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Retrosynthesis problem: an overview

o= ) N_____,_\g .
Q\f Lo To find routes, we need

e To learn chemistry
e Define the rules

e Decide what rules are best

* To search effectively

To analyze routes, we need

* To compare routes

* To group routes



One-step models

Template-based approach

1. Extract reaction rules from known
reactions
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Template-free approach

1. Pretrain a transformer model to learn
the SMILES language
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2. Fine-tune a model to perform retrosynthesis
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State of the art

* New models are
proposed on an almost a
weekly basis

e Difficult to obtain an
overview of what is
available

* Benchmarked using
subsets of USPTO



Multi-step retrosynthesis

Repeated X times |

e Use a search algorithm to iteratively find

Selection Expansion Rollout Update
0O 0O O Os a solution

N

3 0O S 0O 3 0O O 0Os °* Examples: Monte Carlo Tree Search,

74 Proof-Number Search, A*
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e Uses one-step model at each iteration to
R @0 @ Os expand the search tree
: . Different scores to balance exploitation
O O s and exploration

* No standard way to compare algorithms



Where are we?

Route predictions are good at generating ideas for a chemists

Not sufficiently mature to be blindly trusted

Outstanding challenges (a selection):
e Reaction data quality

e Stereochemistry
e Complex molecules / cores

e Human-likeness

Improving one-step model top-1 accuracy with 2% will not solve this

Need to evaluate multi-step route predictions



Route similarity: tree
edit distance



Routes, synthetic trees — an anatomy
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Tree edit distance

* Measures the minimum cost of transforming tree A into tree B

* Transformation can be done using 3 operations
 Add a node

 Delete a node

* Replace a node

e Addition and deletion cost set to unity
* Replacement cost set to Tanimoto distance
* For ordered trees there exists a lot of algorithm to solve this problem

* For unordered trees it is NP complete



Tree edit distance
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Heuristics on top of TED

* Synthetic trees are not ordered trees
* Synthetic trees are typically short and each nodes have few children
* For small trees we can enumerate all possible trees

* This is basis for 3 TED calculation strategies: exhaustive, semi-exhaustive and random
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Route clustering

Use TED pair-wise distances as basis for clustering

Use hierarchical clustering with single linkage

Optimize number of clusters using Silhouette approach

Benchmark on 5,000 random compounds from ChEMBL
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Route clustering — qualitative evaluation

Representative of cluster 1
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Patent evading routes

* Routes predicted with Chematica software

e Routes manually designated patent-like (PL) or patent-evading (PE)

e Routes clustered with TED approach

TED
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a) linezolid routes
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c) panobinostat routes

TED
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b) sitagliptin routes
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Molga, K.; Dittwald, P.; Grzybowski, B. A.
Navigating around Patented Routes by
Preserving Specific Motifs along Computer-
Planned Retrosynthetic Pathways. Chem 2019,
5, 460-473.



Output
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Route similarity: ML
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The problem with TED

* Tree edit distance calculations is unfortunate slow in worst case

* Solution: train a machine learning model to reproduce TED

TED

Mean # pairs mean worst

time time
ChEMBL-5k 63.90 6.45 213.95
ChEMBL-10k 64.75 5.54 211.89
GDB-MedChem 50.76 6.71 156.83
GDB-ChEMBL 52.97 6.82 157.30
ChEMBL-5k (100 routes) 4770.86 377.03 4215.92

ChEMBL-5k (all solved routes) 1217.81 72.62 3806.78




LSTM-based model
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* At each molecule, a long short-term
memory node is placed

* Takes input from children LSTM nodes
as well as a compressed fingerprint

e LSTM output of top-node (target
molecule) is an encoded
representation of the route

* Reactions are ignored
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Twin network training

e A twin network architecture was trained to reproduce TED
* First route is feed through the LSTM model, followed by the second route

* Euclidean distance between encodings of top-nodes is the distance between the routes

ECEP4 Encoding of
top node
.
ECEP4 Encoding of
top node
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Side-bar: MIT model

 MIT proposed a similar model for
representing synthetic routes

* They trained the model to distinguish
between human and predicted routes

* Not guaranteed that model produce
good clusters

Latent space distance
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Benchmarking of LSTM-based model

* Trained two models based on routes for
either 5k or 10k ChEMBL compounds

25

e Validate on various sets of molecules

20

* The latent-space distance is correlated
with the tree edit distance

Latent space distance

 Cluster similarity is high
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Benchmarking (2)

Compound set Expansion policy Distance Cluster
R MAE Mean similarity Median similarity

ChEMBL-5k USPTO 0.95 0.92 0.88 0.97
ChEMBL-10k USPTO 0.95 1.03 0.87 0.95
GDB-MedChem USPTO 0.92 1.66 0.87 0.96
GDB-ChEMBL USPTO 0.92 1.61 0.87 0.95
GDB-MedChem Reaxys 0.92 1.55 0.88 1.00
GDB-ChEMBL Reaxys 0.92 1.53 0.88 1.00
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Comparing retrosynthesis

algorithms




Route extraction from USPTO

e Start from curated UPSTO data from W@\
Thakkar et al. (2020) .

* Extract routes from networks made for "~
each individual patent /@\

* Discard routes with single leaf E

(transformations) A

e Keep n routes from each patent Q\‘ &’W

* Discard routes that overlap

e Select 10,000 diverse routes



Route extraction from USPTO (2)

Extracted 150,000 routes with more than

one starting material (leafs) =l
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Stock taken as leaves / starting material of
the 10,000 reference routes
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Quality metrics

Search time

Number of solved routes, i.e., routes that have all starting material in stock

Route quality metric based on TED between predictions and reference route

* Measures the smallest TED between reference route and top-n predictions
* When TED =0, the prediction is identical to reference route

* Average of TED = 0 gives top-n accuracy

Route diversity metrics based on optimal number of clusters
e Calculate pair-wise distances using fast ML-model

e Optimize number of clusters with Silhouette method



PaRoutes — a framework

Data

A subset of the USPTO database with reactions that can be used to train a one-step model
~150K routes extracted from the USPTO database, which can be used for machine learning tasks

set-n1 consisting of a diverse set of 10,000 routes which show a similar distribution in the number of molecules and reactions as the
150K routes

set-n5 consisting of a diverse set of 10,000 routes that are longer and enriched in convergent routes
stock-n1 consisting of the 13,633 leaves molecules in set-n1 and should be used as a stock together with set-n1l

stock-n5 consisting of the 13,783 leaves molecules in set-n5 and should be used as a stock together with set-n5

Scripts

27

Program to compute top-n accuracies

Program to calculate optimal number of clusters https://github.com/MolecularAl/paroutes
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Example use of PaRoutes framework

* We didn’t want to benchmark all available algorithms and all possible variations of such
algorithms

* We choose three algorithms implemented in the AiZynthFinder tool
 Monte Carlo tree search
e Retro™ (with some extensions to open-source reference implementation)

* Depth-first proof-number (DFPN) search (inspiration from a few implementations)

* Use template-based one-step model trained on USPTO data not included in the
reference routes
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Route prediction comparison 1

One-step Template
Search method  Route set Solved targets Search time First solution time model calls applications
MCTS set-nl 9714 303.3 8.6 3355.6 8658.2
set-n5 9676 365.7 11.7 3615.3 8953.0
set-nl 9726 300.7 7.0 497.4 24281.1

Retro*
set-n5 9703 349.2 10.5 498.0 24322.5
set-nl 8475 347.3 43.0 404.5 19503.2

DFPN
set-n5 7382 297.9 53.2 414.5 19957.6

MCTS and Retro* find solutions for
most targets, but DFPN struggles

The MCTS and Retro* are not
complementary, they find solutions
to the same compounds
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MCTS and Retro* finds first solution
faster then DFPN
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The algorithms differ in how they

solve the route-finding problem.
MCTS uses the one-step model

more extensively.
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Route prediction comparison 2

Search Route Accuracy Shorter Leaves Routes Number of
method set top-1 top-5 top-10 route overlap extracted clusters
set-nl 0.20 0.55 0.61 0.44 0.68 273 68
MCTS
set-n5 0.09 0.34 0.42 0.59 0.62 272 77
set-nl 0.17 0.48 0.54 0.44 0.68 264 68
Retro*
set-n5 0.08 0.30 0.38 0.61 0.63 149 39
set-nl 0.19 0.33 0.33 0.45 0.63 6 2
DFPN
set-n 0.08 0.14 0.14 0.65 0.55 6

/

For MCTS, the reference route is
top-ranked for 1/5 of the targets

/

For 60% of the targets, the
reference route is found in top-10

All methods are roughly equal on

top-1, but differ for higher n

The accuracy for set-n5 is poorer

/

For set-n1, MCTS and Retro* have

the same diversity

With DFPN, very few routes are

extracted

MCTS

Retro*
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Case-study
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Both Retro* and MCTS identifies

Target compound ) )
Compound A as an intermediate

Only MCTS identifies this route to
the target compound, which is also
the reference route

Target compound

Both Retro* and MCTS identifies
this alternative route. For Retro*
this is the top-ranked route.



32

Conclusions and outlook

In it is current implementation, DFPN cannot be recommended

MCTS and Retro* are very similar, but MCTS seems to have slightly higher accuracy and
produce more diverse output for more targets

It is hard to declare a clear winner, and that is perhaps beside the point

Improvements to PaRoutes
 How to handle multiple feasible reference routes?

 More metrics (forward prediction scores, accuracy as a function of time)

Good starting point for benchmarking route preditions



Concluding remarks




Final remarks

* We have developed a model for computing distances between synthetic routes

* Applications include:
* Clustering output from retrosynthesis tools

* |dentification of patent evading routes

* Comparing route predictions

* A framework for comparing route predictions will

* Provide a common baseline for judging improvements
* Increase transparency of method

* Help us determine limiting factor(s) for reaching predictive level
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