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ABSTRACT: In recent years, the use of machine learning (ML) in computational
chemistry has enabled numerous advances previously out of reach due to the computational
complexity of traditional electronic-structure methods. One of the most promising
applications is the construction of ML-based force fields (FFs), with the aim to narrow
the gap between the accuracy of ab initio methods and the efficiency of classical FFs. The
key idea is to learn the statistical relation between chemical structure and potential energy
without relying on a preconceived notion of fixed chemical bonds or knowledge about the
relevant interactions. Such universal ML approximations are in principle only limited by the
quality and quantity of the reference data used to train them. This review gives an overview
of applications of ML-FFs and the chemical insights that can be obtained from them. The
core concepts underlying ML-FFs are described in detail, and a step-by-step guide for
constructing and testing them from scratch is given. The text concludes with a discussion of
the challenges that remain to be overcome by the next generation of ML-FFs.
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The role of system dimensionality
Potential energy surfaces (PES)
Describe the energy of a system (molecule) in
terms of certain parameters (positions, bonds,
angles, etc).

System size
PE

S 
co

m
pl

ex
it

y

�⃗� = −∇𝑈

PES: 𝑈 𝑅!, 𝑅"



Constructing accurate ML force fields for flexible molecules
AIDD Spring School
Lugano-Switzerland // 10.05.2022

Slide 3

Potential energy surface (PES): what’s good for?

Y. Khalak et al., Chem. Sci. 12, 13958, (2021).

Thermodynamic binding constants

Y. Ali, Sci. Rep. 10, 10995, (2020).

Chemical reactions

Rotational energy profiles

Vibrational spectrum
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originating from a manifold set of thermally populated levels,
associated with the large amplitude torsional motion of the two
phenyl groups (see Fig. 9).

3.4 2-, 3-, 4-Phenyltoluene

The compounds 2-, 3-, 4-phenyltoluene are respectively ortho,
meta and para CH3-substituted biphenyls. These molecules do
not have any specific symmetry (all belong to the C1 point
group) and have 69 vibrational modes. To our best knowledge,
no spectroscopic study has been previously reported for these
molecules.

The FIR absorption spectra of 2-, 3-, and 4-phenyltoluene
recorded in this work are presented in Fig. 10. The simulated
spectra obtained using B97-1/6-311G(d,p) harmonic and anhar-
monic calculations are also presented in the bottom part of
each graph.

For these three molecules, our calculation with the B97-1/
6-311G(d,p) method poorly reproduces the CH3-group rotation,
as expected for such a hindered rotor motion with a low barrier.
This mode is found to have a negative frequency at the
anharmonic perturbative level while the harmonic band,
although positive by construction, does not correspond to
any experimental band. This again confirms the unreliability
of the harmonic DFT approximation for such modes asso-
ciated with nearly free rotations.33 Despite those unsurprising
limitations, the present results are in sufficiently good agree-
ment for all other vibrational modes to allow an unambiguous
assignment of most FIR bands. The observed and calculated
frequencies of FIR modes are presented in Tables 6–8. Here
all d values were calculated using harmonic data as reference.
Considering the unphysical numerical value of the CH3 tor-
sional mode, it was decided to arbitrary label it n69 (lower
frequency mode). A star identifier is also used in Fig. 10 and
Tables 5–8 for this specific mode.

3.4.1 2-Phenyltoluene. The simulated spectrum obtained
from the harmonic calculation is in good agreement with the
experimental spectrum, with the exception of the n69 mode, the
same for which the calculated anharmonic frequency is nega-
tive. For the anharmonic calculation, we also note that all
vibrations involving the displacement of the methyl group out
of the plane of its closest phenyl group are poorly reproduced
(see for example the n65 mode labelled with a diamond in
Fig. 10) leading to a high value for the MAE. However, the
results obtained with the harmonic calculation allow assigning
most of the intense FIR modes of this molecule, except the n69

mode which probably lies below 50 cm!1. In the case of n60 and
n61 with similar calculated frequencies, as well as n54 and n55,
the experimental bands were assigned based on calculated
intensities.

3.4.2 3-Phenyltoluene. For 3-phenyltoluene the simulated
spectra obtained from both the harmonic and anharmonic calcu-
lations are in good agreement with the experimental spectrum.
The comparison with DFT calculation allows the assignment of
most low-frequency vibrational modes of 3-phenyltoluene, with
the exception of six weak modes. Furthermore, at the resolution
used here, it was not possible to observe the n55 and n54 modes

independently from each other. Since n55 was predicted to be the
most intense, we have chosen to assign the experimental value to
this mode.

3.4.3 4-Phenyltoluene. As for 3-phenyltoluene, harmonic
and anharmonic calculations for 4-phenyltoluene are in good
agreement, again with the exception of n69 mode. Six FIR modes

Fig. 10 FIR absorption spectra (blue lines) of 2-, 3-, and 4-phenyltoluene
(from top to bottom) and comparison with harmonic (H, black lines) and
anharmonic (A, gray lines) B97-1/6-311G(d,p) calculations.
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M.A. M.-Drumel et al., Phys. Chem. Chem. Phys. 16, 22062, (2014).

Far-infrared spectra

H. Isla et al., J. Org. Chem. 84, 5383, (2019).

opposite signs (nos. 5 and 6 calculated at ca. 340 and 330 nm,
respectively) which involve mainly helicene → bipyridine CT
transitions rather than classical helicene-centered π−π* ones
(vide supra). The aforementioned activation of low-energy CT
transitions in 1 due to ZnII coordination rationalizes also the
experimentally observed emission switching process which is
quite well reproduced by the computations: from 409 nm S1−
S0 fluorescence calculated for 1 to 440−470 nm (depending on
the conformer) for 1 ·Zn(OAc)2. Note that the strong
interaction between ZnII and 1 in 1 ·Zn(OAc)2 was indeed
confirmed using the ETS-NOCV24 charge and bonding-energy
analysis, which showed one main NOCV-based contribution to
the total deformation density corresponding to a formation of
the ZnII−N σ-bonding associated with a CT from LP of
bipyridine nitrogen atoms to the metal center (Figure 3).
The reversibility of the ZnII binding process was examined

by using TPEN as a competitive ligand. Indeed, upon addition
of TPEN, the system returned to its original state, that is, chiral
(P,P)- and (M,M)-1 noncoordinated species. Up to 9−10 steps
could be performed upon successive additions of 1 equiv of
Zn(OAc)2 and TPEN, following the ECD tuning at the
selected wavelengths at which the changes are clearly visible
(e.g., 274 nm: ΔΔε = 150 M−1 cm−1, see Figure 4d).
Accordingly, the bis-helicenic bipyridine system 1 constitutes

another example of a chemically triggered chiroptical switch
with multi-output read-out including UV/vis, ECD, and
luminescence, for which the switching process is accompanied
by nanomechanical molecular movements interconverting a
trans conformation in the free ligand to a cis one in the Zn-
complex.11

Having established that the ZnII coordination/decoordina-
tion effectively and reversibly interconverts transoid and cisoid
forms of 1 , the question arises as to whether 1 can act as a
molecular hinge. Molecular hinges are systems that demon-
strate a high relative amplitude of motion (>90°) accompanied
by controllable unidirectional “open−close” movements. The
first of these requirements can be in general easily fulfilled for
2,2′-bipyridine-based systems, thanks to efficient metal-ion
complexation/decomplexation processes that transform an
“open” non complexed form (nitrogen atoms in trans
configuration, NCC′N′ dihedral angle of ∼180°) to a “closed”
complexed one (nitrogen atoms in cis configuration, NCC′N′
dihedral angle of ∼0°) and vice versa. The second one (i.e., a
control of the orientation of the movement between “open”
and “close” states) is, however, more difficult to achieve as a
rotation around the C−C′ bipyridine bond is usually possible
in both directions. The unidirectionality of the movement can
be enforced, for example, by introducing a meta-bridge within

Figure 6. Comparison of the simulated UV/vis (panel a) and ECD (panel b) spectra of the bis-helicenic bipyridine ligand 1 and of its
corresponding Zn complex 1 ·Zn(OAc)2 (Boltzmann-averaged spectrum at 25 °C based on the most populated conformers found). No spectral
shift has been applied. Calculated excitation energies along with the corresponding oscillator and rotatory strengths (for the lowest-energy
conformer in the case of 1 ·Zn(OAc)2) indicated as “stick” spectra. Numbered excitations correspond to those analyzed in detail. See Supporting
Information for a full set of data.

Figure 7. Energy profiles for the rotation around CC′ bond in bis-helicenic bipyridine 1 (panel a) along with molecular structures corresponding to
their characteristic points (panel b). BP and BP-D3 SV(P) calculations with continuum solvent model for CH2Cl2. Values listed in panel b are
relative energies ΔE (in kcal/mol) and NCC′N′ dihedral angles (in deg) obtained with BP/BP-D3.
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Classical Molecular Dynamics

Bond definitions, atom types, atom names, parameters, ….

Potential energy surface (PES)
“Original” energy function for molecules: Molecular mechanics (MM)
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= Oscillations about the equilibrium bond length

= Oscillations of 3 atoms about an equilibrium bond angle

= Torsional rotation of 4 atoms about a central bond

= Non-bonded energy terms (Lennard-Jones and electrostatics)
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Potential energy surface (PES)
“Original” energy function for molecules: Molecular mechanics (MM)

Fig 5. A wide variety of conformational sampling is observed in the simulations. The figure shows four examples of different kinds of conformational
sampling observed in the simulations. The simulations shown here are of GB3 with (A) CHARMM22, (B), ff03*, (C) CHARMM22* and (D) ff99SB*-ILDN, with
the entire set of simulations shown in S4 and S5 Figs. Briefly, (A) exemplifies a simulation with a large conformational drift, (B) is a simulation with (partially)
reversible sampling of different substates, (C) is a simulation with an irreversible sampling of a second substate and (D) is a simulation that is fully stable in
the initial starting state for the entire duration of the simulation. Note that eventually all force fields are expected to sample different states, but with rates of
transitions and stabilities of the different states highly dependent on the chosen force field.

doi:10.1371/journal.pone.0121114.g005

Comparing Molecular Dynamics Force Fields in the Essential Subspace

PLOS ONE | DOI:10.1371/journal.pone.0121114 March 26, 2015 10 / 16

F. Martin-Garcia et al., PLoS One 10, 3, (2015). 

Analysis of the conformational sampling of B3 domain of Protein G (GB3)

CHARMM22 Amber-ff03*

Conformations and energies highly depend on the chosen force field.
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Potential energy surface (PES)
Hierarchies in atomistic modeling
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Potential energy surface (PES)
Hierarchies in atomistic modeling
methods 

QM datasets of small molecules 
for PES prediction
q Single molecules

q Molecular dimers

Ø QM7-X (PBE0+MBD) 
Ø ANI-1 (w97x/6-31G(d))
Ø MD17 (PBE+TS)

Ø S66x8 (CCSD(T)/CBS)
Ø NENCI (CCSD(T)/CBS)

http://quantum-machine.org
J. Hoja et al., Sci. Data 8, 43, (2021).
J.S. Smith et al., Sci. Data 4, 170193, (2017).
J. Rezac et al., J. Chem. Theory Comput. 7, 8, (2011).
Z.M. Sparrow et al., J. Chem. Phys. 155, 184303, (2021). 

The Journal
of Chemical Physics ARTICLE scitation.org/journal/jcp

FIG. 2. Graphical depiction of steps 1–5 in the protocol used for generating four (of eight) non-equilibrium intermolecular angles for the water dimer. As described in the text,
a local reference frame (x axis: blue solid arrow, y axis: yellow solid arrow, and z axis: red solid arrow) is defined with respect to the characteristic intermolecular interaction
vector (black dashed line) between monomers A (red) and B (gray) as well as the principal axis on monomer A (black solid line). Preliminary geometries for the first four
non-equilibrium intermolecular angles are then obtained by rotating A around the x and y axes on B by θ = ±30○. For clarity, the inset of step 5 also provides a view down
the z axis of the corresponding non-equilibrium geometries. To obtain preliminary geometries for the remaining four non-equilibrium intermolecular angles, this procedure is
repeated after swapping the monomer labels. See Sec. II B for more details.

geometries along four separate intermolecular dissociation curves
corresponding to each of the four non-equilibrium intermolecular
angles.

STEP 8. Switch the A and B labels, and repeat steps 1–7. This
will provide molecular dimer geometries along the intermolecular
dissociation curves corresponding to each of the remaining four
non-equilibrium intermolecular angles (for a total of eight non-
equilibrium intermolecular angles). Note that the ion–π complexes
in NENCI-2021 have only four unique non-equilibrium intermolec-
ular angles due to the spherical symmetry of the ion; as such, step 8
is unnecessary and can be skipped for these molecular dimers.

STEP 9. For the equilibrium intermolecular angle, also scale
the corresponding (optimized) interaction vector by factors of
0.7×, 0.8×, 0.9×, 0.95×, 1.05×, and 1.1×, and rigidly translate A con-
sistent with each scaled vector. This will provide molecular dimer
geometries along the intermolecular dissociation curve correspond-
ing to the equilibrium intermolecular angle.

Here, we note in passing that the procedure outlined above for
generating non-equilibrium intermolecular complexes is just one of
a number of different methods for doing so. For instance, sampling
dimer geometries from ab initio molecular dynamics (AIMD) sim-
ulations (or meta-dynamics100 to enhance sampling away from the
equilibrium/global minimum structure) is arguably one of the most
straightforward alternatives. However, the procedure employed in
this work was primarily chosen because it provides a systematic
and well-defined way to sample the intermolecular PES (along
the characteristic intermolecular interaction vector) for a large
number of molecular dimers. In a follow-up manuscript, in this
series (i.e., Paper II91), we will critically assess the performance
of a large number of popular DFT and WFT methods on this

database—here, the systematic structure of NENCI-2021 facilitates
an analysis along the scaled intermolecular distance (i.e., the rele-
vant correlation length for intermolecular interactions), which is not
as straightforward with other sampling procedures.

C. Computational details
Intermolecular interaction energies (Eint) for each of the 7763

intermolecular complexes in NENCI-2021 were computed via
Eint = EAB − EA − EB, (1)

in which EAB is the total energy of the dimer and EA (EB) is the total
energy of monomer A (B). As mentioned above, all monomers were
kept fixed at their optimized geometries, and the counterpoise cor-
rection of Boys and Bernardi101 was applied to minimize basis set
superposition error (BSSE).

Unless otherwise specified, Dunning’s correlation consistent
basis sets (with and without diffuse functions), namely, cc-pVXZ
and aug-cc-pVXZ (with X = D, T, Q),102–105 along with the frozen
core (FC) approximation were used for all atoms except Li and Na.
To provide a more accurate description of the core/valence electrons
in the cation–π complexes, the cc-pwCVXZ106 and aug-cc-pwCVXZ
basis sets106 were used for Li and Na in conjunction with the fol-
lowing modified FC approximation: Li+ = 1s2 (no core) and Na+= [He]2s22p6 ([He] core). All calculations employed the resolution-
of-the-identity (RI) or density-fitting (DF) approximation dur-
ing self-consistent field (SCF) calculations at the mean-field
Hartree–Fock (HF) level and during post-HF calculations to account
for electron correlation effects; the RI/DF approximation has
been shown to introduce negligible errors when computing
intermolecular interaction energies.107,108 Whenever available, the

J. Chem. Phys. 155, 184303 (2021); doi: 10.1063/5.0068862 155, 184303-7

Published under an exclusive license by AIP Publishing

Molecular 
mechanics

(MM)

Quantum 
mechanics

(QM)

M
or

e 
ac

cu
ra

te
 p

re
di

ct
io

n

H
igher com

putatioinal costsEmpirical potentials
(“Force fields”)

CHARMM, OPLS, ReaxFF, LJ

Semi-empirical methods
DFTB, GFN-xTB, PM7

Approximate 
DFT methods

LDA, GGA, hybrid functs.

Full CI
QMC

WFT method
MPn, CCSD(T)

!𝐻Ψ = 𝐸Ψ



Constructing accurate ML force fields for flexible molecules
AIDD Spring School
Lugano-Switzerland // 10.05.2022

Slide 8

QM dataset of small molecules
Molecular representations (3D geometric descriptors)
q Coulomb matrix

q Spectrum of London and Axilrod-Teller-
Muto potential (SLATM)

q FCHL19 (previous FCHL18)

q Neural Network representation (SchNet)

Two-body term:

Three-body term:
The main diagonal of the Coulomb matrix 0.5 Zi

2.4 consists of
a polynomial fit of the nuclear charges to the total energies of
the free atoms,2 while the remaining elements contain the
Coulomb repulsion for each pair of nuclei in the molecule.
Except for homometric structures (not present in the data set)
the Coulomb matrix is a unique representation of molecules.
The fact that rotations, translations, and symmetry

operations such as mirror reflections of a molecule in 3D
space keep the total energy constant is reflected by the
invariance of the Coulomb matrix with respect to these
operations.
However, there are two problems with the representation of

molecules by their Coulomb matrices, which make it difficult to
use this representation in a vector-space model. First, different
numbers of atoms d result in different dimensionalities of the
Coulomb matrices, and second there is no well-defined
ordering of the atoms in the Coulomb matrix; therefore, one
can obtain up to d! different Coulomb matrices for the same
molecule by simultaneous permutation of rows and columns,
while the energies of all these configurations remain unchanged.
In order to solve the first problem we introduce “dummy

atoms” with zero nuclear charge and no interactions with the
other atoms. In the Coulomb matrix representation this is
achieved by padding each matrix with zeros,2 which causes all
matrices to have size d × d (where d is the maximal number of
atoms per molecule).
The ambiguity in the ordering of the atoms is more difficult

as there is no obvious physically plausible solution. To
overcome this problem we investigate three candidate
representations derived from the Coulomb matrix. They are
depicted in Figure 2: (a) the eigenspectrum representation
consisting of the sorted eigenvalues of C, (b) a sorted variant of
the Coulomb matrix based on a sorting of the atoms, and (c) a

set of Coulomb matrices, which all follow a slightly different
sorting of atoms. All of them are explained in more detail
below.

2.2.1. Eigenspectrum Representation. In the eigenspectrum
representation the eigenvalue problem Cv = λv for each
Coulomb matrix C is solved to represent each molecule as a
vector of sorted eigenvalues (λ1,...,λd), λi ≥ λi+1. This
representation (first introduced by Rupp et al.2) is invariant
with respect to permutations of the rows and columns of the
Coulomb matrix.
Computing the eigenspectrum of a molecule reduces the

dimensionality from (3d−6) degrees of freedom to just d. In
machine learning, dimensionality reduction can sometimes
positively influence the prediction accuracy by providing some
regularization. However, such a drastic dimensionality reduc-
tion can cause loss of information and introduce unfavorable
noise (see Moussa35 and Rupp et al.36), like any coarse-grained
approach.

2.2.2. Sorted Coulomb Matrices. One way to find a unique
ordering of the atoms in the Coulomb matrix is to permute the
matrix in such a way that the rows (and columns) Ci of the
Coulomb matrix are ordered by their norm, i.e. ||Ci|| ≥ ||Ci+1||.
This ensures a unique Coulomb matrix representation. As a
downside, this new representation makes the problem much
higher-dimensional than it was when choosing only eigenvalues.
The input space has now dimensionality Natoms

2 compared to
Natoms for the eigenspectrum representation. Also, slight
variations in atomic coordinates or identities may cause abrupt
changes in the Coulomb matrix ordering, thereby impeding the
learning of structural similarities.

2.2.3. Random(-ly Sorted) Coulomb Matrices. The problem
of discontinuities due to abrupt changes in the matrix ordering
can be mitigated by considering for each molecule a set of

Figure 1. Coulomb matrix representation of ethene: A three-dimensional molecular structure is converted to a numerical Coulomb matrix using
atomic coordinates Ri and nuclear charges Zi. The matrix is dominated by entries resulting from heavy atoms (carbon self-interaction 0.5·62.4 = 36.9,
two carbon atoms in a distance of 1.33 Å result in ((6.6)/(1.33/0.529)) = 14.3). The matrix contains one row per atom, is symmetric, and requires
no explicit bond information.

Figure 2. Three different permutationally invariant representations of a molecule derived from its Coulomb matrix C: (a) eigenspectrum of the
Coulomb matrix, (b) sorted Coulomb matrix, (c) set of randomly sorted Coulomb matrices.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct400195d | J. Chem. Theory Comput. 2013, 9, 3404−34193406

which achieves a mean absolute error of 0.58 kcal/mol on the
GDB-9 set, when trained on 118000 molecules. An angle repre-
sentation based on molecular atomic radial angular distributions
(MARAD) achieves a MAE of 1.2 kcal/mol with kernel ridge
regression and 4.0 kcal/mol with the linear Bayesian ridge
regression model when trained on 118000 molecules.
The recently introduced BAML (bonds angles machine learning)

representation21 can be viewed as a many-body extension of BOB
and constructs arbitrary distance functions between pairwise
distances. BAML reaches a MAE of 1.15 kcal/mol on the GDB-7
set trained on 5000 molecules24 and a MAE of 1.2 kcal/mol on
the GDB-9 set when trained on 118000 molecules.10

Huo et al.24 introduced a many-body tensor representation
which improves on the histogram descriptors of Faber et al. by
“smearing” the histograms of given many-body features. For one
of their best models, a MAE of 0.60 kcal/mol on GDB-7 using
Gaussian kernel ridge regression and a MAE of 0.74 kcal/mol
using a linear model (with many-body interactions) have been
reported.
Recently, even more accurate models for predicting the

atomization energy have been introduced,37,38 which reach an
accuracy of 0.26 kcal/mol37 on 100000 training samples and
0.45 kcal/mol38 on 110000 training samples, respectively.
Most of the above approaches use explicit three-body (e.g.,

angle) or four-body (e.g., dihedral angle) features to construct
the respective representation. In this work, we propose novel
translational, rotational, and atom indexing invariant molecular
descriptors which build on the success of inverse pairwise dis-
tances for predicting the atomization energy.7−9,11,23,34 In partic-
ular, we construct many-body interaction features of arbitrary
order from inverse pairwise distances which helps to alleviate
sorting challenges encountered in e.g. CM. Accordingly, our
model learns e.g. a three-body interatomic potential, which is not
necessarily a function of angle. Our novel descriptors allow for
construction of an invariant two-body and many-body inter-
action representation at a f ixed descriptor size. Note that fixed
sized molecular descriptors are useful in practice as they can be
easily used in combination with kernel ridge regression or deep
neural networks or other models that expect fixed size input data.
Also, such fixed size representations are generally extensible to
large molecules and solids, while incorporating informative higher-
order interaction terms. While missing long-range interactions
(H-bond, van der Waals, etc.), those can be easily built on top of
our proposed short-range models.39,40 Clearly, any such combina-
tion of short-range and long-range models for interatomic
potentials will have to carefully avoid double-counting effects.
Furthermore, when using these novel descriptors we observe that
linear models perform only slightly worse than the nonlinear
methods. The latter is helpful in practice as linear models allow to
simply and easily analyze the importance of the proposed two-,
three-, or many-body interaction features for predicting atom-
ization energies of the molecules. This allows for extracting
insights from the learned model.
We view our new descriptors as an optimal compromise that

allows high-throughput calculations of extensive molecular prop-
erties for equilibrium geometries throughout chemical space.
Our many-body model is complementary to recently developed
deep neural networks and nonlinear kernel methods for esti-
mating molecular properties.10,11,24,34

The paper is structured as follows. The next section defines the
invariant two-body and three-body molecular descriptors. The
following section details the data sets as well as the learning
task and the prediction of several properties of small molecules.

This is followed by the analysis of the importance of the two- and
three-body molecular features and the conclusion.

■ INVARIANT MANY-BODY INTERACTION
DESCRIPTORS

We represent a molecule or material by the respective finite set
from which the molecule or unit cell is constructed.

Figure 1. Illustration of the bag-of-bonds molecule similarity. The
distance between two atoms of the left molecule gets directly compared
to an arbitrary distance of the right molecule corresponding to the same
atom types composing the pairwise interaction.

Figure 2. Illustration of the F2B and F3B molecule similarity. For F2B, the
pairwise distances of the left molecule corresponding to a fixed pair of
atom types are computed into a feature entry, which gets compared to
the same feature entry of the right molecule composed identically for the
same pair of atom types. Similarly, F3B compares three bonded atoms
which have an angle.

Table 1. Prediction Errors of the PBE0 Atomization Energy of
the Molecules of the Set GDB-7 by Various ML Models with
Random 5K Train Molecules and the Remaining 1868
Molecules as Test Seta

method features MAE RMSE MAX. DEV

mean 174 219 1166
RR CM 25 33 134
RR BOB 23 30 144
RR F2B 4.9 12 350
RR F2B + F3B 1.0 8.3 327
KNN CM 80 104 461
KNN BOB 70 102 424
KNN F2B 49 73 230
KNN F2B + F3B 10 28 306
KRR (Gauss) CM 8.6 15 433
KRR (Laplace) CM 3.7 5.8 89
KRR (Gauss) BOB 7.6 10 99
KRR (Laplace) BOB 1.8 3.9 103
KRR (Gauss) F2B 1.9 4.7 155
KRR (Laplace) F2B 4.2 6.1 62
KRR (Gauss) F2B + F3B 0.8 1.5 28
KRR (Laplace) F2B + F3B 2.4 3.8 51

aThe errors are given in kcal/mol. The models used are ridge regression
(RR), kernel ridge regression (KRR), and k-nearest neighbors (KNN).
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is performed in order to find a set of universally transferable hyper-
parameters that yield ML models of high accuracy without any need
for re-optimization.We include a detailed review of different kernel-
based models with which the representation can be used and high-
light their strengths, differences, and shortcomings. Finally, we thor-
oughly benchmark the predictive accuracy of our models on several
established datasets of chemical compounds from the literature. In
addition to benchmarking the accuracy of energy and force predic-
tion, we also present timings of our model in order to demonstrate
the applicability.

II. THEORY
This section first introduces the representation used to describe

atomic environments throughout this work. Second, a number of
kernel-based machine learning methods (MOB) which can be used
with the representation are discussed. While the representation
could in principle also be used favorably with feed-forward neural
networks, this paper focuses solely on kernel-based methods.

A. Representation
We have previously compared ML models based on a num-

ber of different representations for the QM9 dataset.1,33 Based on
these studies, it is apparent that the currently best performing rep-
resentations contain certain similarities, although the exact imple-
mentations differ. Some of the best performing representations for
kernel-based machine learning for chemical compounds are the
smooth overlap of atomic densities (SOAP),34,35 spectrum of London
and Axilrod–Teller–Muto (SLATM),36 the many-body descriptor of
Pronobis et al.,37 and FCHL18 representations,1 while variants of
the atom-centered symmetry functions (ACSFs) of Behler6,30,31 have
been shown to perform well for feed-forward neural networks. In
brief, these methods contain some terms that are similar: (1) a two-
body term that relates to the radial distribution between a central
atom and other nearby atoms in its local environment and (2) a
three-body term that similarly relates to, for example, distribution
of angles and/or distances between atoms in the local environment
of the atom.

In this paper, we construct a new atom-centered represen-
tation termed FCHL19 that contains such two- and three-body
terms and demonstrate that this leads to similar performance. The
FCHL19 representation is based on the FCHL18 representation1 but
is discretized in a manner very similar to the well-known ACSF of
Behler.30

In order to enable faster and more memory efficient machine
learning models, it is key that the input representation is as small
as possible compared to the information it holds, as evaluation and
training times scale linearly/quadratically with representation size.

We show that when the parameters of our new representation
are optimized properly, the result is a representation that is compact
in size—ensuring faster machine learning algorithms—without loss
in predictive accuracy.

Briefly described, the representation is a vector that encodes the
atomic environment of an atom in a chemical compound. It consists
of a two-body term which encodes radial distributions between the
central atoms and neighboring atoms of a given element type. Addi-
tionally, the representation contains a three-body term that encodes

the mean distances and angles between the atom and neighboring
pairs of atoms of given element types.

The representation does not contain an explicit one-body term
and, for performance reasons, we do not consider terms of higher
order than three-body, but it is possible that the inclusion of such
terms could lead to even higher predictive accuracy.33

The two- and three-body components of the representation are
described in detail in the following text. The procedure to obtain
the hyperparameters of the representation is detailed in Sec. IV B,
while the optimized parameters are presented in Table III in
Appendix A.

1. Two-body function
For a given central atom, a set of radial basis functions is con-

structed for each unique type of element in the dataset. Each of
the nRs2

basis functions in this set is placed on an equidistant grid
from rcut

nRs2
to rcut , with rcut being the cut-off radius. We found it

advantageous to use log-normal distribution functions for the radial
functions, compared to Gaussian functions as used in our previous
work.1 We note that this is an empirical choice and it is possi-
ble that a better distribution function could be found, for example,
from using an optimization procedure. The log-normal radial basis
functions take the form

G2-body = ξ2(rIJ)fcut(rIJ) 1
Rsσ�rij�√2π exp�−(lnRs − �(rij))2

2σ(rij)2 �, (1)

where Rs is the distance location of the grid point and �(rij) and
σ(rij) are parameters of the log-normal distribution, which in turn
depend on the interatomic distance, rIJ , and a hyperparameter, w,
given as follows:

�(rij) = ln���
rIJ�
1 + w

r2IJ

��� and σ(rij)2 = ln�1 + w
r2IJ
�. (2)

The two-body scaling function, ξ2(rIJ), serves the purpose of apply-
ing a higher regression weight to terms that are more likely to con-
tribute substantially to the total energy, thus increasing the accuracy
of the machine learning procedure for properties that relate to the
total energy. Similar to previous studies,1,38 we found the following
form to be suitable:

ξ2(rIJ) = 1
rN2
IJ

, (3)

where the exponent N2 is a hyperparameter of the representation.
Finally, the soft cut-off function used here is

fcut(rIJ) =
���������

1
2�cos� π rIJ

rcut � + 1� if rIJ ≤ rcut
0 if rIJ > rcut. (4)

Thus, the hyperparameters of the two-body term are the width
parameter of the log-normal distributions, w; the exponent of the
scaling function, N2; the cut-off distance, rcut; and the number of
radial basis functions, nRs2

. Optimized values of these parameters are
presented in Table III in Appendix A.

A graphical representation of the two-body function for an H
and an O atom in a water molecule is displayed in Fig. 1. For each

J. Chem. Phys. 152, 044107 (2020); doi: 10.1063/1.5126701 152, 044107-2
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FIG. 1. The values of four unique types of two-body radial basis functions in a
water molecule are displayed. The radial spectrum is divided into 24 bins, with
rcut = 8.0 Å, w = 0.32 Å, and N2 = 1.8. The top row contains the radial basis func-
tions for the first H atom and the bottom row for the oxygen atom. The distances
that are used to produce the basis functions in each spectrum are marked with
black arrows.

atomic environment in the water molecule, the minimal represen-
tation will contain two radial distributions, x-H and x-O. Thus, the
size of the two-body term scales linearly with the number of possible
elements in the atomic environment.

2. Three-body function
The three-body function encodes the distances from an atom to

neighboring pairs of atoms in the environment of the atom, as well as
the angle between the triplet, and the element types of the neighbors.
The resulting function is a product of the following terms:

G3-body = ξ3G3-body
Radial G

3-body
Angularfcut(rIJ)fcut(rJK)fcut(rKI). (5)

The radial part is similar to the radial part in the ACSFs used in the
ANI-1 neural network,7,30

G3-body
Radial =

�η3
π exp�−η3� 12(rIJ + rIK) − Rs�2�, (6)

where η3 is a parameter that controls the width of the radial distri-
bution functions and again Rs is the location of the radial gridpoints.
Finally, the three-body scaling function, ξ3, is the Axilrod–Teller–
Muto term39,40 with modified exponents,1,38

ξ3 = c3 1 + 3 cos(θKIJ) cos(θIJK) cos(θJKI)
(rIKrJKrKI)N3

. (7)

Here, θKIJ is the angle between the three atoms K, I, and J and c3 is a
weight term that balances the weight of the three-body part relative
to the two-body part.

The angular term is similar to the Fourier series expansion
previously introduced in Ref. 1,

Gcos
n = exp�−(ζn)22

�(cos (nθKIJ) − cos(n(θKIJ + π))), (8)

Gsin
n = exp�−(ζn)22

�(sin (nθKIJ) − sin(n(θKIJ + π))), (9)

where ζ is a hyperparameter describing the width of the angular
Gaussian function and n > 0 is the expansion order. With a suffi-
ciently large value of η3, the angular spectrum can in many cases be
almost completely recovered with only the first Fourier terms.1 This
is in part due to the fact that there is only room for a limited number
of atoms in the local environment at a certain distance, and the angu-
lar spectra are, therefore, rarely very crowded for short distances. In
the rest of this work, only the two n = 1 cosine and sine terms are
used, i.e., G3-body

Angular ∈ {Gcos
1 ,Gsin

1 }.
Since the number of three-body functions scales asO�N2�with

the number of possible different elements in the chemical com-
pounds, they comprise a much larger part of the representation
than the two-body part. A graphical representation of the three-body
terms for the atomic environments in a water molecule is displayed
in Fig. 2.

B. Machine learning
In Subsections II B 1–II B 5, we discuss four kernel-based

regressors that are also used in this study. First, the kernel ridge
regression (KRR) method to learn the energy of chemical com-
pounds is discussed. Next, three different regressors to learn forces
and energies of chemical compounds are reviewed, namely, “oper-
ator quantum machine learning” (OQML),22 Gaussian process
regression (GPR),41,42 and finally “gradient-domain machine learn-
ing” (GDML).28,29

In this section, lower-case indices denote the index of a chem-
ical compound, while upper-case indices denotes the index of the
atomic centers in the chemical compound, and finally, asterisks
are used to denote relation to a query compound or query atomic
center.

FIG. 2. The three-body basis functions are plotted for the two unique three-body
terms in the water molecule, corresponding to the O2-H1-H3 and H1-O2-H3 angles
displayed at the top. The atoms are numbered for clarity.
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Two-body term:

Three-body term:

Ø Distances are expanded with radial basis 
functions,

Ø Many-body atomic interactions.

(a) 1st interaction block (b) 2nd interaction block (c) 3rd interaction block

Figure 3: 10x10 Å cuts through all 64 radial, three-dimensional filters in each interaction block of
SchNet trained on molecular dynamics of ethanol. Negative values are blue, positive values are red.

Filter-generating networks The cfconv layer including its filter-generating network are depicted
at the right panel of Fig. 2. In order to satisfy the requirements for modeling molecular energies,
we restrict our filters for the cfconv layers to be rotationally invariant. The rotational invariance is
obtained by using interatomic distances

dij = kri � rjk

as input for the filter network. Without further processing, the filters would be highly correlated since
a neural network after initialization is close to linear. This leads to a plateau at the beginning of
training that is hard to overcome. We avoid this by expanding the distance with radial basis functions

ek(ri � rj) = exp(��kdij � µkk2)

located at centers 0Å  µk  30Å every 0.1Å with � = 10Å. This is chosen such that all distances
occurring in the data sets are covered by the filters. Due to this additional non-linearity, the initial
filters are less correlated leading to a faster training procedure. Choosing fewer centers corresponds
to reducing the resolution of the filter, while restricting the range of the centers corresponds to the
filter size in a usual convolutional layer. An extensive evaluation of the impact of these variables is
left for future work. We feed the expanded distances into two dense layers with softplus activations
to compute the filter weight W (ri � rj) as shown in Fig. 2 (right).

Fig 3 shows 2d-cuts through generated filters for all three interaction blocks of SchNet trained on
an ethanol molecular dynamics trajectory. We observe how each filter emphasizes certain ranges of
interatomic distances. This enables its interaction block to update the representations according to the
radial environment of each atom. The sequential updates from three interaction blocks allow SchNet
to construct highly complex many-body representations in the spirit of DTNNs [20] while keeping
rotational invariance due to the radial filters.

4.2 Training with energies and forces

As described above, the interatomic forces are related to the molecular energy, so that we can obtain
an energy-conserving force model by differentiating the energy model w.r.t. the atom positions

F̂i(Z1, . . . , Zn, r1, . . . , rn) = �@Ê

@ri
(Z1, . . . , Zn, r1, . . . , rn). (4)

Chmiela et al. [19] pointed out that this leads to an energy-conserving force-field by construction.
As SchNet yields rotationally invariant energy predictions, the force predictions are rotationally
equivariant by construction. The model has to be at least twice differentiable to allow for gradient
descent of the force loss. We chose a shifted softplus ssp(x) = ln(0.5ex + 0.5) as non-linearity
throughout the network in order to obtain a smooth potential energy surface. The shifting ensures that
ssp(0) = 0 and improves the convergence of the network. This activation function shows similarity
to ELUs [37], while having infinite order of continuity.

5
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QM dataset of small molecules
Molecular representations (3D geometric descriptors)

algorithms executed on quantum computers. 
As such, QML models aim to provide a 
feedback mechanism between QM and/or 
SM, and (statistical) ML. Given sufficient 
reference data obtained from QM and SM 
simulations, queries of properly trained 
ML models can yield accurate properties 
within milliseconds39 — as opposed to the 
many CPU hours or days necessary to solve 
the corresponding quantum and statistical 
mechanics problems for representative 
compounds. Because of the rigorous 
interpolation of QML in complex non- linear 
spaces and their consequently controlled 
predictive accuracy40, the door has now 
opened for an extensive analysis and study 
of these interpolated spaces, which was 
previously impossible due to the prohibitive 
computational cost of direct QM and SM 
simulations.

Given the substantial progress in QML 
discussed in this Perspective, we argue that 
meaningful progress in the exploration 
and understanding of CCS can be made 
through systematic combination of rigorous 
physical theories, comprehensive data sets 
of QM and SM properties, and sophisticated 
ML methods that incorporate physical and 
chemical knowledge. The authors have 
witnessed the quick development of QML 
from the perspective of electronic- structure 
calculations and, hence, the focus in this 
Perspective is on combining QM and ML 
with the goal of enhanced exploration 
of CCS. Efforts to use ML to capture SM 
properties in analogous ways is the subject  
of active current research41,42.

Goals and advances of QML
The overarching goal of QML is to develop 
reliable models with the accuracy of high- 
 level electronic- structure calculations. 
Depending on the application, the reference 
data can be obtained from high- level 
quantum chemistry, such as coupled cluster 
single double (triple) (CCSD(T)), or from 
DFT calculations. Although much work 
remains to be done to reach the ‘dream’ of 
exact QML models, many key advances 
have been recently achieved that we discuss 
in this section and connect to important 
remaining challenges for which we deem 
that urgent progress is needed.

All QML advances hinge on the 
availability of trustworthy QM data. These 
data need to cover a certain important 
domain, for example, the CCS of organic 
drug- like compounds, as explored by 
Reymond and colleagues through their 
generated database (GDB) list of simplified 
molecular- input line- entry system (SMILES) 
strings43–46. QM calculations on these 

molecular graphs led to the publication of 
data sets that collect equilibrium structures 
and properties of many thousands of 
small molecules (QM7 and QM9)47,48, 
their molecular- dynamics trajectories 
(MD17)49 and non- equilibrium molecular 
structures (ANI-1)50. One can also calculate 
equilibrium structures and properties of 
solids51–53, or generate equilibrium and 
non- equilibrium molecular dynamics (MD) 
data for a single element (for example, 
silicon)54. The ultimate goal of QML is to 
develop a universal and efficient model for 
the whole CCS that enables the accurate 
description of molecules and materials on 
equal footing and possibly leads to new 
insights on CCS underlying regularity and 
chemical relationships. Reorganizing the 
periodic table (in the sense of revisiting and 
generalizing Pettifor’s concept of Mendeleev 
number)55,56 represents a first and important 
step in this direction53,57. Initially, various 
models have been developed focusing either 
on molecular or materials data, but versatile 
models have been more recently proposed 
that can be applied to both molecules 
and solids58–60.

CCS is commonly explored using 
cheminformatics- based approaches. 
In contrast, QML rigorously adheres to its 
roots in fundamental physics, such that it 
is consistent with the laws of QM and SM. 
One of the first QML applications in which 
ML techniques were used for non- linear 
interpolation of QM data aimed to construct 
reliable system- specific interatomic 
potentials or potential- energy surfaces, 
going beyond conventional force fields in 
terms of universality (atom- type specificity 
no longer required) and accuracy61–66. 
Further developments aimed at transferable 
QML models that are trained and applicable 
throughout CCS for the description of 
QM properties, as shown for the QM7 set 
of organic molecules39, highlighting the 
potential of QML for efficient and accurate 
exploration of CCS. This idea was rapidly 
demonstrated to be applicable to many 
electronic properties using neural networks 
as well as kernel–ridge regression47,67,68, or to 
search for polymers with useful properties69, 
explore chemical properties of crystalline 
solids53,70–73 and design materials for a variety 
of technological applications74,75.

A crucial aspect that determines the 
reliability and applicability of any QML 
model is its generalization accuracy that is 
assessed on the calculated QM properties 
of a sufficiently large out- of- sample 
(hold- out) test data set. It is remarkable 
how quickly the generalization accuracy 
and data efficiency of QML models has 

improved during the past few years. As 
shown in FIG. 1 on the example of the QM9 
data set, the QML prediction errors have 
decreased by 40- fold — from 8 kcal mol−1 
(0.340 eV) to 0.2 kcal mol−1 (0.008 eV) in 
2018 (REF.58), using exactly the same training. 
This noticeable increase in accuracy mainly 
stems from incorporation of physical prior 
knowledge into the QML models, such 
as proper description of permutational 
symmetries of atoms in a molecule49,58,60,76, 
as well as explicit inclusion of physically 
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Fig. 1 | Learning curves illustrate the progress 
of QML models of atomization energies of 
molecules over the past few years. This plot 
shows the mean absolute error (MAE) in eV on 
atomization energies of small molecules in the 
quantum- mechanics- based data set for organic 
molecules with up to nine non- hydrogen atoms 
(QM9)48. The compared quantum machine learn-
ing (QML) models differ solely by representation 
and model architecture, and correspond to 
Coulomb matrix (CM)39, bag of bonds (BoB)83, 
bonds, angles, machine learning (BAML)77, histo-
gram of distances, angles, dihedrals (HDAD)137, 
constant- size descriptors (ConstSize)103, deep 
tensor neural network (DTNN)86, spectrum of 
London and Axilrod–Teller–Muto (SLATM)3, 
atomic SLATM (aSLATM), smooth overlap of ato-
mic positions (SOAP)60, Faber, Christensen, 
Huang, Lilienfeld (FCHL)58, message passing node 
and edge- based neural network with set- to- set 
readout function (enn- s2s)162, moment tensor 
model (MTM)135, many- body- based (MBD)  
kernel–ridge regression78, reactive neural net-
work (NN)87, Hierarchically Interacting Particle 
Neural Network (HIP- NN)163, SchNet59 and wave-
lets164. The black X on the left indicates the target 
value in the ‘QM9 challenge’, in which QML mod-
els should be developed to reach 1 kcal mol−1 
(0.043 eV) accuracy on the QM9 data set using 
only information of 100 molecules for training.  
To date, this challenge has not been met. Adapted  
from REF.165, Springer Nature Limited.
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O.A. von Lilenfeld et al., Nat. Rev. Chem. 4, 347, (2020).
F. Faber et al., J. Chem. Phys. 148, 241717, (2018).

q Physicochemical properties q Atomic forces prediction (MD17 dataset)

Shortcomings for application in large 
molecules:

Predicting 
atomization 

energy

ØHigh-dimensional geometric descriptors. 

ØLarge degrees of freedom.

ØStrong non-covalent interaction.
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Problems to consider when studying large systems
Long range interactions

QM7-X
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Conformational sampling

Atomization energy 
vs MBD energy

DEAT = 0.81 eV

C19H23N2O2SCl3 (50 atoms, 400 conformers)Ø UniLu-Janssen dataset

Ø 60,082 molecular conformations (1673 unique 
compositions). Elements: H, C, N, O, S, Cl, P, F.

Ø Structures containnig up to 92 atoms (54 non-
hydrogen/heavy atoms). 

Ø ~43 QM properties: PBE0(tight)+many body 
dispersion (MBD) with MPB implicit solvent

DEMBD = 0.38 eV

Ø Representations must consider long 
range terms (vdW, electrostatics). 

Ø Conformer identification is more 
challenging by only considering energies.
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Electrostatic, dispersion, 
polarization effectsElectrostatic, chemical bonds

Solvation

Interaction with 
chemical environment

M. Stöhr and A. Tkatchenko, Sci. Adv. 5, 12, (2019).

Intramolecular 
interaction

Intermolecular 
interaction

Problems to consider when studying large systems
Much larger and complex molecular systems
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Methods for developing machine 
learning force fields
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Method 1: Kernel ridge regression
Isomerization: Azobenzene reaction paths 

Trans-azobenzene

Cis-azobenzene

InversionRotation
PBE+TS / Tight 

V. Vassilev-Galindo et al., J. Chem. Phys. 154, 094119, (2021).

Inversion

Rotation

Transition paths: reference data
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Method 1: Kernel ridge regression
Isomerization: Azobenzene reaction paths 

Training/Testing scheme

Ø Training sets from 100 up to 1000 points.

Ø Subsets of size equal to five times the number of training points.

Ø 5-fold cross-validation on each subset.

Ø Used one fold for training and the rest for testing.

x

sGDML

S. Chmiela et al., Sci. Adv. 3, 1603015, (2017).
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Method 1: Kernel ridge regression
Isomerization: Azobenzene reaction paths 
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A single descriptor is not able to optimally resolve all different states on a PES.

V. Vassilev-Galindo et al., J. Chem. Phys. 154, 094119, (2021).
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Ø Distances are expanded with radial basis 
functions,

Ø Many-body atomic interactions.

Method 2: First neural network architectures
SchNetPack: end-to-end NN with cut-off

Custom loss function: energies and forces
Ø Normal mode analysis:

K.T. Schütt et al., J. Chem. Phys. 148, 241722, (2018). 

(a) 1st interaction block (b) 2nd interaction block (c) 3rd interaction block

Figure 3: 10x10 Å cuts through all 64 radial, three-dimensional filters in each interaction block of
SchNet trained on molecular dynamics of ethanol. Negative values are blue, positive values are red.

Filter-generating networks The cfconv layer including its filter-generating network are depicted
at the right panel of Fig. 2. In order to satisfy the requirements for modeling molecular energies,
we restrict our filters for the cfconv layers to be rotationally invariant. The rotational invariance is
obtained by using interatomic distances

dij = kri � rjk

as input for the filter network. Without further processing, the filters would be highly correlated since
a neural network after initialization is close to linear. This leads to a plateau at the beginning of
training that is hard to overcome. We avoid this by expanding the distance with radial basis functions

ek(ri � rj) = exp(��kdij � µkk2)

located at centers 0Å  µk  30Å every 0.1Å with � = 10Å. This is chosen such that all distances
occurring in the data sets are covered by the filters. Due to this additional non-linearity, the initial
filters are less correlated leading to a faster training procedure. Choosing fewer centers corresponds
to reducing the resolution of the filter, while restricting the range of the centers corresponds to the
filter size in a usual convolutional layer. An extensive evaluation of the impact of these variables is
left for future work. We feed the expanded distances into two dense layers with softplus activations
to compute the filter weight W (ri � rj) as shown in Fig. 2 (right).

Fig 3 shows 2d-cuts through generated filters for all three interaction blocks of SchNet trained on
an ethanol molecular dynamics trajectory. We observe how each filter emphasizes certain ranges of
interatomic distances. This enables its interaction block to update the representations according to the
radial environment of each atom. The sequential updates from three interaction blocks allow SchNet
to construct highly complex many-body representations in the spirit of DTNNs [20] while keeping
rotational invariance due to the radial filters.

4.2 Training with energies and forces

As described above, the interatomic forces are related to the molecular energy, so that we can obtain
an energy-conserving force model by differentiating the energy model w.r.t. the atom positions

F̂i(Z1, . . . , Zn, r1, . . . , rn) = �@Ê

@ri
(Z1, . . . , Zn, r1, . . . , rn). (4)

Chmiela et al. [19] pointed out that this leads to an energy-conserving force-field by construction.
As SchNet yields rotationally invariant energy predictions, the force predictions are rotationally
equivariant by construction. The model has to be at least twice differentiable to allow for gradient
descent of the force loss. We chose a shifted softplus ssp(x) = ln(0.5ex + 0.5) as non-linearity
throughout the network in order to obtain a smooth potential energy surface. The shifting ensures that
ssp(0) = 0 and improves the convergence of the network. This activation function shows similarity
to ELUs [37], while having infinite order of continuity.
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species, at different distances and angles. Interested readers are
referred to32 for more details.
As shown in Figure 2, after computing the AEV for each

atom, these AEVs are further passed forward through the

neural network to obtain atomic energies, which will be further
summed together for each molecule to obtain the total energy.
The AEVs of the atoms with the same atomic numbers are
passed through the same neural network.
In the first version of ANI, aka ANI-1, the training data are a

set of the synthesized data, called the ANI-1 dataset,36

obtained from DFT ωB97X/6 − 31G(d) computations of
energies of near equilibrium structures of small organic
molecules using normal mode sampling. Only elements H,
C, N, and O are supported.
ANI was originally implemented in C++/CUDA in a

program called NeuroChem, which allows us to do lightning
fast training and inference on modern NVIDIA GPUs. High
performance of the NeuroChem code is obtained as a trade-off
with fast prototyping, lossy maintenance, simple installation,
and cross platform. This motivated us to implement a
lightweight and easy to use version, that is TorchANI.
TorchANI is not designed to replace NeuroChem. But instead,
it is a complement to NeuroChem with different design
emphasis and expected use case.

2. METHODS
2.1. PyTorch-Based Implementation. In terms of

software for neural network potential research, both perform-
ance and flexibility are important. But unfortunately, perform-
ance and flexibility usually cannot be achieved together. Trade-
offs have to be made when designing a software.
There are researchers trying to use neural network potentials

to study large biomolecules like proteins at a highly accurate
level, which has a high demand on the inference performance
of the software. Also, the quality of a neural network potential
highly depends on the quality of the dataset on which the
potential is trained. Research on improving dataset quality
involves using accurately synthesized data to cover the
chemical space more complete and balanced. To achieve this
goal, we have proposed to use active learning33 to
incrementally expand the dataset, from HCNO to
HCNOSFCl,35 and from near equilibrium structures to
reaction pathways, and from DFT to coupled-cluster.34 The
fact that active learning requires a large number of samples
makes the training performance also critical in such a kind of
research.

For researchers prototyping neural networks of different
architectures, loss functions, and optimizers, the software
should be highly flexible. It should also be cross platform so
that researchers could try their ideas both on a GPU server and
on a laptop. The best technology selection for this purpose is
to use a deep learning framework, which allows employing the
implementations of the most modern methods in the rapidly
growing field of machine learning. Since its release, PyTorch38

has gained a great reputation on its flexibility and ease to use,
and has become the most popular deep learning framework
among researchers. TorchANI is an implementation of ANI on
PyTorch, aimed to be light weight, user-friendly, cross
platform, and easy to read and modify.
Major deep learning frameworks could be categorized as

layer-based frameworks like Caffe39 and compute graph-based
frameworks like PyTorch,38 TensorFlow,40 and MXNet.41

Layer-based frameworks consider a neural network as several
layers of neurons stacked together. The software usually
allocates memory buffers to store inputs and outputs, as well as
the gradients obtained during back-propagation, for each layer.
The core of the software is a CPU code and CUDA kernels
that fill in these buffers. Frameworks of this type are simple in
design and fast in performance. However, considering deep
learning models as a stack of layers is a very restrictive
assumption. As a result, not all deep learning models fit into
the framework of layers. Also, the lack of data structure to store
the computation history makes it very hard to implement
higher-order derivatives.
Compute graph-based deep learning frameworks, such as

PyTorch, usually contain an automatic differentiation
engine.42,43 The engine stores the data dependency as a
graph and contains API that allows users to invoke algorithms
to investigate the mathematical operations of the history and
compute the derivatives in one line of code. NeuroChem is
coded as a layer-based program.
Unlike most deep learning research in the field of computer

vision and natural language processing, and so forth, in which
the automatic differentiation engine is only used in computing
the derivatives of the loss function with respect to model
parameters, the automatic differentiation engine could be more
useful in chemistry: many physical properties are defined as the
derivative of two other properties, say C = ∂A/∂B. Because of
this nature of science, higher-order derivatives are also more
important than in the general artificial intelligence community.
By using the automatic differentiation engine of PyTorch,
people can write down the code that computes A from B, and
the framework provides tools to automatically compute C.
Table 1 shows a list of common physical quantities that are
derivatives of other quantities.

Figure 2. From AEV to Molecule Energy. Figure reproduced from ref
32 with permission from the Royal Society of Chemistry.

Table 1. List of Physical Quantities That are Derivatives
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Method 2: First neural network architectures
ANI potentials

Atomic forces of the ANI potentials
are calculated by using the
automatic differentiation feature of
PyTorch library.

Rotational energy profiles

J.S. Smith et al., Chem. Sci. 8, 3192, (2017).

Total loss function:
target property

Ø Heavily modified Behler-
Parrinello symmetry functions.

Ø Each different chemical symbol 
has a distinct NN.

of inputs and a label, or reference value, for each input. Multi-
layered NNs are known as universal function approximators34

because of their ability to t to arbitrary functions. A neural
network potential35,36 (NNP) utilizes the regression capabilities
of NNs to predict molecular potential surfaces, given only
information about the structure and composition of a molecule.
Standard NNPs suffer from many problems that need to be
solved before any generalized model can be built. Firstly,
training neural networks to molecules with many degrees of
freedom (DOF) is difficult because the data requirements grow
with each DOF to obtain a good statistical sampling of the
potential energy surface. Also, the typical inputs, such as
internal coordinates or coulombmatrices, lack transferability to
different molecules since the input size to a neural network
must remain constant. Finally, the exchange of two identical
atoms in a molecule must lead to the same result.

2.2 The ANAKIN-ME model

Heavily modied Behler and Parrinello symmetry functions25

(BPSFs) and their high-dimensional neural network potential
model, depicted in Fig. 1, form a base for our ANAKIN-ME (ANI)
model. The original BPSFs are used to compute an atomic
environment vector (AEV), ~Gi

X ¼ {G1, G2, G3,.,GM}, composed
of elements, GM, which probe specic regions of an individual
atom's radial and angular chemical environment. Each ~Gi

X for
the ith atom of a molecule with atomic number X is then used as
input into a single NNP. The total energy of a molecule, ET, is
computed from the outputs, Ei, of the atomic number specic
NNPs using:

ET ¼
Xall atoms

i

Ei (1)

In this way, ET has the form of a sum over all i “atomic
contributions” to the total energy. Aside from transferability, an
added advantage of this simple summation is that it allows for
a near linear scaling in computational complexity with added
cores or GPUs, up to the number of atoms in the system of
interest.

The~Gi
X vectors are key to allowing this functional form of the

total energy to be utilized. For an atom i, ~Gi
X is designed to give

a numerical representation, accounting for both radial and
angular features, of i's local chemical environment. The local
atomic environment approximation is achieved with a piece-
wise cutoff function:

fC
!
Rij

"
¼

8
><

>:

0:5 " cos

#
pRij

RC

$
þ 0:5 for Rij #RC

0:0 for Rij .RC

(2)

here, Rij is the distance between atoms i and j, while Rc is
a cutoff radius. As written, fC(Rij) is a continuous function with
continuous rst derivatives.

To probe the local radial environment for an atom i, the
following radial symmetry function, introduced by Behler and
Parrinello, produces radial elements, GR

m of ~Gi
X,

GR
m ¼

Xall atoms

jsi

e$hðRij$RsÞ2 fC
!
Rij

"
(3)

The index m is over a set of h and Rs parameters. The
parameter h is used to change the width of the Gaussian
distribution while the purpose of Rs is to shi the center of the
peak. In an ANI potential, only a single h is used to produce thin
Gaussian peaks and multiple Rs are used to probe outward from
the atomic center. The reasoning behind this specic use of
parameters is two-fold: rstly, when probing with many small
h parameters, vector elements can grow to very large values,
which are detrimental to the training of NNPs. Secondly, using
Rs in this manner allows the probing of very specic regions of
the radial environment, which helps with transferability. GR

m, for
a set of M ¼ {m1, m2, m3,.} ¼ {(h1, Rs1), (h2, Rs2), (h3, Rs3),.}
parameters, is plotted in Fig. 2A.M consist of a constant h for all
m and multiple Rs parameters to show a visualization of how
each vector element probes its own distinct region of an atom's
radial environment.

We made two modications to the original version of Behler
and Parrinello's angular symmetry function to produce one
better suited to probing the local angular environment of
complex chemical systems. The rst addition is qs, which allows
an arbitrary number of shis in the angular environment, and
the second is a modied exponential factor that allows an Rs

parameter to be added. The Rs addition allows the angular
environment to be considered within radial shells based on the
average of the distance from the neighboring atoms. The effect
of these two changes is that AEV elements are generally smaller
because they overlap atoms in different angular regions less and
they provide a distinctive image of various molecular features,
a property that assists neural networks in learning the ener-
getics of specic bonding patterns, ring patterns, functional
groups, or other molecular features.

Given atoms i, j, and k, an angle qijk, centered on atom i, is
computed along with two distances Rij and Rik. A single element,
GAmod
m of ~Gi

X, to probe the angular environment of atom i, takes
the form of a sum over all j and k neighboring atom pairs, of the
product of a radial and an angular factor,

GAmod
m ¼ 21$z

Xall atoms

j;ksi

!
1þ cos

!
qijk $ qs

""z

" exp

"

$h

#
Rij þ Rik

2
$ Rs

$2
#

fC
!
Rij

"
fCðRikÞ (4)

The Gaussian factor combined with the cutoff functions, like
the radial symmetry functions, allows chemical locality to be
exploited in the angular symmetry functions. In this case, the
index m is over four separate parameters: z, qs, h, and Rs. h and
Rs serve a similar purpose as in eqn (3). Applying a qs parameter
allows probing of specic regions of the angular environment in
a similar way as is accomplished with Rs in the radial part. Also,
z changes the width of the peaks in the angular environment.
GAmod
m for several m are plotted in Fig. 2B while the original
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of inputs and a label, or reference value, for each input. Multi-
layered NNs are known as universal function approximators34

because of their ability to t to arbitrary functions. A neural
network potential35,36 (NNP) utilizes the regression capabilities
of NNs to predict molecular potential surfaces, given only
information about the structure and composition of a molecule.
Standard NNPs suffer from many problems that need to be
solved before any generalized model can be built. Firstly,
training neural networks to molecules with many degrees of
freedom (DOF) is difficult because the data requirements grow
with each DOF to obtain a good statistical sampling of the
potential energy surface. Also, the typical inputs, such as
internal coordinates or coulombmatrices, lack transferability to
different molecules since the input size to a neural network
must remain constant. Finally, the exchange of two identical
atoms in a molecule must lead to the same result.

2.2 The ANAKIN-ME model

Heavily modied Behler and Parrinello symmetry functions25

(BPSFs) and their high-dimensional neural network potential
model, depicted in Fig. 1, form a base for our ANAKIN-ME (ANI)
model. The original BPSFs are used to compute an atomic
environment vector (AEV), ~Gi

X ¼ {G1, G2, G3,.,GM}, composed
of elements, GM, which probe specic regions of an individual
atom's radial and angular chemical environment. Each ~Gi

X for
the ith atom of a molecule with atomic number X is then used as
input into a single NNP. The total energy of a molecule, ET, is
computed from the outputs, Ei, of the atomic number specic
NNPs using:

ET ¼
Xall atoms

i

Ei (1)

In this way, ET has the form of a sum over all i “atomic
contributions” to the total energy. Aside from transferability, an
added advantage of this simple summation is that it allows for
a near linear scaling in computational complexity with added
cores or GPUs, up to the number of atoms in the system of
interest.

The~Gi
X vectors are key to allowing this functional form of the

total energy to be utilized. For an atom i, ~Gi
X is designed to give

a numerical representation, accounting for both radial and
angular features, of i's local chemical environment. The local
atomic environment approximation is achieved with a piece-
wise cutoff function:
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here, Rij is the distance between atoms i and j, while Rc is
a cutoff radius. As written, fC(Rij) is a continuous function with
continuous rst derivatives.

To probe the local radial environment for an atom i, the
following radial symmetry function, introduced by Behler and
Parrinello, produces radial elements, GR

m of ~Gi
X,

GR
m ¼

Xall atoms

jsi

e$hðRij$RsÞ2 fC
!
Rij

"
(3)

The index m is over a set of h and Rs parameters. The
parameter h is used to change the width of the Gaussian
distribution while the purpose of Rs is to shi the center of the
peak. In an ANI potential, only a single h is used to produce thin
Gaussian peaks and multiple Rs are used to probe outward from
the atomic center. The reasoning behind this specic use of
parameters is two-fold: rstly, when probing with many small
h parameters, vector elements can grow to very large values,
which are detrimental to the training of NNPs. Secondly, using
Rs in this manner allows the probing of very specic regions of
the radial environment, which helps with transferability. GR

m, for
a set of M ¼ {m1, m2, m3,.} ¼ {(h1, Rs1), (h2, Rs2), (h3, Rs3),.}
parameters, is plotted in Fig. 2A.M consist of a constant h for all
m and multiple Rs parameters to show a visualization of how
each vector element probes its own distinct region of an atom's
radial environment.

We made two modications to the original version of Behler
and Parrinello's angular symmetry function to produce one
better suited to probing the local angular environment of
complex chemical systems. The rst addition is qs, which allows
an arbitrary number of shis in the angular environment, and
the second is a modied exponential factor that allows an Rs

parameter to be added. The Rs addition allows the angular
environment to be considered within radial shells based on the
average of the distance from the neighboring atoms. The effect
of these two changes is that AEV elements are generally smaller
because they overlap atoms in different angular regions less and
they provide a distinctive image of various molecular features,
a property that assists neural networks in learning the ener-
getics of specic bonding patterns, ring patterns, functional
groups, or other molecular features.

Given atoms i, j, and k, an angle qijk, centered on atom i, is
computed along with two distances Rij and Rik. A single element,
GAmod
m of ~Gi

X, to probe the angular environment of atom i, takes
the form of a sum over all j and k neighboring atom pairs, of the
product of a radial and an angular factor,

GAmod
m ¼ 21$z

Xall atoms

j;ksi
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""z
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The Gaussian factor combined with the cutoff functions, like
the radial symmetry functions, allows chemical locality to be
exploited in the angular symmetry functions. In this case, the
index m is over four separate parameters: z, qs, h, and Rs. h and
Rs serve a similar purpose as in eqn (3). Applying a qs parameter
allows probing of specic regions of the angular environment in
a similar way as is accomplished with Rs in the radial part. Also,
z changes the width of the peaks in the angular environment.
GAmod
m for several m are plotted in Fig. 2B while the original
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Method 3: Recent Physics-inspired NN potentials
Scalable and accurate ML force field
SpookyNet: It models electronic degrees of freedom and non-local interactions using 
attention in a transformer architecture.

Physics-based components

O. T. Unke et al., Nat. Commun. 12, 7273, (2021).
Repulsive energy

Electrostatic energy van der Waals energy
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Method 3: Recent Physics-inspired NN potentials
Scalable and accurate ML force field

SchNetSpookyNetReference

SpookyNet: It models electronic degrees of freedom and non-local interactions using 
attention in a transformer architecture.

O. T. Unke et al., Nat. Commun. 12, 7273, (2021).

SpookyNet model: QM7-X dataset
• Training set: ~4 M of equilibrium and non-

equilibrium molecules up to 23 atoms.

• Level of theory: PBE0+MBD.
• Features: 128.
• Cut-off = 5.29 Å.

• Model parameters: 3 630 142.
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SpookyNet model
(~4 M, int 6, 128 features, 

cut-off = 5.29 Å)

Method 3: Recent Physics-inspired NN potentials
Scalable and accurate ML force field
q Four molecules: 30, 40, 50, and 60 atoms.
q References geometries optimized at PBE0(tight)+MBD.

C11H15N3O C18H15N3O3S C21H23N3O3 C25H28N3O4

TorchMD-Net model:
Trained on only energies 

and forces
(~3.2 M, cut-off = 5.29 Å)

P. Thölke and G. De Fabritiis, (2022). arXiv:2202.02541
O. T. Unke et al., Nat. Commun. 12, 7273, (2021).

RMSD = 0.045 Å RMSD = 0.322 Å RMSD = 0.587 Å RMSD = 0.558 Å

RMSD = 0.131 Å

Other alternatives:

Ø NequIP (S. Batzner et al., Nat. Commun.
13, 2453, (2022)).

Ø Allegro (A. Musaelian et al., (2022). 
arXiv:2204.05249).
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Method 4: Hybrid ML/Molecular-Mechanics potentials
Binding free energy calculations

D.M. Rufa et al., (2020). bioRxiv: 2020.07.29.227959.
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Method 4: Hybrid ML/Molecular-Mechanics potentials
Binding free energy calculations

MM: openFF (+solvent)

ML/MM: openFF (+solvent) & ANI2x

D.M. Rufa et al., (2020). bioRxiv: 2020.07.29.227959.
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Method 4: Hybrid ML/Molecular-Mechanics potentials
BuRNN: Buffer region NN for polarizable embedding

B. Lier et al., J. Phys. Chem. Lett. 13, 3812, (2022).

Ø Predict the difference between two QM 
regions.

Ø Polarizable embedding of buffer region 
at full QM level.

Features:

which roughly accounts for the first two solvation shells, where
the first solvation shell is expected to be formed by the
hexacoordinated waters. During extensive MD simulations (10
ns), the water molecules are freely diffusing between the buffer
and outer regions, smoothly switching interactions between the
NN (QM) level and the MM level of theory. BuRNN
simulations are validated using experimental data and are
compared to QM/MM simulations of the Fe(H2O)6

3+

complex (QM region) in classical SPC water and two distinct
fully classical descriptions. In addition, we performed BuRNN
simulations using a larger inner region that additionally
comprises the first solvation shell.
To validate the method, we first look at the Fe−O radial

distribution functions (RDF) g(r) in Figure 3a. All simulations

show a distinct peak at ∼0.20 nm, corresponding to the first
coordinative solvation shell of mostly six water molecules,
which is slightly narrower and more pronounced in the
classical description (blue curve). In contrast, the second
solvation shell is more pronounced in the BuRNN (orange
curve) and corresponds to an average of 12.7 water molecules.
It shows a maximum at ∼0.41 nm, while the MM simulation
shows a broader peak with a maximum at 0.40 nm. Simulations
with a larger inner region yield almost identical results (Figure
S4). In the QM/MM simulation with electrostatic embedding,
the second shell also has a maximum at 0.40 nm (gray curve),
while a QM/MM simulation with mechanical embedding leads
to a maximum at 0.41 nm (Figure S4), as in the BuRNN.
Experimentally, it was found at 0.415 nm and comprises 12
water molecules, hence agreeing well with our simulations.34

We have also performed simulations using the 12−6−4
Lennard-Jones potential35 and the SPC/E water model36 and
found that the g(r) shows an additional peak at 0.31 nm,
representing one additional molecule pushing into the first
solvation shell (Figure S4). The transition at 0.5 nm in the
RDF obtained with the BuRNN is smooth and does not show

any artifacts. This is remarkable as the buffer region ends and
the water molecules beyond this distance interact completely
according to a pure MM description.
To investigate the robustness of the BuRNN, we performed

MD at different temperatures (Figure S5) and show the RDF
obtained at 400 K in Figure 3a. As one can see, there is a slight
smoothing between 0.5 and 1.0 nm due to the increased level
of thermal motion, but the BuRNN simulation remains stable.
The two NN models deviate on average by 0.39 ± 0.02 kJ/
mol.
In addition, we sought to investigate the propensity of the

BuRNN to describe water exchange. Hence, we used umbrella
sampling37 to pull a water molecule away from the complex
and observed the spontaneous exchange of this water molecule
with another (see Supporting Movie S1). The energy
predictions and MD simulations are stable during this process.
In the regular simulations, the hexacoordination is stably
maintained. Water molecules in the second solvation shell
(within the buffer region) readily exchange with water
molecules from the outer region. All water molecules (786
molecules) visit the buffer region at least once during the
simulation, with an average lifetime of 14.4 ps. This agrees with
estimates from NMR experiments that determine a lifetime
that is below their resolution limit of 100 ps.38 We further
computed the self-diffusion rate for BuRNN and MM only
simulations and found values of 0.98 × 10−5 and 0.92 × 10−5

cm2/ps, respectively. Both approaches overestimate the
diffusion constant compared to experimental estimates of
0.55−0.68 × 10−5 cm2/ps,38−41 in line with the observation
that bulk SPC (simple point charge) water has a diffusion
constant that is slightly too large.42

Figure 3b shows the distribution of the O−H−H−Fe
improper dihedral angles defining the co-planarity of the iron
and a water molecule. A value of 0°, which is predominant in
pure MM simulations, implies that the water molecule and the
Fe3+ ion are in the same plane. Larger values as observed for
the BuRNN with a mean angle of 19.3° and for QM/MM
simulations (mean angle of 20.3°) indicate a more tetrahedral
arrangement in which the iron interacts with the lone pairs on
the oxygen. For comparison, a BP86-D3/def2-TZVP/COSMO
estimate for this angle in [Fe(H2O)18]3+ lies at 16°.

43

MD simulations are further compared by the geometries
visited during the simulations. Figures 3c shows radial
distances between the Fe and O that agree well with the
range of experimental estimates for the Fe−O bond lengths of
0.199−0.210 nm.34,44−50 O−Fe−O angles are almost identical
among the BuRNN, QM/MM, and “MM only” and reflect
angles expected for an octahedral arrangement (peaking at
around 90° and 175°). Figure 3d shows that there are clear
differences for the frequencies at which the Fe−O bonds
vibrate, implying that the Fe−O interaction is indeed not
captured well by a purely classical description. In the QM/MM
simulations and when using the BuRNN, the vibrations take
place at lower frequencies and are in better agreement with
experimental bands observed at ∼180, ∼310, and ∼500
cm−1.50−52 The frequencies obtained with quantum chemistry
are better aligned with experiment and the BuRNN than with
pure MM (Figure S4b), while those obtained from 12−6−4
Lennard-Jones potential simulations are even higher than those
observed with the simple MM only approach (Figure S4).
In this work, we have introduced the BuRNN, a buffered

region neural network NN/MM scheme, as an alternative to
QM/MM simulations that experiences full electronic polar-

Figure 3. Coordination of Fe3+ by water molecules with BuRNN
simulations and when using MM only. (a) Radial distribution
function for BuRNN at temperatures of 300 and 400 K, with MM
only and a QM/MM simulation using electrostatic embedding (EE).
The dashed lines indicate the second BuRNN peak and the cutoff
used to define the buffer region. (b) Probability distribution of the
O−H−H−Fe improper dihedral. (c) Distribution of the Fe−O
distance. (d) Power spectrum of the Fe−O coordinative bond for
different simulations. Experimental data were taken from refs 50−52.

The Journal of Physical Chemistry Letters pubs.acs.org/JPCL Letter

https://doi.org/10.1021/acs.jpclett.2c00654
J. Phys. Chem. Lett. 2022, 13, 3812−3818
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Method 4: Hybrid ML/Molecular-Mechanics potentials
System specific MD simulations with HDNNP

L. Böselt et al., J. Chem. Theory Comput. 17, 2641, (2021).

Molecules in water

Retionic acid

• Long range interactions (electrostatic, vdW)
• Large phase space
• Long time scales

q Challenges

• Symmetry functions as in ANI-x models
• D-learning scheme with DFTB as baseline

q Approach

Loss functions:

Transition state of S-adenosylmethionate 
(SAM) with cytosine
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Method 5: Hybrid ML/Quantum-Mechanics potentials
Density functional tight-binding (DFTB) method

DFTB
electronic  

energy

repulsive
energy

Machine learning
NNrep

Etot
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Repulsive energyElectronic energy

Ø Problems of accuracy and general validity.

Many-body NN repulsive potentials

PBE0-DFT
DFTB-NNrep
DFTB-pwrep

Rotational energy profile:

M. Stöhr et al., J. Phys. Chem. Lett. 11,  6835, (2020).
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Summary

Drug-protein binding

Lowest
energy

Highest
energy

Small molecules Large molecules

Increasing the system dimensionality

Increasing the system complexity

ü 2-and 3-body geometric 
descriptors

ü Few degrees of freedom

ü Weak non-covalent 
interaction

Ø High-dimensional geometric 
descriptors 

Ø Large degrees of freedom

Ø Strong non-covalent 
interaction

Ø Strong intermolecular 
interaction

Ø Dependence on the chemical 
environment 

Ø Hybrid QM/ML models
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