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Hedging of Financial Derivative contracts
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Derivative contract: Legal agreement with two counterparties.
One pays now, the other in the future, depending on the random
behavior of an underlying asset.

1. Airline realized that if oil price rises, they wont be able to pay
their business: → enters option on oil

Pricing: What price should Credit Suisse ask today?

Hedging: Off-set risks
by replicating derivative
over investment horizon
using hedging portfolio.

↓

Planning problem in
stochastic environment



The k-armed bandit
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Prototypical example of Reinforcement Learning (RL):
Learner chooses repeatedly from k actions starting with 0 knowledge.
Receives reward upon each choice.

Goal: Learn from rewards and find best action!
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Prototypical example of Reinforcement Learning (RL):
Learner chooses repeatedly from k actions starting with 0 knowledge.
Receives reward upon each choice.

Goal: Learn from rewards and find best action!

Example 1: (Bernoulli Bandit)
Each round action a1, a2, a3 chosen.
Playing ai agent receives reward {0, 1}. 500
rounds. Probability of 1 is pi , fixed over rounds
but unknown.
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Prototypical example of Reinforcement Learning (RL):
Learner chooses repeatedly from k actions starting with 0 knowledge.
Receives reward upon each choice.

Goal: Learn from rewards and find best action!

Example 1: (Bernoulli Bandit)
Upon playing action ai agent receives reward in
{0, 1}. Probability of 1 is pi .
In each round pi fixed but unknown.

Example 2: (Process cost minimization)
Follow different paths through graph,
receiving a terminal cost per path.
Path corresponds to one (of exponentially
many) actions.
Find cheapest course of action/ process.



The k-armed bandit

Formally:
I k-armed bandit is tuple (A,R,T ,Bandit iteration) with

1. A = {a1, ..., ak} set of possible actions
2. R(a) reward obtained by taking a ∈ A, i.i.d over time
3. T ∈ N number of rounds played, planning horizon

I Bandit iteration:

1. Agent chooses a ∈ A
2. Agent receives R(a)

How to solve bandit problem?
1. Supervised learning:

1. Train agent on history
Ht−1 = {(ak1 ,R(ak1), ..., (akt−1 ,R(akt−1))}

2. Greedy choice: akt = argmax LearnerHt−1

3. Receive R(akt ), add (akt ,R(akt ) to Ht−1 and go to 1.

↪→ But: get stuck in ai and no guarantee it is good.
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How to solve bandit problem?
2. ε-Dithering:

1. Train agent on history
Ht−1 = {(ak1 ,R(ak1), ..., (akt−1 ,R(akt−1))}

2. Act greedy with prob. 1− ε, random with prob. ε

3. Receive R(akt ), add (akt ,R(akt ) to Ht−1 and train ...

↪→ But: ε ’knows nothing’, i.e. keep exploring actions
i) forever ii) known to be bad
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Thompson Sampling for the Bernoulli Bandit
Idea: Bayesian model to represent learned content

Recap on Bayes:

Bayes’ rule:
X,Y discrete random vars.
P(Y = y |X = x) = P(X=x|Y=y)P(Y=y)

P(X=x)

Bayesian info. gain/ inference:

Model: Param. model of expected rewards with Beta density:

E[R(ak)] has density ρk(x) =
1

B(αk , βk)
xαk−1(1− x)βk−1

Properties of β:

1. If αk = βk = 1 then uniform.

2. Mean: αk/(αk + βk).

3. Distribution concentrates as
αk + βk grows.
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Thompson Sampling for the Bernoulli Bandit
Update, for each action individually:
Prior for E[R(ak)]: ρk(x)
Likelihood: Prob. of reward R(ak) given ρk(x)
Posterior: → according to the updating rule:
Updating Rule: For action ak posterior is again Beta with:

(αposterior
k , βposteriork ) = (αprior

k + R(ak), βpriork + (1− R(ak)))

→ αk , βk called pseudo-counters.
Learning Progress:
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Thompson Sampling for the Bernoulli Bandit
Algorithms:
Greedy Beta:
Compute estimates
R̂(ak) = αk/(αk + βk)
Choose ak = argmaxR̂(ak)

Thompson Sampling:
Choose ak according to the
probability that it is optimal.

TS in practice: Sample R̂(ak) from ρk(x), ak = argmaxR̂(ak)
Why is Thompson sampling better?

I Greedy: Plays blue (orange) for
ever.

I Dithering: First doesn’t explore
enough, then too much

I Thompson: Explore where it helps
to identify optimal actions, but
avoids trying futile actions.
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Alternatives to Thompson Sampling
Important alternative:

I Algos. based on confidence interval for expected reward.

I UCB1: Maximize

UCB1(ak) = R̄(ak) + cn,nak ,

cn,l =
√

2 ln(n)/l , R̄(ak) average realized reward,
nak number of chosen ak

I Know-how: ’Thomp. sam. and UCB1 essentially optimal’

Practical:

I Other distributions are possible in Thomp. sam., e.g. normal,
log-normal priors, but not all are practical

I Computing posteriors and sampling expensive; Approximate
posterior sampling: Overkill!

I For real-world probs. Thom. sam. with normal prior often (if
not too high dimension) good enough. Normal distribution
has closed form Bayes update formulas.
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Contextual Bandits
As k-armed bandit but learner faces non-stationary reward distributions.
To assist choice: Agent receives context information

Goal: Associate expected reward to context and find rule of action!

I Interpret context as ’state of system’ or ’hint’
I Without context learning non-stationary reward distributions

’impossible’ (unless assumptions, e.g. pseudo-stationarity).
I Goal: No universal optimal action, but rule of action: policy

But: Learners actions have no influence on context.

Actions do not influence state of the environment.
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Contextual Bandits: Examples
Online adds (Amazon):

I Context: User enters website with her data

I Action: Agent chooses advertisement to post

I Reward: Agent clicks ’BUY :-)’

Portfolio Selection (UBS):

I Context: Investor considers markets today

I Action: Investor chooses assets to invest
(Northrop Grum. & Lockheed Mar. Stoxx, Gold)

I Reward: Investor counts money tomorrow

’Living for the moment’ (PhD):

I Context: State of the world

I Action: Go to a bar today or prepare lecture tomorrow

↪→ Context. bandit/lecturer goes to the bar, no future reward plans
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Contextual Bandits: Formalization

Formally: (differences to the ordinary bandit in red)
I Contextual bandit is tuple (S ,A,R,T ,Bandit iteration) with

1. S = {s1, s2, s3, ..., } set of admissible states/ contexts
2. A = {a1, ..., ak} set of possible actions
3. R(s, a) reward obtained by taking a ∈ A given context s ∈ S
4. T ∈ N number of rounds played, planning horizon

I Contextual-bandit iteration:

1. Agent receives context s ∈ S
2. Agent chooses a given s with prob. π(a|s), π policy
3. Agent receives R(s, a)

How to solve contextual bandit problem?
’Two-in-one problem’

1. Associate context and expected rewards:
Set up specific model.

2. Manage exploration:
As above ε-Dithering, Thompson Sampling, UCB1,...
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Contextual Bandits: Algorithms

I Finite number of contexts:
E.g. action ∈ {a1, a2, a3},
context ∈ {s1, s2, s3}.
↪→ View the 3-context,
3-action bandit as 9-armed
ordinary bandit.

I Infinite ’number’ of contexts:
I Set of mappings between infinite context set an expected

rewards: ’Very very infinite’
↪→ impossible to learn without further structure. Add it:

I Linear relationship:
E[R(ak)|s ∈ RD ] = (θ∗k )T · s. Learn params. θ∗k

1. Via estimator θ̂ → estimator of exp. reward → context. UCB1
2. Via Bayesian model → Posterior of exp. rew. → play ak

accord. to post. prob. it is optimal → context. Thomp. S.

I Non-linear relationship RKHS: Natural generalization of 2.
I Non-linear relationship Neural Net: later...
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Add selection: Amazon

Rolling mean reward over 100 samples in Amazon add selection.

(Model received pre-training)
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Markov Decision Processes (MDPs)
MDPs: Framework for modeling sequential decision making in
uncertain environment

As a contextual bandit but now agent’s decisions influence environment, which
generates the new context.

Goal: Maximize accumulated reward over planning horizon!

Chess:

I Action: Choose move with White

I Environment: Board from White’s perspective (including
Black’s move)

I Reward: E.g. immediate material count

’Living for the moment’ (PhD):

I Environment: State of the world

I Action: Go to a bar today or prepare lecture tomorrow

↪→ MDP. lecturer prepares the lecture....
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Markov Decision Processes: Formalization
I MDP is tuple (S ,A,P,R,T ,MDP iteration) with

1. S = {s1, s2, ..., sn} set of admissible states, assumed finite here
2. A = {a1, ..., ak} set of possible actions, assumed finite here
3. P(s ′, a, s) prob. of entering s ′ by a from s
4. R(s, a) reward obtained by taking a ∈ A in s ∈ S
5. T ∈ N number of rounds played, planning horizon

I MDP iteration:
1. Agent chooses a given s with prob. π(a|s), π policy
2. Agent receives R(s, a)
3. System transitions to s ′ with prob. P(s ′|s, a)

I MDP goal: Find policy π∗ that maximizes value of state s

V π(s) = Eπ

[
T∑
t=0

γtR(st , at)
∣∣∣s0 = s

]
, γ ∈ (0, 1],

π∗(s) = arg max
π

V π(s)

Key point about MDPs: Taking action to maximize immediate reward might
lead to a state, from which no further reward is possible.

Sacrifice: Less reward today for a better future!
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Solving MDPs I (that’s a topic to fill books)
So how to act in an uncertain and non-forgiving world?
Bellman: Optimal policy solves

V π∗(s) = max
a

{
R(s, a) + γ

∑
s′∈S

P(s ′|s, a)V π∗(s ′)

}
→ in theory: solve this and you’re good
Algorithms for solving Bellman:
I Naive: Check all possibilities (many times, if P not

deterministic) ↪→ very exponential, too much work
I Moral: Moral actions are approximation to optimal policy ↪→

not always available, hard to prove guarantees
I Value iteration: Iterative updates ∀s ∈ S :

Ṽ (s)← max
a∈A(s)

{
R(s, a) + γ

∑
s′∈S

P(s ′|a, s)Ṽ (s ′)

}
,

A(s) actions from s, converge to V π∗ in O(poly(N)e−λN)
↪→ Requires P(s ′|s, a) and if S ,A(s) large, too much work
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Solving MDPs II (that’s a topic to fill books)
Question 1: Can you simulate environment P(s ′|s, a)?
No→ learn from experience:
I Monte Carlo:

1. Run width C , depth T Monte Carlo

2. V̂new (s)← V̂old(s) + α
[∑T

t Rt − V̂old(s)
]
, Step-size α

weights relevance of new sample versus held estimate V̂old .
Output: stochast. policy from MC But: C needs be very large,
updates only after episodes complete ↪→ impractical

I Temporal-difference Monte Carlo:
1. Don’t wait until episode finished, update after each new

reward.
2. V̂new (s)← V̂old(s) + α

[
Rt+1 + γV̂old(snew )− V̂old(s)

]
︸ ︷︷ ︸

TD error

,

Two types of estimates:
a Ordinary Monte Carlo estimate as above
b Bellmann estimate Rt+1 + γV̂old(snew ) for total reward of the

episode
∑T

t Rt .

3. Iteration converges to optimal value function if step-size small
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Solving MDPs III (that’s a topic to fill books)
Question 1: Can you simulate environment P(s ′|s, a)?
Yes→ learn from simulation:

I Look-ahead search: Focus on relevant states.
Starting from s ’envelope of states’ is build. Iterate:

1. Value ’ends of envelope’ s ′ by approx. value function
2. Update ancestors of s ′ using Bellman update

But:
I If S ,A(s) very large, too much work

I Kearn’s sparse sampling (Monte Carlo):
Do not assume P(s ′|s, a) but simulator

1. Run width C , depth H Monte Carlo
2. Update until depth H

Vh,C (s) =

{
Ṽ (s) if h = 0

maxR(s, a) + γ 1
C

∑
s′∈S(C) Vh−1,C (s ′)

S(C ) contains C samples beginning with (s, a)

Output: stochast. policy from MC tree → π∗ indep. of S
But: H, C need be very large ↪→ impractical
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Towards Monte Carlo Tree Search (MCTS)
Key Idea: Build specific, restricted, asymmetric decision tree
I MCTS involves two policies:

1. Default policy: Used to value tree leafs
2. Tree policy: Selects or creates leaf nodes from given tree

I Tree policy’s purpose:
I Adding new nodes → Exploration
I Simulation of promising line → Exploitation

Tree-policy: Employ k-armed bandit!
I TS take actions according to their posterior prob. of being

optimal
I UCB1 policy maximizes

UCB1a = R̄a + cn,na with cn,l =
√

2 ln n
l

R̄a average realized reward,
na number of chosen a

I TS, UCB1 resolves exploration management,
optimal regret O(log(n))

23 / 27
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Monte Carlo Tree Search (MCTS)
MCTS: Iterative improvement of tree policy and Bellman updates

1. Selection: Apply tree policy recursively to descend through
tree until most relevant node

2. Expansion: Child node added to tree (according to tree policy)
3. Simulation: From new node default policy is applied to

simulate reward
4. Backpropagation: Simulation result used to update statistics

of ancestor nodes through the tree (count in UCB1i )

1. function MonteCarloPlanning(state)

2. repeat(computationBudget): search(state,0)

3. return bestAction(state,0)

4.

5. function search(state,depth)

6. if Terminal(state): return 0

7. if Leaf(state): return Evaluate(state)

8. action = selectAction(state,depth)

9. (nextState, reward) = simulateAction(state,action)

10. q = reward + γ search(nextstate,depth+1)

11. update(state,action,q,depth)

12. return q
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MCTS Examples

1. Simulator given ad hoc → MDP.
Example: Find shortest path on map with stochastic
Markovian friction (Sailing domain,...).

2. Simulator reflects ’worst case’ → adversarial game, two
MCTS instances compete, each is the simulator for the other
Example: P-games (Chess, Go, ...)

25 / 27

Number of
samples to achieve
error < 0.1

Failure rate
in P-game



MCTS Characteristics and Extensions
Characteristics:

1. Asymptotic: Converges to best decision if enough resources
(Equiv. MinMax in P-games)

2. Aheuristic: No domain-specific knowledge, no eval. function
(Chess: heuristics are available, αβ very strong. Go: not)

3. Anytime: Tree statistics are update immediately. Small error
prob. if stopped prematurely (→ careful ’trap states’ in Chess)

Extensions: (exist in any direction!)

1. Tree policy:

a) Bandits: UCB-Tuned, Bayesian Bandit, Continuous actions,...
b) Selection: Domain Specific, Large Branching Issues (FPU),

add pre-search, transposition Tables, history heuristics,...
c) Other: Proof-number search, Pruning, Policy representation

(NN),...

2. Simulation: Rule-based policy, Policy representation (NN)...

3. Back-propag.: Weighted rewards,...
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Neural Network-based algorithms

To be added!
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