

covalent bond

UNIVERSITÄT BERN

Artificial Intelligence and Chemical Space

Jean-Louis Reymond <u>https://gdb.unibe.ch</u>

12 May 2022, second School of the AIDD, IDISA, Lugano

Molecular quantum numbers (MQN, 42D)

Atoms

UNIVERSITÄT BERN

2

2

1

4

1

Carbon	17	16	1
Fluorine	0	0	
Chlorine	0	0	
Bromine	0	0	
lodine	0	0	
Sulphur	0	1	1
Phosphor	0	0	
Acyclic nitrogen	0	1	1
Cyclic nitrogen	1	1	
Acyclic oxygen	2	4	2
Cyclic oxygen	1	0	1
Heavy atom count	21	23	2

8 <mark>5</mark>

3 3

4 3

0 0 0 4

4 4

7

1

3

0 3 0 0

18 11

Bonds

H-Bond donor atoms	3	1
H-Bond donor sites	3	1
H-Bond acceptor atoms	3	4
H-Bond acceptor sites	3	7
Positive charges	1	0
Negative charges	0	1

Topology

Acyclic monovalent nodes	3	6	3
Acyclic divalent nodes	0	2	2
Acyclic trivalent nodes	0	2	2
Acyclic tetravalent nodes	0	0	
Cyclic divalent nodes	8	6	2
Cyclic trivalent nodes	9	6	3
Cyclic tetravalent nodes	1	1	
3-Membered rings	0	0	
4-Membered rings	0	1	1
5-Membered rings	1	1	
6-Membered rings	4	1	3
7-Membered rings	0	0	
8-Membered rings	0	0	
9-Membered rings	0	0	
≥ 10 membered rings	0	0	
Atoms shared by fused rings	7	2	5
Bonds shared by fused rings	6	1	5

City-Block **Distance** (CBD) = 64

Ruud van Deursen et al., J. Chem. Inf. Model. 2010, 50 1924-1934

Ruud van Deursen et al., J. Chem. Inf. Model. 2010, 50 1924-1934

Garcia Delgado et al. *ACS Med. Chem. Lett.* **2010**, *1*, 422-426 Bréthous L. *et al. J. Med. Chem.* **2012**, *55*, 4605-4518 J. Bürgi *et al. ACS Chem. Neurosci.* **2014**, *5*, 346-359.

FAERUN CHEMBL 23 · MQN · Rings

FUn: A Framework for Interactive Visualizations of Large, High Dimensional Datasets on the Web. D.Probst, J.-L. Reymond, *Bioinformatics*, **2018**, *34*, 1433-1435 SmilesDrawer: parsing and drawing SMILES-encoded molecular structures using client-side JavaScript D. Probst, J.-L. Reymond, *J. Chem. Inf. Model.* **2018**, *58*, 1–7

UNIVERSITÄT Bern =

edb.teol

. •

7-7

1 8

Exploring DrugBank in Virtual Reality Chemical Space Daniel Probst and Jean-Louis Reymond, J. Chem. Inf. Model, 2018, 58(9), 1731-1735

and lines

Atom-pairs with topological distances in bonds

Mahendra Awale et al., J. Chem. Inf. Model. 2014, 54, 1892-1907

Bit Value

₼

Bit Value

Target prediction

PPB2 with Xfp similiarity

D UNIVERSITÄT BERN

43 known LPAAT-β inhibitor

Figure 3. Activity of triazines **1**, **16** and **43** on LPAAT- β by quantifying the release of free CoA-SH in the presence of DTNB monitored by the change in absorbance at 405 nm over 3 min at room temperature (200 µM of 18:1-CoA, 200 µM sn-1-18:1 lysoPA, 500 µM DTNB, 25 mM HEPES·HCl, pH 7.5, 1 mM EDTA, 100 mM NaCl and various concentrations of inhibitors). SD = standard deviation from triplicate measurements.

angiogenesis inhibitor from phenotypic screen

Table 1. Cytotoxicity of triazines on HeLa cells.					
Compd ^[a]	R^1	R ²	IC ₅₀ [пм] ^[b]		
1	Et	Me	111 ± 12		
2	Cl	Me	252 ± 7		
3	OMe	Me	190 ± 3		
4	<i>i</i> Pr	Me	814 ± 20		
5	<i>n</i> Pr	Me	>10000		
6	nHex	Me	>10000		
7	Ph	Me	>10000		
8	F	Me	3060 ± 110		
9	Br	Me	264 ± 5		
10	CF_3	Me	$263\pm\!6$		
11	NHAc	Me	$2920\pm\!60$		
12	Et	Et	51 ± 1		
13	Et	<i>n</i> Bu	780 ± 30		
14	OMe	Et	12.4 ± 0.2		
15	F	Et	4550 ± 940		
16	Cl	Et	140 ± 8		
17	Br	Et	69 ± 13		
18	CF ₃	Et	110±56		

[a] See Scheme 1. [b] HeLa cells (10000 cells per well) were incubated with various concentrations of compounds for 96 h at 37 °C and 5% CO₂. Cell viability was determined after addition of WST-8 working solution and phenazine ethosulfate. Final absorbance was measured at 450 nm. Results were normalized to control values; data are the mean \pm SD (standard deviation) from triplicate measurements.

Table 2. Kinome scan with triazines 1 and 14.^[a] Kinase Compd Percent of control at JAK1 (JH2 domain pseudopocket) 1 PIP5K2C TYK2 (JH2 domain pseudopocket) JAK1 (pseudokinase) 14 EPHB6 PIKFYVE GRK7 TAK1 IRAK3 12 3500 GAK 15 490 TYK2 (JH2 domain pseudokinase) 15 1800

[a] The kinome scan was performed for binding of the ATP binding pockets on 442 kinases by DiscoveRx (San Diego, CA, USA); the test compound concentration was 10 μ M.

ChEMBL ID	Common name	Nearest neighbours
CHEMBL4772	1-acylglycerol-3-phosphate O-acyltransferase beta	Show NN
CHEMBL253	Cannabinoid CB2 receptor	Show NN
CHEMBL1904	Glutamate [NMDA] receptor subunit epsilon 2	Show NN
CHEMBL1800	Corticotropin releasing factor receptor 1	Show NN
CHEMBL224	Serotonin 2a (5-HT2a) receptor	Show NN
CHEMBL228	Serotonin transporter	Show NN
CHEMBL2916	Telomerase reverse transcriptase	Show NN
CHEMBL1293222	Nucleotide-binding oligomerization domain-containing protein 1	Show NN
CHEMBL2971	Tyrosine-protein kinase JAK2	Show NN
CHEMBL3764	Urotensin II receptor	Show NN
CHEMBL3833	Trace amine-associated receptor 1	Show NN
CHEMBL204	Thrombin	Show NN
CHEMBL3018	Matriptase	Show NN
CHEMBL3286	Urokinase-type plasminogen activator	Show NN
CHEMBL244	Coagulation factor X	Show NN
CHEMBL287	Sigma opioid receptor	Show NN
CHEMBL1867	Alpha-2a adrenergic receptor	Show NN
CHEMBL1615382	Nuclear receptor coactivator 3	Show NN
CHEMBL5524	Protein-arginine N-methyltransferase 1	Show NN

Show NN

M. Awale, J.-L. Reymond, J. Chem. Inf. Model. 2019, 59, 10-17

b

M. Awale, J.-L. Reymond, J. Chem. Inf. Model. 2019, 59, 10-17

b

UNIVERSITÄT BERN

U

MAP4 encoding of jk

0^{--P}

HO`

r1: O=c |15| c(c)cr2: O=c(c)[nH]|15|c(cc)cc

 \cap

Έ

UNIVERSITÄT BERN

Daniel Probst et al., *J. Cheminf.* **2020**, doi:10.1186/s13321-020-0416-x https://tm.gdb.tools/map4/coconut_tmap/

Alice Capecchi et al., J. Cheminf. 2021, 13, 82, doi.org/10.1186/s13321-021-00559-3

Table 2 SVM evaluation with balanced accuracy, MCC, and F1 score

	Balanced acc.	МСС	F1
MAP4 SVM ^{a,b}	0.919 ± 0.005	0.879 ± 0.005	0.929 ± 0.003
ECFP4 SVM ^{a,b}	0.890 ± 0.005	0.827 ± 0.006	0.897 ± 0.003
RDKit AP SVM ^{a,b}	0.735 ± 0.005	0.592 ± 0.006	0.752 ± 0.004
Properties SVM ^{a,c}	0.758 ± 0.005	0.613 ± 0.007	0.761 ± 0.004

 $^{\rm a}$ Mean value and standard deviation (σ) of the five different test/training sets split of the fivefold cross-validation

^b 1024 dimensions

^c 11 properties: MW, Fsp3, HBD) and HBA, calculated logP with the Crippen method (AlogP), number of carbons, oxygen, and nitrogen, the total number of atoms, number of bonds, and topological polar surface area (TPSA)

Natural product	Origin	MAP SVM prediction ^a
Epicospirocin 1	Fungal	Fungal (97%)
Penicimeroterpenoid A	Fungal	Fungal (82%)
Beetleane A	Fungal	Fungal (97%)
Funiculolide D	Fungal	Fungal (85%)
Rhizolutin	Fungal	Plant (55%, fungal: 29%)
Fusoxypenes A	Fungal	Fungal (69%)
Myxadazoles A	Fungal	Bacterial (74%, fungal: 16%)
Vertirhodin A	Bacterial	Bacterial (88%)
Marinoterpin A	Bacterial	Plant (44%, bacterial: 37%)
Bosamycin A	Bacterial	Bacterial (94%)
Dumulmycin	Bacterial	Bacterial (80%)
Fortuneicyclidin A	Plant	Plant (98%)
Meloyunnanine A	Plant	Plant (99%)
Hyperfol B	Plant	Plant (93%)
Pgaharmol A	Plant	Plant (77%)
Hunzeylanine A	Plant	Plant (95%)
Mucroniferal A	Plant	Plant (73%)
Perovsfolin A	Plant	Plant (92%)
Horienoid A	Plant	Plant (95%)
Erythrivarine J	Plant	Plant (91%)

^a Predicted using the MAP4 SVM available online at https://np-svm-map4.gdb. tools/

h

Fuzzy atom-pairs

$$g_{jk}(d_i) = e^{-\frac{1}{2} \cdot \left(\frac{d_i - d_{jk}}{d_{jk} \cdot 0.09}\right)^2} \qquad \begin{array}{l} v = \text{MXFP bin value} \\ C = \text{category} \\ C \in \left\{ \begin{array}{l} HA, HY, AR, HBA, HBD, \\ POS, NEG \end{array} \right\} \\ i = \{i | i \in \mathbb{N} \land 0 \leq i \leq 30\} \\ N_C = \text{total number of atoms in} \quad (1) \\ \text{category C} \\ d_i = \{i | 0 \leq i \leq 6\} \\ d_i = \{d_{i-1} \cdot 1.18 | 7 \leq i \leq 30\} \\ d_{jk}: \text{ topological distance} \\ \text{between atoms } j \text{ and } k \end{array}$$

Atom-pair with 3D-distance in Å

Ú

Photopharmacology

Johannes Morstein, Mahendra Awale et al., ACS Central Science 2019, 5, 607-618

PDB explorer

Xian Jin et al. BMC Bioinformatics 2015, 16, 339

www.cheminfo.org/pdbexplorer

xLOS: matching pairs of atoms in 3D

u

b

UNIVERSITÄT BERN

comparing molecular shapes and pharmacophores

30G is a selective TRPV6 inhibitor

 $u^{\scriptscriptstyle b}$

UNIVERSITÄT BERN

X-Ray and cryo-EM structures of TRPV6 bound inhibitors

Ū

Jonai Pujol-Giménez, Marion Poirier et al., ChemMedChem 2021, 16, 3306-3314

Sampling

Ring systems

GDB4c

aliphatic

no spiro

5-membered

no norbornane

Ring Systems

916,130 728,238

181

102

20

PDB: 3LXK (JAK3)

Table 1: JAK kinase inhibition profiles.

IC ₅₀ (nM)	JAK1	JAK2	JAK3	TYK2
Delgocitinib ^[45]	2.8	2.6	13	58
Tofacitinib ^[45]	2.9	1.2	1.1	42
PF-06651600 ^[41]	>10,000	>10,000	33 nM	>10,000
<i>rac-</i> 9 ^{a)}	1.0	13	29	26
<i>rac</i> -10 ^{a)}	30	53	9	183
(<i>R</i>)- 9 ^{a)}	0.8	5.4	14	52
(S)- 9 ^{b)}	>1,000	>1,000	>1,000	>1,000

Tofacitinib

9 (KMC420)

Ricardo Visini, Josep Arùs-Pous et al., *J. Chem. Inf. Model.* **2017**, *57*, 2707-2718 Kris Meier et al., *Angew. Chem., Int. Ed. Engl.* **2020**, *60*, 2074–2077 u^{b}

UNIVERSITÄT BERN

 $u^{\scriptscriptstyle b}$

Artificial Intelligence and Chemical Space

erc

https://gdb.unibe.ch

Swiss National Science Foundation

Josep Arús-Pous Sven Bühlmann Daniel Probst Philippe Schwaller Amol Thakkar Ye Bühler Markus Orsi David Kreutter Marion Poirier Clémence Delalande

Micael Cunha Kris Meier Aline Carrel Kleni Mulliri Matthias Hediger Teodoro Laino (IBM) Ola Engkvist (AZ) Therry Schlama (Novartis)

DESCENDE

Alice Capecchi Thissa Siriwardena Marc Heitz Susanna Zamolo Bee Ha Gan Stephane Baeriswyl Dina Erzina Elena Zakharova Xingguang Cai Hippolyte Personne

10 10

Xian Jin

Sacha Javor Tamis Darbre Achim Stocker Thilo Köhler (UniGE)