
Bayesian probability:
models and inference

Adam Arany

16 May 2022 
Lugano, Switzerland



● Interpretation of probabilities
● Bayesian modeling

○ Parameters vs variables
○ Graphical model notation

● Bayesian inference
○ Prior conjugacy
○ Maximum a posteriori approximation
○ Predictive inference
○ Sampling methods
○ Variational inference

● Outlook
○ Structural uncertainty
○ Causality

Overview



“... a fraction whose numerator is the number of favorable cases and whose 
denominator is the number of all the cases possible.”

Pierre-Simon Laplace

relative frequency of occurrence after repeating a process a large 
number of times under similar conditions

degree of reasonable belief 
tendency of a given type of physical 
situation to yield an outcome
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Classical

Frequentist

Subjective, epistemic or Bayesian
Propensity



Interpretation

Measurement of constant in nature (e.g. the fine structure constant)

with a given measurement error (Gaussian noise with σ=0.001)

Result: 0.007114

What is the more probable value of the fine structure constant?

                    42 or 1/137

What is that even means? We have a single universe (what we can observe), with a definite value 

of this constant! 
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with a given measurement error (Gaussian noise with σ=0.001)

Result: 0.007114

What is the more probable value of the fine structure constant?

                    42 or 1/137

What is that even means? We have a single universe (what we can observe), with a definite value 

of this constant! 

“extinction of the dinosaurs was probably caused by a large meteorite hitting the earth”

What does it mean? It was caused or it was not, there is no in between.
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Bayesian Probability

Probability as

● Reasonable expectation
● Degree of belief
● State of knowledge

Bayes’ theorem 

● have an epistemic / subjectivist 
interpretation

●  true independent of interpretations
Pierre-Simon Laplace

Thomas Bayes

updated posterior

updated prior
(previous posterior)likelihood

marginal 
likelihood



Objectivist interpretation

● Rational agents hold consistent beliefs with reality.

● Cost/Utility function.
○ $$, hazelnuts, …

● Decision theory  
○ Expected cost / utility

p
1

p
2



Steve is a random american guy.

“Steve is very shy and withdrawn, invariably helpful but with very little interest in people or 
in the world of reality. A meek and tidy soul, he has a need for order and structure, and a 
passion for detail.”

Is Steve more likely to be a librarian or a farmer?

/ Daniel Kahneman: Thinking Fast, Thinking Slow /
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Importance of the prior

Steve is a random american guy.

“Steve is very shy and withdrawn, invariably helpful but with very little interest in people or 
in the world of reality. A meek and tidy soul, he has a need for order and structure, and a 
passion for detail.”

Is Steve more likely to be a librarian or a farmer?

/ Daniel Kahneman: Thinking Fast, Thinking Slow /

Far more farmers are in the USA than librarian. Even assuming extreme bias in behaviour, most 
likely the answer is: farmer.

There is no such thing as data without a context!
(Explainable AI talk)

What frequentist p-values mean?
● It does not tell you how likely your null hypothesis is! (see also Experimental 

Computational Work talk)
● To tell that, you need a prior!

It tells you: How likely it is that the null hypothesis would have produced the test statistics 
you observed.

More alike with P(D|H) than with P(H|D).



Reference class problem

Assuming I am an average human being, when will the world end?

Premise: The human population grows exponentially until the end



Reference class problem

Assuming I am an average human being, when will the world end?

Premise: The human population grows exponentially until the end

-> The most people who ever lived will live in the last generations before the end.



Reference class problem

Assuming I am an average human being, when will the world end?

Premise: The human population grows exponentially until the end

-> The most people who ever lived will live in the last generations before the end.

-> Most likely I am one of these people 



Reference class problem

Assuming I am an average human being, when will the world end?

Premise: The human population grows exponentially until the end

-> The most people who ever lived will live in the last generations before the end.

-> Most likely I am one of these people ->  The end is near.



Reference class problem

Assuming I am an average human being, when will the world end?

Premise: The human population grows exponentially until the end

-> The most people who ever lived will live in the last generations before the end.

-> Most likely I am one of these people ->  The end is near.

This is known as the Doomsday argument, and have serious implications in cosmology.

See also: Sleeping Beauty Problem.



Bayesian Models



Elements of probabilistic models

x Random variables

x y Dependencies 

x y

w
σ

Parameters

Probabilistic graphical models (PGMs), Bayesian networks WARNING!



Classical and Bayesian models

x y

w
σ

point 
parametrization

Classical point parametrization:
● Parameters and variables are distinct
● Parameters expected to have a “true” value
● Fitting the model / learning : optimizing for these 

parameters



Bayesian models

x y

w
σ

x y

w
σμ

w

σ
w

ɑ β

point 
parametrization

Bayesian

hyperparameters

Bayesian treatment:
● Parameter is just a random variable
● We do not expect to find ‘the real’ 

parameter value exactly
● We search for the distribution of the 

parameters supported by the data.



Bayesian models

x y

w
σ

x y

w
σμ

w

σ
w

ɑ β

x y

w
σμ

w

σ
w

ɑ β

……

……
…

…
…

…

point 
parametrization

Bayesian hierarchical 
Bayesian

hyperparameters

hyperparameters



Frequently used shorthand notations

x y

1) Vector, matrix, tensor valued random variables



Frequently used shorthand notations

x y

1) Vector, matrix, tensor valued random variables

C

x1
x2

xN

C

xi

i = 1, .., N

P

Ii

Mij

j = 1, .., M

i = 1, .., N

Population 
level variables

Individual 
level variables

Measurement 
level variables

P

I1
I2

M21

M22

M11

M12

2)       Plate models



Bayesian Inference



Conjugate priors

θ x

We want to infer the distribution of θ given x: 

If we could choose the form of the prior, that the posterior have a known form,
we don’t need to worry about  the proportionality constant.
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Maximum a posteriori (MAP) approximation

P(H|D)

H

Small amount of data: flat posterior
● No point estimate is a good approximation

Lot of data: peaky posterior
● Most probable hypothesis is a good approximation

Example:

(additive constant)likelihood regularization

If ,  then 
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Predictive inference

w
σμ

w

σ
w

ɑ β

x y

y’x’

x Observed variable

x Unobserved variable Predicted outcome? Just another random variable

Posterior predictive 
distribution

(model) posterior

What is the mean? 

“Bayesian model averaging”

Note the similarity with ensembles!
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Ancestral sampling

x

yz

w

-6.44

-3.25 -6.35

1.54



Gibbs sampling

x Observed variable

x Unobserved variable

x y

w
σμ

w

σ
w

ɑ βɑ
w

β
w

Assumption: Conditional posteriors are analytically tractable
“Imagine all but one variable observed”

Iteratively sample from the conditionals.

A variable depends on its Markov blanket:
● ancestors
● descendants
● other ancestors of the descendants
● “the parents, children and spouses”

Example: for w we want:

We have: 
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Variational inference
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w
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w

σ
w
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w

β
w

If we would have                                  in analytical form, our job 
would be done.

● Often there is no such analytical form
● Search for a function

What is our loss function? 
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Variational inference

x y

w
σμ

w

σ
w

ɑ βɑ
w

β
w

If we would have                                  in analytical form, our job 
would be done.

● Often there is no such analytical form
● Search for a function

What is our loss function? 

: variational parameter

It can be shown that equivalently we can take the following objective:

Evidence lower bound (ELBO)



Outlook



Being Bayesian over the structure

g1 g2 g3

p1 p2

How likely it is that gene 1 associates with phenotype 1?

Model class: directed acyclic graphs (DAGs).
V: Set of nodes, corresponds to set of random variables.
E: Set of edges, dependence relations.

The graph is just a random variable.

Marginal likelihood conditioned 
on the structure.

“average all models”



Mechanistic interpretation - towards causality
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x y z

x y z

x y z

x y z

X ⟂ Z
X ⟂ Z | Y

X ⟂ Z
X ⟂ Z | Y

Observational equivalence

Number of passengers

Ticket price



Thank you for your 
attention!


