets)
B Less parameters, easier to use, lower complexity
hy
~N 2zt =0 (W, - [ht—1,4])
T =0 (W [heey,)
hy = tanh (W - [ry % hy_1, 24])

hi_y r

ht:<1—2t)*ht_1+zt*ﬁt

xl

[Image source: http://colah.github.io/posts/2015-08-Understanding-LSTMs/]

28/55

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

LSTM Applications

LSTM Applications

B LSTM can effectively learn long-term dependencies

B One of the most-used models today

B State of the Art in many applications
[J Speech/Text generation and recognition
[J Amino acid sequence classification
[J Time-Series classification/generation
...

29/55

Handwriting Generation

\L,N k% *\aduk \\—__v L~ L\c\\\g_ E&M\
'FM Ne er,,eﬁi B W\SM heve. bece mae ff »’\M/Lo'v\afc Eﬁ"fw\f\mﬂ/wwé

{row\ s havde ¥ W‘.“b)‘)r have_ b, e MH'W& Aemr@w
more o ational. teymparanart

frore ln facdo QWWWW wee ol matupipl bempoamol
dwmuaq Kewallo ﬂA’WﬁJ' hase o note. of 1B4d fempengomont

[~ TLMD’“T“W”’;
from i vl gl b v

mo(e (9} Mt/\‘i—\v.av-a

[Generating Sequences With Recurrent Neural Networks, A. Graves, arxiv 2013]

Online interactive example: https://www.cs.toronto.edu/ graves/handwriting.html

30/55

https://www.cs.toronto.edu/~graves/handwriting.html

Source Code Generation

static void do_command(struct seq file *m, void *v)

{
int column = 32 << (cmd[2] & 0x80);
if (state)
cmd = (int)(int_state ~ (in_8(&ch->ch _flags) & Cmd) 7 2 : 1);
else
seq = 1;

for (i =0; i< 16; i+) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & fffffffe) & f) << 8;
if (count == 0)
sub(pid, ppc_md.kexec_handle, 8x20008000);
pipe set bytes(i, 0);
¥

Free ou u T 0
subsystem_info = &of_change
rek _controls(offset
we want to
control_check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)

seq_puts(s, "policy ");

'S

[The Unreasonable Effectiveness of Recurrent Neural Networks, A. Karpathy, 2015]

Many more examples: http://karpathy.github.i0/2015/05/21/rnn-effectiveness/

31/55

http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Image Captioning

A person riding a
motorcycle on a dirt road.

Two dogs play in the grass. A skateboarder does a trick
on a ramp.

A dog is jumping to catch a
frisbee.

A group of young people

Twn hockey players are A little girl in a pink hat is
playing a game of frisbee. fighti

ting over the puck. blowlng bubbles,,
43

A close up of a cat laying

onacoushs A yellow school bus parked

—=====in a parking lot.

| Describeswithoutemors Desecrbes withminorerrors Somewhatelated o the image

[Show and Tell: A Neural Image Caption Generator, Vinyals & Toshev & Bengio & Erhan, arxiv 2015]

32/55

Language Translation

Type

Sentence

Our model

Ulrich UNK . membre du conseil d* administration du constructeur automobile Audi .,
affirme qu” il s” agit d’ une pratique courante depuis des années pour que les téléphones
portables puissent étre collectés avant les réunions du conseil d’ administration afin qu’ ils
ne soient pas utilisés comme appareils d* écoute a distance .

Truth

Ulrich Hackenberg , membre du conseil d’ administration du constructeur automobile Audi,
déclare que la collecte des téléphones portables avant les réunions du conseil , afin qu’ ils

ne puissent pas étre utilisés comme appareils d’ écoute a distance , est une pratique courante
depuis des années .

Our model

** Les téléphones cellulaires , qui sont vraiment une question , non seulement parce qu’ ils
pourraient potentiellement causer des interférences avec les appareils de navigation , mais
nous savons , selon la FCC , qu’ ils pourraient interférer avec les tours de téléphone cellulaire
lorsqu’ ils sont dans 1” air 7, dit UNK

Truth

** Les téléphones portables sont véritablement un probléme , non seulement parce qu’ ils
pourraient éventuellement créer des interférences avec les instruments de navigation , mais
parce que nous savons , d” aprés la FCC , qu ils pourraient perturber les antennes-relais de
téléphonie mobile s’ ils sont utilisés a bord ”, a déclaré Rosenker .

Our model

Avec la crémation , il y a un * sentiment de violence contre le corps d” un étre cher
qui sera “ réduit & une pile de cendres ” en trés peu de temps au lieu d” un processus de
décomposition * qui accompagnera les étapes du deuil ”.

Truth

Iy a, avec la crémation , * une violence faite au corps aimé ”
qui va étre “ réduit & un tas de cendres " en trés peu de temps , et non apres un processus de
décomposition , qui “ accompagnerait les phases du deuil ” .

Table 3: A few examples of long translations produced by the LSTM alongside the ground truth

translations. The reader can verify that the translations are sensible using Google translate.

[Sequence to Sequence Learning with Neural Networks, Sutskever & Vinyals & Le, NIPS 2014]

33/55

Hydrology Forecasts

Snow cover fraction (SCF) cell: corr=0.80, p=2.17e-66

—— MODIS SCF
—— LSTM cell

Normalized scficell state

2007 2008 2009 2010 2011 2012 2013 2014

[Sequence to Sequence Learning with Neural Networks, Kratzert & Herrneggerr & Klotz & Hochreiter & Klambauer]

34/55

Transformers, Attention,
and Modern Hopfield
Networks

Differentiable Attention

B Assume we have a set or bag of instances per sample
X = {Xo,...,XT}
B We can compute an attention weight a for each instance
and combine the instances
0 Function g computes attention weight:
ai = g(xi)
J Normalization e.g. via softmax:
a = softmax (a*)
0 Combination of instances, e.g. via weighted sum:
T
h = ZO (ai * Xi)

— We can attend to (=retrieve) specific instances in X

35/55

Differentiable Attention

X
X
X1
X
11T

Xt

36/55

Differentiable Attention

X gx)

X -
X
X

xr NN

L1

a*
a*,
a*

a*2

a*T.

37/55

Differentiable Attention

X gx) a* somax(a) a
X — a% ay
X a *1 a,
X2 a* > a

a*T. ar [

L1

xr NN

38/55

Differentiable Attention

X gx) a* somax(a) a
X — a% ay
X a *1 a,
X2 a* > a

a*T. ar [

NS
j-H-

L1

xr NN

39/55

Transformer self-attention (1)

B Assume we want] to incorporate information about other
instances in the bag

... we could compute a outer product of our instance
representations (combine everything with everything)

40/55

Transformer self-attention (1)

T x D
X
Xo
X1
X2
L

X7

41/55

Transformer self-attention (1)

T xD TxF

X gkx) P
=
— D
— D

-—-PT

42/55

Transformer self-attention (1)

dot product

PrPo n"

Po
P
P

Pr [

43/55

Transformer self-attention (1)

TxF TxT

TxD
X gx) P PP
Xy — Do
X)4
X, P2
X7 - Pr -

/F]]
dot product
PP, Q.‘
w &

SESEN

IR

44/55

Transformer self-attention (1)

TxF TxT TxT TxD TxD

P softmax(PP)X H
- ! | ;
hy

7 Hn l kN

dot praduct
pi-p;

45/55

Transformer self-attention (1)

TxF TxT TxT TxD TxD
X g(XJ P softmax(PP)X H
- h
— I
. hy
|I
1 —_— H :
||
X — l h

dot praduct
pi-p;
w &

46/55

Transformer self-attention (1)

TxF TxT TxT TxD TxD

X g(XJ P softmax(PP)X H
s - ! --I ho .
X hy
X, h2

xr g

llll

7 Hn [| kN

dot praduct
pi-p;
w &

47/55

Transformer self-attention (1)

T xD TxF TxT TxT TxD TxD

P softmax(PP)X H
- !I ;
hy

pr N [| kN

dot praduct
pi-p;
- &

48/55

Transformer self-attention (1)

TxF TxT TxT TxD TxD

X g(XJ P softmax(PP)X H
s - ! l ho .
X hy
X, h2

x: Y

llll

7 Hn l kN

dot praduct
pi-p;
w &

49/55

Transformer self-attention (2)

B Assume we want a; to incorporate information about other
instances in the bag
...we could compute a outer product of our instance
representations. ..

50/55

https://www.youtube.com/watch?v=iDulhoQ2pro

Transformer self-attention (2)

B Assume we want a; to incorporate information about other
instances in the bag
...we could compute a outer product of our instance
representations. .. or better yet:

B Map our instances X to queries Q, keys K, and values V
before the product! —Transformer self-attention (Vaswani
et al, 2017)

z =softmax (8 X Wq WL XT) X Wy

R

one instance as feature vector

More details on Transformers: https://www.youtube.com/watch?v=iDulhoQ2pro

50/55

https://www.youtube.com/watch?v=iDulhoQ2pro

Modern Hopfield Networks (1)

B At closer inspection, such attention and memory
mechanisms seem familiar?

51/55

Modern Hopfield Networks (1)

B At closer inspection, such attention and memory
mechanisms seem familiar?

B Classic binary Hopfield networks:
Sum of outer products is a simple associative memory!
(Hebbian learning rule)
1. Store patterns X in matrix W
W ="V x;xT with x € {~1,1}P
2. Retrieve pattern £* based on query &
£ =sgn(W¢' —b)

51/55

Modern Hopfield Networks (2)

B Ramsauer et al (2020) generalized binary modern Hopfield
networks to continuous modern Hopfield networks (MHN)
(] Differentiable and can be used as memory-equipped layers

or pooling layers in NNs
J Very large memory capacity (Widrich et al, 2020)
0 Special case of MHN: Transformer self-attention

VA =softmax(ﬂ R Wy WT YT) Y Wy

I - v 8 e @

More details on MHN: https://ml- jku.github.io/hopfield-1layers,
https://www.youtube.com/watch?v=nv6oFDp6rNQ

52/55

https://ml-jku.github.io/hopfield-layers
https://www.youtube.com/watch?v=nv6oFDp6rNQ

MHN: Tricks of the trade (1)

B MHN are order-invariant w.r.t. instances X = {xo,...,xr}

[Instances might need position information
[J Might need to mask out future information in the sequence

B Associative memory of MHN can retrieve specific
instances or meta-stable states

O Interpolate between instances in high-dimensional space

B LSTM integrate information along sequence, MHN rather
pinpoint sequence positions
[0 LSTM or MHN better depending on task

53/55

MHN: Tricks of the trade (2)

B Attention matrix creates dynamic virtual weights

[J Relations between intances/features can be freely learned,
e.g. learning to behave like CNN (Dosovitskiy et al, 2020)

(] Less assumptions on input relations BUT requires more
data to learn the relations

[J Fast computation (parallel) if embedding allows for
parallelization

[J Reduction of memory consumption exist, e.g. via
Performers (Choromanski et al, 2021)

B MHN allow for different realizations

O From very sample efficient (similar to SVM or KNN) to high
complexity like Transformers
https://ml-jku.github.io/hopfield-layers

54/55

https://ml-jku.github.io/hopfield-layers

Summary

Summary

B Recurrent Neural Networks (RNNs):
[0 Can handle sequence data of variable length
O Turing Complete but Vanishing Gradients problem

B Long Short-Term Memory (LSTM):
O Integrator with gating mechanisms
[J Solves Vanishing Gradients problem

B Transformers, attention, modern Hopfield networks:
[0 Sample is set/bag of instances (feature vectors)
0 Attention weight computed for each instance and used for
weighted sum over instances
[0 Requires information about instance position in sequences

Slides:

https://github.com/widmi/aidd-school-2021-rnon-1lstm-mhn
55/55

https://github.com/widmi/aidd-school-2021-rnn-lstm-mhn

	Standard recurrent neural networks (RNNs) and their great potentials
	Sequence learning settings - using RNNs for different tasks
	Classic RNNs and the Vanishing Gradients Problem
	Long Short-Term Memory networks (LSTM)
	Quick introduction to Transformers and modern Hopfield networks

