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“.. a fraction whose numerator is the number of favorable cases and whose
denominator is the number of all the cases possible.”

Pierre-Simon Laplace

relative frequency of occurrence after repeating a process a large
number of times under similar conditions

degree of reasonable belief

tendency of a given type of physical
situation to yield an outcome



Classical

“.. a fraction whose numerator is the number of favorable cases and whose
denominator is the number of all the cases possible.”

Pierre-Simon Laplace

Frequentist

relative frequency of occurrence after repeating a process a large
number of times under similar conditions

Subjective, epistemic or Bayesian
Propensity degree of reasonable belief

tendency of a given type of physical
situation to yield an outcome



Interpretation

Measurement of constant in nature (e.g. the fine structure constant)
with a given measurement error (Gaussian noise with =0.001)

Result: 0.007114

What is the more probable value of the fine structure constant?
42 0r 1/137

What is that even means? We have a single universe (what we can observe), with a definite value
of this constant!



Interpretation

Measurement of constant in nature (e.g. the fine structure constant)
with a given measurement error (Gaussian noise with =0.001)

Result: 0.007114

What is the more probable value of the fine structure constant?
42 or 1/137

What is that even means? We have a single universe (what we can observe), with a definite value
of this constant!

“extinction of the dinosaurs was probably caused by a large meteorite hitting the earth”

What does it mean? It was caused or it was not, there is no in between.



Bayesian Probability

Probability as

e Reasonable expectation
e Degree of belief
e State of knowledge

P(H|D):P<D]|f(f gjﬂ )

Thomas Bayes

Bayes’ theorem

e have an epistemic / subjectivist
interpretation
e istrueindependent of interpretations

Pierre-Simon Laplace



Bayesian Probability

P(H|D):P(Dﬁl)£(ﬂ )
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Bayesian Probability

Probability of the hypothesis
before observing the evidence
prior “a priori”
P(D|H)P(H)
P (H | D ) — P(D)
hd TTaVC arT CPTSTCTTITC 7 SUDJTTTTVIST
interpretation m

° true independent of interpretations . .
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Bayesian Probability

Probability of the hypothesis
before observing the evidence
likelihood prior “a priori”
__P(D|H)P(H)
P(H|D)="10)!
e ¢!

° true independent of interpretations . .
P s Pierre-Simon Laplace



Bayesian Probability

Probability of the hypothesis Probability of the hypothesis
after observing the evidence before observing the evidence
a posteriori” posterior ,Iikelihood‘ , prjor ‘ a priori”
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Bayesian Probability

Probability of the hypothesis Probability of the hypothesis
after observing the evidence before observing the evidence
“a posteriori” posterior ,Iikelihood‘ , prjor ‘ “a priori”
P(H|D)= P(D|H)P(H)
P(D)
%_/

marginal

likelihood P(D):/P(D|H)P(H)dH
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interpretation m
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Bayesian Probability

Probability of the hypothesis Probability of the hypothesis
after observing the evidence before observing the evidence
“a posteriori” posterior ,Iikelihood‘ , prjor ‘ “a priori”
P(H|D)= P(D|H)P(H)
P(D)
inal
margina
likelihood P(D):/P(D|H)P(H)dH
This integral is most often /‘
intractable!
A 4 rnavye GIIC}JIDLCIIII\-I DUUJC\—LIVIDL
interpretation m

° true independent of interpretations . .
P s Pierre-Simon Laplace



Bayesian Probability

updated prior
|Ike|lh00d (previous posterior)

updated posterior

A

| HYP(H|D;_,.D;s_s....)
(H|DZ,DZ_1, )= P(D;|H) &D(llji)z 1 Di—2,...)
marginal

likelihood

A 4 rnavye GIICPIDLCIIII\-I DUUJC\.LIVIDL
interpretation m

° true independent of interpretations . .
P s Pierre-Simon Laplace



Objectivist interpretation

e Rational agents hold consistent beliefs with reality.
e Cost/Utility function.

o $9%, hazelnuts, ...
e Decision theory

o  Expected cost/ utility

o’

o’



Steve is a random american guy.

“Steve is very shy and withdrawn, invariably helpful but with very little interest in people or
in the world of reality. A meek and tidy soul, he has a need for order and structure, and a
passion for detail.”

Is Steve more likely to be a librarian or a farmer?

/ Daniel Kahneman: Thinking Fast, Thinking Slow /



Importance of the prior

Steve is a random american guy.

“Steve is very shy and withdrawn, invariably helpful but with very little interest in people or
in the world of reality. A meek and tidy soul, he has a need for order and structure, and a
passion for detail.”

Is Steve more likely to be a librarian or a farmer?

/ Daniel Kahneman: Thinking Fast, Thinking Slow /

Far more farmers are in the USA than librarians. Even assuming extreme bias in behaviour, it is
still more likely the Steve is a farmer.



Importance of the prior

What frequentist p-values mean?

e |tdoes not tell you how likely your null hypothesis is! (see also Experimental
Computational Work talk)

e Totell that, you need a prior!

It tells you: How likely it is that the null hypothesis would have produced the test statistics
you observed.

More alike with P(D|H) than with P(H|D).

(Explainable Al talk)



Reference class problem

Assuming | am an average human being, when will the world end?

Premise: The human population grows exponentially until the end
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Reference class problem

Assuming | am an average human being, when will the world end?

Premise: The human population grows exponentially until the end

-> The most people who ever lived will live in the last generations before the end.

-> Most likely I am one of these people -> The end is near.

This is known as the Doomsday argument, and have serious implications in cosmology.

See also: Sleeping Beauty Problem.



Bayesian Models




\ Elements of probabilistic models

X Random variables XNN(O,]_)
X y Dependencies YNN(QX,O5)
W \\
X y Parameters Y NN(’ZU X’O')

Probabilistic graphical models (PGMs), Bayesian networks WARNING!



Classical and Bayesian models

Classical point parametrization:
e Parameters and variables are distinct
e Parameters expected to have a “true” value
e Fitting the model / learning : optimizing for these
parameters

U

point
parametrization



Bayesian models

Bayesian treatment:
e Parameter is just arandom variable
e Wedo not expect to find ‘the real’
parameter value exactly
e Wesearch for the distribution of the
parameters supported by the data.

\ X

point Bayesian
parametrization



Bayesian models

U

point
parametrization

X

Bayesian

X

hierarchical
Bayesian



\ Frequently used shorthand notations

1) Vector, matrix, tensor valued random variables

y yNN(WTZU,Z)

X



Frequently used shorthand notations

1) Vector, matrix, tensor valued random variables

y yNN(WTZB,Z)

X

_ Population
level variables

2) Plate models

C N
/ T\, M 1 Individual

P b S — 11 / ' level variables
X, — " )
X, 12 N

\Y/

. Measurement

level variables
J




Bayesian Inference




Conjugate priors

x plz|)=N(z|p=0,02=0)

We want to infer the distribution of © givenx: p(6|xz)oc p(x|d)p(A)

If we could choose the form of the prior, that the posterior have a known form,
we don’t need to worry about the proportionality constant.
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Conjugate priors

x plz|)=N(z|p=0,02=0)

We want to infer the distribution of © givenx: p(6|xz)oc p(x|d)p(A)

If we could choose the form of the prior, that the posterior have a known form,
we don’t need to worry about the proportionality constant.

p(x|9) p(0)

A A
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Conjugate priors

x plz|)=N(z|p=0,02=0)

We want to infer the distribution of © givenx: p(6|xz)oc p(x|d)p(A)

If we could choose the form of the prior, that the posterior have a known form,
we don’t need to worry about the proportionality constant.

p(x|9) p(0)

A A
4 N\

_1(ZT=\2 —a—1 _ \2
Clg 2( o ) (32(0-2) o 16 B/O'

L/

OJN:OJ—F% 5N25_|_(93—2u)2




Maximum a posteriori (MAP) approximation

P(H|D) Small amount of data: flat posterior

e No point estimate is a good approximation
Lot of data: peaky posterior
e Most probable hypothesis is a good approximation




P(H|D)

Maximum a posteriori (MAP) approximation

Small amount of data: flat posterior
e No point estimate is a good approximation
Lot of data: peaky posterior
e Most probable hypothesis is a good approximation
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(additive constant)

likelihood regularization



Maximum a posteriori (MAP) approximation

P(H|D) Small amount of data: flat posterior

e No point estimate is a good approximation
Lot of data: peaky posterior
e Most probable hypothesis is a good approximation

—

H

Example: 1012.X 1ogp(x,y|w)+\10gp(w)—19€/ﬁ<$/ﬂy)

(additive constant)

likelihood regularization

if p(w)=N(w|0,2/A), then [0 g p(w)= —\w?2



Predictive inference

X  Unobserved variable Predicted outcome? Just another random variable
° Observed variable
q B
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X  Unobserved variable Predicted outcome? Just another random variable

° Observed variable P(y’|gj’,gj’y):P(y’|gj”wjg)P(w’g|x’y)
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My \ o Posterior predictive (model) posterior
e W distribution



Predictive inference

X  Unobserved variable Predicted outcome? Just another random variable

° Observed variable P(y’|gj”gj’y):P(y’|gj”w’g)P(w’g|gyjy)

B — —
a D D
GW \X N - Y, N - Y,
My \ o Posterior predictive (model) posterior
e W distribution

What is the mean?
E[y'|2', D]=EP(w,o|D)[ f 1o (2")]

°~ Y “Bayesian model averaging”

Note the similarity with ensembles!



\ Ancestral sampling

X xNN(O,l)

/N

2~ N(2/2,0.3) (5 y  y~N(z,0.5)

w o w~N(z+yly)
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\ Ancestral sampling

x x~N(0,1) -6.44

/N

325 z~N(2/2,0.3) (4 y  y~N(z,0.5) -6.35

N
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\ Ancestral sampling

x x~N(0,1) -6.44

/N

325 z~N(x/2,0.3) (, y  y~N(z,0.5) -6.35

N

w  w~N(z4yly) 1.54



Gibbs sampling

Assumption: Conditional posteriors are analytically tractable X  Unobserved variable
“Imagine all but one variable observed”
Iteratively sample from the conditionals. ° Observed variable
A variable depends on its Markov blanket:
® ancestors
descendants

[ )
e other ancestors of the descendants
e ‘“the parents, children and spouses”

Example: for w we want: P(w|gj,y,0‘70'w)

Wehave: (v glz.0,0,,)=P(y|w,z,0)P(w|o,,)




Gibbs sampling

Assumption: Conditional posteriors are analytically tractable
“Imagine all but one variable observed”
Iteratively sample from the conditionals.

A variable depends on its Markov blanket:
® ancestors
e descendants
e other ancestors of the descendants
e ‘“the parents, children and spouses”

Example: for w we want: P(w|gj,y,0‘70'w)
Wehave: (v glz.0,0,,)=P(y|w,z,0)P(w|o,,)

P(ylw,z,0)P(w|o,,)
P(ylw,0,0,)

P(w|x,0,0,)=

X Unobserved variable

° Observed variable




Variational inference

If we would have P(w,o|x,7) inanalytical form, our job
would be done.

e Oftenthereis nosuch analytical form %W
e Searchfor afunction q(w,0 )~ P(w,o|z,y) Gy O B\‘
What is our loss function?
b, o O
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Variational inference

If we would have P(w,o|x,7) inanalytical form, our job
would be done.

e Oftenthereis nosuch analytical form %W
e Searchfor afunction q(w,0 )~ P(w,o|z,y) Gy O B\‘
What is our loss function? \ =

mgbin DKL(QQB(w70)”p<w70|aj7y)) w
g/) : variational parameter ﬁ

It can be shown that equivalently we can take the following objective:

i —gualloglalwe)Slegipegne)sieel)]

Y

J

Evidence lower bound (ELBO)



Qutlook




How likely it is that gene 1 associates with phenotype 17?

Model class: g(V,E) directed acyclic graphs (DAGS).

V: Set of nodes, corresponds to set of random variables.

E: Set of edges, dependence relations.

The graphis just a random variable.

Being Bayesian over the structure

P(GID)=" O

P(D|G)= /P(D|9,Q)P(9|g>d9

N J
Y

Marginal likelihood conditioned
on the structure.

“average all models”



Mechanistic interpretation - towards causality

Observational equivalence p(.ﬁC|dO( 3/))
X y : } = p(z)
- y Z X XkZ \
XLZ|Y
- =p(zly)
X y y4
XL1Z

X y z XXZ|Y




Mechanistic interpretation - towards causality

Observational equivalence p<ﬂ3|d0(y))

1 Ticket price } — p(az)

- =p(z|y)

Number of passengers

= y z J‘ X¥Z|Y




Thank you for your
attention!




