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Recap: Contextual Bandits and Markov Decision Processes

Contextual Bandit:
k-armed bandit with non-stationary

reward distributions. Agent receives

context information as a hint about

the current expected reward

Goal:
Find action that maximizes expected

reward given context!

Markov Decision Process:
As contextual k-armed bandit but

agent’s actions do influence the next

state of the environment/context

Goal:
Find rule of action to maximize

accumulated reward over the
planning horizon.

In this lecture, two examples:

1. Neural Linear Bayes Contextual Bandit

2. Alpha Go (Neural MCTS)
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The Neural Contextual Bandit
Recall the Feed-Forward Neural Network (NN):

I Neural Net: Function NN : RN1 → RNL , concatenation of L
layers

NN(x) = FL ◦ .... ◦ F2 ◦ F1(x)

I Layer: Function Fl : RNl → RNl+1 of the form

Fl = σ︸︷︷︸
activation func.

R → R

◦︸︷︷︸
per

component

Wl︸︷︷︸
affine func.
RNl → RNl+1

I Optimization Method: Given sample {(xi , yi )}i=1, tune all Wl

to min. summed loss
∑

i loss(NN(xi ), yi )

How to solve contextual bandit problem?:

1. Associate context and expected rewards
Set up specific model: Linear, RKHS, Neural Networks...

2. Manage exploration
ε-Dithering, Thompson Sampling, UCB1,...
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Neural Linear Bayes Contextual Bandit
Idea: Thomp. Sampl. on top of Neur. Net! But precisely?

1. If rewards deterministic:
I Supervised learning of (context, action)→ reward mapping

In principle could train on history:
Ht = {((s1, ak1 ),R(s1, ak1 )), ..., ((st , akt ),R(st , akt ))}
(context at time t: st ∈ Rd)

I Train NN taking input st and returns all rewards of k actions:

NN : Rd → Rk and NN(st) = (R̂(st , a1), ..., R̂(st , ak))

I Greedy choice: akt = argmax NN(st)

2. If rewards random:
I Manage exploration via Thomp. Samp., non-linearity via NN
I Assume affine dependency between context representation of

NN and expected reward (at any time t):

E[R(ak)|NN(s) ∈ Rk ] = W (NN(s))

I Bayesian linear model for W : W (x) = (θ∗)T x + ε and
πt(θ, σ

2) = πt(θ)πt(θ|σ2)→ Blackboard
I Thompson sampling: Choose actions according to their

posterior probability of being optimal
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Recap: Monte Carlo Tree Search (MCTS)
Setting: Full-fledged MDP problem, finite action space.
We want: Planning algo. to optimize accumulated rewards.
Key Idea: Build specific, restricted, asymmetric decision tree

I MCTS involves two policies:
1. Default policy: Used to value tree leafs
2. Tree policy: Selects or creates leaf nodes from given tree

I Tree policy’s purpose:
I Adding new nodes → Exploration
I Simulation of promising line → Exploitation

Tree-policy: Employ ordinary k-armed bandit!
I TS take actions according to their posterior prob. of being

optimal
I UCB1 policy maximizes

UCB1a = R̄a + cn,na with cn,l =
√

2 ln n
l

R̄a average realized reward,
na number of chosen a

I TS, UCB1 resolves exploration management,
optimal regret O(log(n))
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Monte Carlo Tree Search (MCTS)
MCTS: Iterative improvement of tree policy and Bellman updates

1. Selection: Apply tree policy recursively to descend through
tree until most relevant node

2. Expansion: Child node added to tree (according to tree policy)
3. Simulation: From new node default policy is applied to

simulate reward
4. Backpropagation: Simulation result used to update statistics

of ancestor nodes through the tree (count in UCB1i )

1. function MonteCarloPlanning(state)

2. repeat(computationBudget): search(state,0)

3. return bestAction(state,0)

4.

5. function search(state,depth)

6. if Terminal(state): return 0

7. if Leaf(state): return Evaluate(state)

8. action = selectAction(state,depth)

9. (nextState, reward) = simulateAction(state,action)

10. q = reward + γ search(nextstate,depth+1)

11. update(state,action,q,depth)

12. return q
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MCTS Characteristics and Extensions
Characteristics:

1. Asymptotic: Converges to best decision if enough resources
(Equiv. MinMax in P-games)

2. Aheuristic: No domain-specific knowledge, no eval. function
(Chess: heuristics are available, αβ very strong. Go: not)

3. Anytime: Tree statistics are update immediately. Small error
prob. if stopped prematurely (→ careful ’trap states’ in Chess)

Extensions: (exist in any direction!)

1. Tree policy:

a) Bandits: UCB-Tuned, Bayesian Bandit, Continuous actions,...
b) Selection: Domain Specific, Large Branching Issues (FPU),

add pre-search, transposition Tables, history heuristics,...
c) Other: Proof-number search, Pruning, Policy repr. (NN),...

2. Simulation: Rule-based policy, Policy representation (NN)...

3. Back-propag.: Weighted rewards,...

Most interesting extension: Neural Networks...
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Neural MCTS: Towards AlphaGo, Alpha0,...

What is missing to be world’s Chess champion?

I Imitation Learning: Mimic given expert policy ε by apprentice
policy α → supervised Learning

I Expert Iteration Algorithm: Iterate mutual improvement of
expert and apprentice
I Sample from expert εt−1. Mimic εt−1 by αt (imitation).

Improve expert εt = εt(αt) using apprentice estimates...
I Expert provides values.

Apprentice provides generalization and fast access.

I AlphaZero achitecture:
I Expert iteration scheme:

Expert → MCTS, Apprentice → Deep conv. NN
I Purpose of Apprentice:

Operational: faster access to values, generalization capability
of NN
Search improvement: guidance of MCTS, accurate node
valuation
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Neural MCTS: Towards AlphaGo, Alpha0,...II
Tree Policy NN:
I Trained on average MCTS play targets:

LossT = −
∑

a
n(a,s)

n logα(a|s),
n(a, s) number of times a played from s, n number of plays.

I Usage:
1. Bias tree policy

UCBNNa(s) = USB1a(s) + weighta
α(a|s)

n(s,a)+1

Valuation NN:
I Value NN :

LossV = −(z − V (s))2,
z value estimates from MCTS.

I Usage:
1. Reduce search depth
2. Replace inaccurate rollout-based value estimation

Value NN and Policy NN covered in single multitask NN:
I Regularization and higher speed
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Neural MCTS: Example Scenario
Military example: Reach target without getting caught by radar
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Neural MCTS: Example Scenario

Military example: Trained Neural Networks
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