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Retrosynthesis problem: an overview

To find routes, we need

• To learn chemistry

• Define the rules

• Decide what rules are best

• To search effectively

To analyze routes, we need

• To compare routes

• To group routes
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One-step models
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Template-based approach Template-free approach State of the art

• New models are 
proposed on an almost a 
weekly basis

• Difficult to obtain an 
overview of what is 
available

• Benchmarked using 
subsets of USPTO

Product

Reactants

1. Pretrain a transformer model to learn 
the SMILES language

2. Fine-tune a model to perform retrosynthesis

1. Extract reaction rules from known 
reactions

2. Train a recommendation model
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Multi-step retrosynthesis

• Use a search algorithm to iteratively find 
a solution

• Examples: Monte Carlo Tree Search, 
Proof-Number Search, A*

• Uses one-step model at each iteration to 
expand the search tree

• Different scores to balance exploitation 
and exploration

• No standard way to compare algorithms
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Where are we?

• Route predictions are good at generating ideas for a chemists

• Not sufficiently mature to be blindly trusted

• Outstanding challenges (a selection):

• Reaction data quality

• Stereochemistry

• Complex molecules / cores

• Human-likeness

• Improving one-step model top-1 accuracy with 2% will not solve this

• Need to evaluate multi-step route predictions
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Route similarity: tree

edit distance



Routes, synthetic trees – an anatomy

Target: amenavir
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Tree edit distance

• Measures the minimum cost of transforming tree A into tree B

• Transformation can be done using 3 operations

• Add a node

• Delete a node

• Replace a node

• Addition and deletion cost set to unity

• Replacement cost set to Tanimoto distance

• For ordered trees there exists a lot of algorithm to solve this problem

• For unordered trees it is NP complete
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Tree edit distance
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Replace f with a

Cost: 0.8

Sum: 0.8

Insert 3

Cost: 1

Sum: 1.8

Delete 7

Cost: 1

Sum: 2.8

Replace 8 with 2

Cost: 0.1

Sum: 2.9

Replace g with b

Cost: 0.5

Sum: 3.4

Insert 5

Cost: 1

Sum: 4.4

Replace 9 with 4

Cost: 0.05

Sum: 4.45



Heuristics on top of  TED

• Synthetic trees are not ordered trees

• Synthetic trees are typically short and each nodes have few children

• For small trees we can enumerate all possible trees

• This is basis for 3 TED calculation strategies: exhaustive, semi-exhaustive and random
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Route clustering

• Use TED pair-wise distances as basis for clustering

• Use hierarchical clustering with single linkage

• Optimize number of clusters using Silhouette approach

• Benchmark on 5,000 random compounds from ChEMBL
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Route clustering – qualitative evaluation
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Patent evading routes

• Routes predicted with Chematica software

• Routes manually designated patent-like (PL) or patent-evading (PE)

• Routes clustered with TED approach
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Molga, K.; Dittwald, P.; Grzybowski, B. A. 
Navigating around Patented Routes by 
Preserving Specific Motifs along Computer-
Planned Retrosynthetic Pathways. Chem 2019, 
5, 460–473. 



Route similarity: ML 

model



The problem with TED

• Tree edit distance calculations is unfortunate slow in worst case

• Solution: train a machine learning model to reproduce TED

TED ML

Mean # pairs mean 
time

worst 
time

mean 
time

worst 
time

ChEMBL-5k 63.90 6.45 213.95 0.05 0.70
ChEMBL-10k 64.75 5.54 211.89 0.05 1.41

GDB-MedChem 50.76 6.71 156.83 0.06 2.24
GDB-ChEMBL 52.97 6.82 157.30 0.06 2.16

ChEMBL-5k (100 routes) 4770.86 377.03 4215.92 0.72 5.62
ChEMBL-5k (all solved routes) 1217.81 72.62 3806.78 0.20 4.65



LSTM-based model

• At each molecule, a long short-term 
memory node is placed

• Takes input from children LSTM nodes 
as well as a compressed fingerprint

• LSTM output of top-node (target 
molecule) is an encoded 
representation of the route

• Reactions are ignored
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Twin network training

• A twin network architecture was trained to reproduce TED

• First route is feed through the LSTM model, followed by the second route

• Euclidean distance between encodings of top-nodes is the distance between the routes
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Side-bar: MIT model
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• MIT proposed a similar model for 
representing synthetic routes

• They trained the model to distinguish 
between human and predicted routes

• Not guaranteed that model produce 
good clusters



Benchmarking of  LSTM-based model

• Trained two models based on routes for 
either 5k or 10k ChEMBL compounds

• Validate on various sets of molecules

• The latent-space distance is correlated 
with the tree edit distance

• Cluster similarity is high
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Benchmarking (2)
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Compound set Expansion policy Distance Cluster

R MAE Mean similarity Median similarity

ChEMBL-5k USPTO 0.95 0.92 0.88 0.97

ChEMBL-10k USPTO 0.95 1.03 0.87 0.95

GDB-MedChem USPTO 0.92 1.66 0.87 0.96

GDB-ChEMBL USPTO 0.92 1.61 0.87 0.95

GDB-MedChem Reaxys 0.92 1.55 0.88 1.00

GDB-ChEMBL Reaxys 0.92 1.53 0.88 1.00
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Route extraction from USPTO

• Start from curated UPSTO data from 
Thakkar et al. (2020)

• Extract routes from networks made for 
each individual patent

• Discard routes with single leaf 
(transformations)

• Keep n routes from each patent

• Discard routes that overlap

• Select 10,000 diverse routes



Route extraction from USPTO (2)

• Extracted 150,000 routes with more than 
one starting material (leafs)

• Extracted 2 sets of 10,000 routes for 
benchmarking with n=1 and n=5 
respectively

• Set-n5 is enriched in longer and convergent 
routes

• Stock taken as leaves / starting material of 
the 10,000 reference routes
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Quality metrics

• Search time

• Number of solved routes, i.e., routes that have all starting material in stock

• Route quality metric based on TED between predictions and reference route

• Measures the smallest TED between reference route and top-n predictions

• When TED = 0, the prediction is identical to reference route

• Average of TED = 0 gives top-n accuracy 

• Route diversity metrics based on optimal number of clusters

• Calculate pair-wise distances using fast ML-model

• Optimize number of clusters with Silhouette method
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PaRoutes – a framework

Data

• A subset of the USPTO database with reactions that can be used to train a one-step model

• ~150K routes extracted from the USPTO database, which can be used for machine learning tasks

• set-n1 consisting of a diverse set of 10,000 routes which show a similar distribution in the number of molecules and reactions as the 
150K routes

• set-n5 consisting of a diverse set of 10,000 routes that are longer and enriched in convergent routes

• stock-n1 consisting of the 13,633 leaves molecules in set-n1 and should be used as a stock together with set-n1

• stock-n5 consisting of the 13,783 leaves molecules in set-n5 and should be used as a stock together with set-n5

Scripts

• Program to compute top-n accuracies

• Program to calculate optimal number of clusters
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https://github.com/MolecularAI/paroutes



Example use of  PaRoutes framework

• We didn’t want to benchmark all available algorithms and all possible variations of such 
algorithms

• We choose three algorithms implemented in the AiZynthFinder tool

• Monte Carlo tree search

• Retro* (with some extensions to open-source reference implementation)

• Depth-first proof-number (DFPN) search (inspiration from a few implementations)

• Use template-based one-step model trained on USPTO data not included in the 
reference routes
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Route prediction comparison 1

Search method Route set Solved targets Search time First solution time

One-step

model calls

Template  

applications

MCTS
set-n1 9714 303.3 8.6 3355.6 8658.2

set-n5 9676 365.7 11.7 3615.3 8953.0

Retro*
set-n1 9726 300.7 7.0 497.4 24281.1

set-n5 9703 349.2 10.5 498.0 24322.5

DFPN
set-n1 8475 347.3 43.0 404.5 19503.2

set-n5 7382 297.9 53.2 414.5 19957.6
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MCTS and Retro* find solutions for 
most targets, but DFPN struggles

The MCTS and Retro* are not 
complementary, they find solutions 
to the same compounds

MCTS and Retro* finds first solution 
faster then DFPN

For set-n5, it takes longer time The algorithms differ in how they 
solve the route-finding problem. 
MCTS uses the one-step model 
more extensively.



Route prediction comparison 2

Search 

method 

Route 

set

Accuracy Shorter 

route

Leaves 

overlap

Routes 

extracted

Number of 

clusterstop-1 top-5 top-10

MCTS
set-n1 0.20 0.55 0.61 0.44 0.68 273 68

set-n5 0.09 0.34 0.42 0.59 0.62 272 77

Retro*
set-n1 0.17 0.48 0.54 0.44 0.68 264 68

set-n5 0.08 0.30 0.38 0.61 0.63 149 39

DFPN
set-n1 0.19 0.33 0.33 0.45 0.63 6 2

set-n5 0.08 0.14 0.14 0.65 0.55 6 2
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For MCTS, the reference route is 
top-ranked for 1/5 of the targets

For 60% of the targets, the 
reference route is found in top-10

All methods are roughly equal on 
top-1, but differ for higher n

The accuracy for set-n5 is poorer

For set-n1, MCTS and Retro* have 
the same diversity

With DFPN, very few routes are 
extracted



Case-study
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Both Retro* and MCTS identifies 
Compound A as an intermediate

Only MCTS identifies this route to 
the target compound, which is also 
the reference route

Both Retro* and MCTS identifies 
this alternative route. For Retro* 
this is the top-ranked route.



Conclusions and outlook

• In it is current implementation, DFPN cannot be recommended

• MCTS and Retro* are very similar, but MCTS seems to have slightly higher accuracy and 
produce more diverse output for more targets

• It is hard to declare a clear winner, and that is perhaps beside the point

• Improvements to PaRoutes

• How to handle multiple feasible reference routes?

• More metrics (forward prediction scores, accuracy as a function of time)

• Good starting point for benchmarking route preditions
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Concluding remarks



Final remarks

• We have developed a model for computing distances between synthetic routes

• Applications include:

• Clustering output from retrosynthesis tools

• Identification of patent evading routes

• Comparing route predictions

• A framework for comparing route predictions will

• Provide a common baseline for judging improvements

• Increase transparency of method

• Help us determine limiting factor(s) for reaching predictive level
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Thanks for 

listening!
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