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Outline

* Symmetry in data and models

e Basic concepts:
* Groups and representations
* Equivariance

* How to incorporate equivariance in neural networks

* Applications:
* Unsupervised invariant representation learning
* Electron density prediction
* Hamiltonian matrix prediction



Symmetry in data

» Symmetry is often part of real world data

» Incorporating symmetries as inductive bias in neural networks has several advantages

« Improve performance (NN can focus on actual problem)
* Less data needed for training (no need of augmentation)
 Common examples: CNNs, MPNNs 0

> Often: label/signal is group invariant but representation is not

. . representation
* Ordinary neural networks do not know what coordinates are. P

By default, coordinates are just numbers. p(®) C 3

x(g™ w)
symmetry g
group ® ul
domain ()

Bronstein et al., “Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges” https://arxiv.org/abs/2104.13478



Symmetry-aware models

There are three main approaches to making the model “understand” the symmetry of the data

1. Data Augmentation

We provide to the model several instances
of the same underlying signal

X Data inefficient
X Parameter inefficient
X Preprocessing necessary
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Different molecular depictions of the same structure

2. Invariant Models

We restrict to invariant models or

invariant features

X X NS

Data efficient

Parameter efficient

Restrictive functions/features
Often preprosessing necessary

3. Equivariant Models

Models are symmetry-aware but not
restricted to be invariant.

Data efficient

Parameter efficient

End-to-end learning easier

Powerful function/features

Can extract invariance (if needed)

Very active (and successful) area of research
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REVIEW OF BASIC CONCEPTS




What is a group?

Fundamental concept in mathematics to describe:
» Number systems
> Integers Z (0, +1,+2, ...) with addition (+)
» Real numbers R with addition

» Real numbers R with multiplication 7?7 - R, = R/{0}

> Symmetries of an object/space
» SE(3): isometries of 3D Euclidean space

» (Geometric transformations
> Rotations in RN : SO(N) = group of nxn orthogonal matrices (0T = 071)
> Translations in RY: T(N) = RN



Representations

Groups are abstract objects, we are interested on their action on algrebraic/geometric spaces. A
fundamental case is given by vector spaces, which generalize the concept of Eucliden spaces.

ff&éfiﬁifidﬁﬁ(VéCﬁdhiﬁﬁéﬁéJﬁﬁiiﬁﬁﬁiﬁﬁﬁiiﬁﬁﬁiEﬁﬁiiﬁﬁﬁiﬁﬁ:}
CAvector space over-a- field (of scalars) F is a set (of vectors) V.
-equipped. with two..operations.(vector. addition and scalar.............
- multiplication). satisfying various axioms.(additive, multiplicative,.
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The bridge between the abstract group and its action on a vector space is given provided by the
concept of representations:
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~A‘representation of a group G on a vector space V. is a group il Homomorphism = structure-
-homomorphisim. p:.G- = GL(W),. that assighs to each g € (. a linear.map .. . preserving map
(@) Vo= Vosuch o that oo




Examples of representations

Let us consider two triplets of real numbers:

a1 1
3
a= |las| € R? r=|[rp| €R
as 3
(e.g., energy, volume, ..) (e.g., 3D coordinates, forces, velocities, ..)

Both are a 3-tuple of real numbers. But they transform differently under, e.g., 3D rotations (G =S0(3)).
For example, under rotationg € SO(3) around x axis

1 0 0 aq 1 0 0 T
“ga” = |0 1 0] |ag “gr” = |0 cos@ sinf| |7y
0 0 1f |as 0 —sinf cos@| |rs
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Equivariance

~Definition: (equivariance) . illliiiiiiiiiiinininnn P e T

CAmap £V W is said to!be G-equivariant with respect iipr(@)) i () fev(9)x) = pw (9)f (%)
©-to:the actions.:(representations) py, gy 1f the- diagram...:....0.0000 il bl e e ction commutes
3:3F39mr:"-l."3t:3?3‘¢.'3:f-c:)-'?:e:y:e:r:yﬁ:‘9:3?:-.3’.3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3:3V':':':':':':':f:':':':%"»':3W3:3:3:3:3:3: with the group action

Examples

f =change from blue to red
G =translations in the plane

o — > | @

Let py = pyw = trivial representation,
i.e., py(@x=x, Vx€EV, VgeG

flov(g)x) = f(x)

pw(g)f (x) = f(x)

f =translation by t
G =S0(3)

floy(@)x) = f(Rx) =Rx +t
H
pv(@)f(x) =py(g)(x +t) =Rx + Rt




Example 1: CNNs and translation equivariance

The success of CNNs strongly relies on their filter being equivatiant to translations.

We can check equivariance wrt translations ... and wrt rotations

Existing CNNs: Translation Equivariance Existing CNNs: No Rotation Equivariance

Features
Features

“Windowed
" view

Harmonic Networks: Deep Translation and Rotation Equivariance (https://www.youtube.com/watch?v=qoWAFBYOtoU)



Example 2: AlphaFold2

CASP challenge: Amino Acid Sequence — 3D Folded Structure.

The Structure module uses a 3D equivariant
transformer architecture to refine backbone
coordinates and predict side chains.

https://fabianfuchsml.github.io/alphafold2/

Structure module

=>  End-to-end folding instead of gradient descent

=  Protein backbone = gas of 3-D rigid bodies
(chain is learned!)

Image: Dcrjsr, vectorised Adam Redzikowski (CC BY 3.8, Wikipedia)

= 3-D equivariant transformer architecture
updates the rigid bodies / backbone
o  Also builds the side chains

Iteration 3

Target: T1041 @



Beyond vectors

Topological Graph

Nodes and Edges.

3D Graph with features

Nodes also have 3D coordinates

[x,y,2] [x,y, 2]

[x,y,2]

[x,y,2]  [x2] [x,y,2]

Topological Graph with

features

Nodes (Edges) have features
(atom types, double/single bond,

3D Graph with tensor features

Nodes also have geometric features




HOW TO INCORPORATE
EQUIVARIANCE IN NNs




Approaches to equivariance

The various components of the network needs to be symmetry-aware as well

» Simplest choice: invariant (scalar) filters

K Example

)

S em =/

input filter

N\

d

-
r

SO0(3):RF®a) =R(ar) =aR(#) =R(¥) Qa

\ TRETGRa)=FQRQa)+t=ar+t+a@+t)=TTF)Qa

~

» Filters can carry

/S o/

non-trivial representations

input filter
/ X / = B + / +
input filter

from e3nn import o3

rot_x = o3.matrix_x(torch.tensor( /

rot_x
Out[248]:
tensor([[ 1.0000,

[ 8.0000,

[ 8.0000,

)) .squeeze()

0.0000, ©.0000],
0.5005, -0.8658],

0.8658, 0.5005]11) def extract_vector(matrix):

return torch.tensor(
[matrix[1,2]
matrix[2,0]
matrix[0,1]

vl = torch.tensor([[
v2 = torch.tensor([[
vi_rot = vl @ rot_x.T
v2_rot = v2 @ rot_x.T
prod = torch.kron(vl, v2.T) )

- matrix[2,1],
- matrix[0,2],
- matrix[1,0]]

extract_vector(prod)

: tensor([13., -2., -3.1)
extract_vector(prod_rot)

: tensor([13.0000, 1.5964, -3.2329]1)
extract_vector(prod) @ rot_x.T

: tensor([13.0000, 1.5964, -3.23291)

op A3,

[ doy, Rop o)
prod_rot = torch.kron(vi_rot, v2_rot.T)
prod_rot

Out[253]:

tensor([[ 1.0000, -1.5964, 3.2329],
[ 1.6365, -2.6125, 5.2908],
[ 4.8293, -7.7092, 15.6125]])
torch.trace(prod)

Out[254]: tensor(14.)
torch.trace(prod_rot)

Out[255]: tensor(14.0000)




Approaches to equivariance - |

The are two main approaches to design an G-equivariant network (focus on SO(3)/SE(3)).

1. Design ad-hoc operations

S0(3) —Equivariant NNs can use:

Any (non-linear) function of scalars: f(s)
Scaling of vectors: sov

Linear combination of vectors: Wv

Scalar products: (U, 7,)

Vector products: ¥;Xv,

VVVYVYVYYVY

Convolution operation is translation equivariant:

o= [ T f)glt - 7y

(exercise: show it!)

Filters,
Transformations,
Non-linearities,
Message-passing,
etc...

DRAWBACKS:

» Extension to higher-order tensor very non-trivial
» Capacity limited by design (lack of generalization)

BENEFITS:

» "Low" computational cost

» "Easy’ to implement for most groups
» Conceptually simple




Equivariant Graph NN for Molecular Property Prediction

Consider a graph with both scalar and vector features
with respect to G =S0(3)

xi = (5, 77) € RFsxR3*Fr

N

scalar vector

NN\

Even if no initial vector features, equivariant (vector) interactions are created via tensor
product of relative positions with an invariant representation

/ QX B = /: B = Pj — Pi enables interaction
= / L ||Pj _ pl_| ) between type-1 features

Different strategies for SE(3) —invariant embeddings:

Schiitt, Kristof T. et al. “SchNet: A continuous-filter convolutional neural network for modeling quantum interactions.” NIPS (2017).
Schiitt, Kristof T .et al. “Equivariant message passing for the prediction of tensorial properties and molecular spectra.” ICML (2021).
Le, Tuan et al. “Equivariant Graph Attention Networks for Molecular Property Prediction.” ArXiv abs/2202.09891 (2022).



Approaches to equivariance- |l

The are two main approaches to design an G-equivariant network

2. Design general symmetry-aware operations

.................

0 O aq
PV (Q)CL =10 1 0 a2 V = 193 1 =trivial representation
0O 0 1 as
1 0 0 T
pw(g)r =10 cos@ sinf| |ry W = 3 irreducible

0 —sinf cos@| [r3



Tensor product and complete reducibility

-Definition  (EeNSOF PrOdUCE) il il il
T LetIV;,V;be two representation of ‘the group G. Their tensor product s the tensor product::
--of.vector spaces: V. @V, with the linear action determined by ....ooooooninsnn
infiEififiEififiEififiEififiEifififififiPtfﬁi@iﬁéﬁg?(‘ﬁ’-iﬁf@i??fzf)fi?ifpﬁiffif(g)ﬁ?iifiPii/zi(gE)f’?'EififiEififiEififiEififiEififi?ififi?ififi?ififi?i/fi

.................................

l
(x(ll) ®y(lz)) P Z Z Cﬁg;l,zr;f;’mlmgly% » Clebsch-Gordan coefficients

msa

EX. SO(3)




Tensor-based NNs

Filters are constructed as a sum (collection) of different irreps
F=Vl @2 QU™ @ -
Features propagation is done with tensor product

x® QF = X(gt+1) 69Xl(t+1) @Xz(t-l-n @ -

» Extension to higher-order tensor “trivial’
» Higher computational cost

» Non-trivial to implement for most groups
» But frameworks available (SE(3))

Tensor Field Networks (arXiv:1802.08219)
Clebsch-Gordan Nets (arXiv:1806.09231)
3D Steerable CNNs (arXiv:1807.02547)
Cormorant (arXiv:1906.04015)
SE(3)-Transformers (arXiv:2006.10503)
e3nn (github.com/e3nn/e3nn)

YVVVVYVYYY




APPLICATIONS




Unsupervised invariant representation learning

* In representation learning we wish to learn “the best possible” lower dimensional representation of
the data

* Such representation can be used as powerful descriptors for downstream tasks/clustering/generative
approaches, ..

* Autoencoders are a powerful approach to unsupervised representation learning

« Can we learn invariant representations with AE (from non-invariant data)?

* Problem is that, when data representation is not group invariant, the reconstruction loss will also not
be!

Lree = L(x,2) # L(p(9)z, T)

* Node assignement problem: which permutation?

» Coordinate frame problem: which orientation?



Reconstruction through group action

DG (&
X . X

D (g)—¢

¢ — == 8—@®

« We want to learn the space Z as a bottleneck * We learn an additional equivariant map ¢,
between orbits in X representing the group element mapping & — «

O, = {px(9)x|Vg € G} Lree(w) = L(z, p(1b(2))T)

* The loss is now G-invariant

* The decoder, at best, can map the embedding of Lrec(p(9)z) = L(p(9)z, Y (p(g))T)
the point x to a given element in its orbit = L(p(g)z, p(9)¢Y(2)2) = Lrec(T)
d(n(x)) =2 = px(g)x * We prove that such approach can be applied to any

group G, both continuous and discrete

* We provide an explicit construction for any group G.

Winter, Robin et al. “Unsupervised Learning of Group Invariant and Equivariant Representations.” ArXiv abs/2202.07559 (2022).



Examples

1. MNIST - G = SO(2)
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2. Point Cloud — G = SE(3) + S_n (Rotations + Translations + Permutations)
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isualization of Reconstructions: QM9

o Input
o Input o Input »  Output )
»  Output % Output Output + Rotation
Output + Rotation Output + Rotation




Electron density prediction

Electron density:

Input

p() =X Yk X X Cikim Yy me ™ *a(r—T"2
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coefficients for each basis function on each atom
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Rackers et al., Cracking the Quantum Scaling Limit with Machine Learned Electron Densities




Hamiltonian matrix prediction

A

Hel\Ilel - Eel\I’el

TN

Hamiltonian Energy eigenvalues Electronic
operator wavefunction

APPROX: ¥i = )  Cijd;
J

Linear combination of atomic orbitals
(LCAO-MO method)

Hydrogen 1
O [t !
Oxygen

tensor product expansions

1=0

902 0 O [

Paty P

combination of I symmetrization

diagonal
and
off-diagonal
blocks

4

2p,

2p,

final matrix
(o] HH

1s 25 2p, 2p, 2p, 1s 1s
H

11

“zzl Hyy
Hn H,ﬂ

Unke et al., SE(3)-equivariant prediction of molecular wavefunctions and electron densities
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THANK YOU FOR YOUR
ATTENTION!




