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Feedback covariate shift (FCS)

A distribution shift where the training and designed data are statistically dependent,

because the training data are used to choose the distribution of designed inputs.
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Introduction to conformal prediction

(Xl, Yl), Ce s (Xn, Yn), (Xn+1, Yn—l—l) exchangeable training and test data points

Train regression model (4 on training data.

Goal: given a test input, Xn_H, construct a confidence set, C, (Xn+1) , that gives coverage:

]P)(Yn_|_1 - Ca(Xn—l—l)) Z 1l — o

for any user-specitied miscoverage level, «.

® no assumptions on the model i oron P(Y | X)

® finite-sample guarantee that holds for any amount of training data, 1
® exchangeability is the key assumption!

¢ "full” conformal prediction
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Introduction to conformal prediction

Intuition behind full conformal prediction: include all real values, Y, such that the

candidate test point, (Xn_|_1, y) looks sufticiently similar to training data as quantitied by a score.

Score function S((X,Y), D) : user-specified function that quantifies how similar data point (X, Y')

is to a multiset of data points [). Smaller score means more similar.
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Introduction to conformal prediction

Intuition behind full conformal prediction: include all real values, Y, such that the

candidate test point, (Xn_|_1, y) looks sufticiently similar to training data as quantitied by a score.

Score function S((X,Y), D) : user-specified function that quantifies how similar data point (X, Y')
is to a multiset of data points [). Smaller score means more similar.

® representative example is model residual, S((X, Y), D) = ‘Y — Up (X)‘

® variance of predictions from ensemble of models

® variance of predictions for small, random perturbations of input

® . .orany other heuristic notion of model’s uncertainty

heuristic uncertainty conformal prediction statistically valid uncertainty

Angelopoulos & Bates (2021) arxiv:2107.07511
17



Introduction to conformal prediction

18



Introduction to conformal prediction

19



Introduction to conformal prediction

train regression model (41 4
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Introduction to conformal prediction

,u_i,y(Xi) : regression model trained on all but ith training point + candidate test point

(X1,Y1)
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(Xn, Yn)
(Xn—i—lv y)
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Introduction to conformal prediction

,u_z-,y(Xz-) : regression model trained on all but ith training point + candidate test point
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Introduction to conformal prediction
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Introduction to conformal prediction

Si(y) = |Y; — ,U—i,y(X’i)‘

,u_i,y(Xi) : regression model trained on all but ith training point + candidate test point
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Introduction to conformal prediction

Si(y) = |Y; — ,U—i,y(X’i)‘

,u_i,y(Xi) : regression model trained on all but ith training point + candidate test point

SCcore

(X1,Y1) > Y1 — po1,4(X1)| = S1(y)
(X2,Y5) » Yo — oy (X2)

|
!
N
N
=

(XTM Yn) g Y, — ,U—n,y(Xn)‘ — Sn(y)
(Xn—l—h y) ? Yy — ,Ul;n(Xn—l—l)| — S”fH-l(y)

S(1(1-a)(n+1)])(Y) S(70.6.(nt 1)) =/S<4> (y)
— —————————————————— . ———————————— — —
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Introduction to conformal prediction

Si(y) = |Y; — ,U—i,y(X’i)‘

,u_i,y(Xi) : regression model trained on all but ith training point + candidate test point
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Introduction to conformal prediction
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Si(y) = |Y; — ,U—i,y(X’i)‘

,u_i,y(Xi) : regression model trained on all but ith training point + candidate test point

SCcore

(X1,Y1) > YT — po1,y(X1)] = S1(y)
(X2,Y5) » Yo — oy (X2)

|
N
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(Xna Yn) g Y, — ,U—n,y(Xn)‘ — Sn(y)
(Xn+17 y) ? Yy — ,ulzn(Xn—l-l)I — Sn—i—l(y)

fSni1(y) < S(f(l_a)(n_|_1)])(y), include the candidate label ¥ in Co(Xpn11).
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Introduction to conformal prediction

Ca(Xn—i—l) — {y c R: Sn—|—1(y) < S(l'(l—a)(n—l—lﬂ)(y)}

f the data are exchangeable, this confidence set achieves coverage:

J)(Yvn_|_1 ~ Ca(Xn+1)) 2 1l — o

Vovk et al. (2005), Vovk et al. (2009) Ann. Stat.
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Introduction to conformal prediction

S1,...,9, exchangeable random variables

S([(l—a)(n—Hﬂ) — [(1—a)(n+1) | smallest variable
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Introduction to conformal prediction

S1y.+.y90, 911 exchangeable random variables

S([(l_a)(nJrlﬂ) — [(1—a)(n+1) | smallest variable

*(Snt1 = S(1a-a)m+1))) 21— @

Proof. Since S1, ..., 9, 9,41 are exchangeable, the rank of S,
uniformly distributed on {1,...,n + 1}

P(M(Snp1) < (I -a)(n+1)]) 21—«

39
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Introduction to conformal prediction

Co(Xn+1) =W eER: Snt1(y) <Sra—a)n+1)7)(Y) }

f the data are exchangeable, this confidence set achieves coverage:

(Y1 € Co(Xny1)) 21—«
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Introduction to conformal prediction

Co(Xn+1) =W eER: Snt1(y) <Sra—a)n+1)7)(Y) }

f the data are exchangeable, this confidence set achieves coverage:

(Y1 € Co(Xny1)) 21—«
Proof: (X1, Y7)

(Xn, Yn)
(Xn+1, Yn+1)

exchangeable data
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Introduction to conformal prediction

Ca(Xn—i—l) — {y c R : Sn—l—l(y) < S(l—(l—a)(n—l—lﬂ)(y)}

f the data are exchangeable, this confidence set achieves coverage:

(Y1 € Co(Xny1)) 21—«
Proof: (X1, Y7) S1(Yni1)

(Xn+17 Yn—l—l) Sn+1(Yn—|—1)

exchangeable data — exchangeable scores
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Introduction to conformal prediction

1 n+1
Ca(Xn 1) — {y c K : Sn 1(y) S QUANTILEl_a (n T Z(Ssz(y)> }
1=1

f the data are exchangeable, this confidence set achieves coverage:

(Y1 € Co(Xny1)) 21—«
Proof: (X1, Y7) S1(Yni1)

(Xn—l—laYn—l—l) Sn+1(Yn—|—1)

exchangeable data — exchangeable scores

P(Sn+1(Yn+1) < Sra—a)n+ ) (Yns1)) 2 1 —
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Introduction to conformal prediction

Intuition for exchangeable data: include all real values, Y, such that the candidate test point,

(Xn+1,Y), looks sufficiently similar to training data as quantified by a score.

scores of training + cand|date test points
score of candidate test point n-1

Co(Xn11) = {9 € R: Snia(y) < QUANTILE, , | —— 255 <y>

46



Conformal prediction for feedback covariate shift

Intuition for data under FCS: include all real values, Y, such that the candidate test point,

(Xn_|_1, y) looks sufficiently similar to the weighted training data as quantified by a score.

designed input

(e.g., designed protein) scores of training + candidate test points
score of candidate test point n—+1 T
Co(Xnt1) =Y €R: Spia1(y) < QUANTILE; , | Y w;i(y) - 6s;(y)
1=1

Fannjiang et al. (2022), arXiv:2202.03613
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Conformal prediction for feedback covariate shift

Intuition for data under FCS: include all real values, Y, such that the candidate test point,

(Xn_|_1, y) looks sufficiently similar to the weighted training data as quantified by a score.

designed input

(e.g., designed protein) scores of training + candidate test points
score of candidate test point n—+1 T
Co(Xnt1) =Y €R: Spia1(y) < QUANTILE; , | Y w;i(y) - 6s;(y)
1=1

ﬁX;Z—iU{(Xn—I-lay)} (XZ)
PX (Xz)

training input distribution

w;(y) o

input distribution induced by
regression model trained on

Z—’i U {(Xn—l-lv y)}

Fannjiang et al. (2022), arXiv:2202.03613
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Conformal prediction for feedback covariate shift

Intuition for data under FCS: include all real values, Y, such that the candidate test point,

(Xn_|_1, y) looks sufficiently similar to the weighted training data as quantified by a score.

designed input

(e.g., designed protein) scores of training + candidate test points
score of candidate test point n—+1 T
Co(Xnt1) =Y €R: Spia1(y) < QUANTILE; , | Y w;i(y) - 6s;(y)
1=1

ﬁX;Z—'IIU{(Xn—I—lay)} (XZ)
PX (Xz)

training input distribution

w;(y) o

input distribution induced by
regression model trained on

Z_i U {(Xn_|_1, y)} — {(le Y1)7 R (Xna Yn)? (Xn—l-h y)} \ {(X’L? YZ)}

Fannjiang et al. (2022), arXiv:2202.03613
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Conformal prediction for feedback covariate shift

Intuition for data under FCS: include all real values, Y, such that the candidate test point,

(Xn_|_1, y) looks sufficiently similar to the weighted training data as quantified by a score.

designed input

(e.g., designed protein) scores of training + candidate test points
score of candidate test point n—+1 T
Co(Xnt1) =Y €R: Spia1(y) < QUANTILE; , | Y w;i(y) - 6s;(y)
1=1

This set achieves coverage for data under feedback covariate shift:

J)(Y;H_l - Ca(Xn+1)) Z 1l — o

Fannjiang et al. (2022), arXiv:2202.03613
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Protein design experiments

Goal: design brighter blue fluorescent and red fluorescent proteins

T‘%Z/\ Lq, D20 §2N207 P127 x\f& N20 g K207
XL/ ,;?{Nzos “Qozoa

G168
[/;/ ‘:J Y vas :’{ P) /"’

4 c172 ‘( A4S

A17410 S = / . L174

N158 b “ A158 \#
‘ M63

F1431 ¢ 63 v S143 R197 /

Y197
- 4 ~~ S = 7\/% Q Q\
/;'/ / U/ AN t)
example blue fluorescent protein example red fluorescent protein

® “Complete landscape” data set: blue/red brightness of all 213 variants that differ at 13 sites
® Training data: sample (X1, Y1), ..., (Xn, Yy ) uniformly from the 213 variants
o : ridge regression model with singleton and pairwise features

® Design algorithm: sample sequence, Xy,11, from

ﬁX (Xn—l—l) X eXp(A | ,ulzn(Xn—i—l))

Data from Poelwijk et al. (2019), Nat. Commun.

- Design algorithm from Biswas et al. (2021), Nat. Method’s



Uncertainty quantification can guide design algorithm selection
Design algorithm: sample Xn+1 from Dx (Xn_|_1) X exp()\ . Ml;n(Xn+1))

Inverse temperature

Greater A means both (i) higher predicted fluorescence

and (ii) higher predictive uncertainty.

Data from Poelwijk et al. (2019), Nat. Commun.

\ Design algorithm from Biswas et al. (2021), Nat. Method’s
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Uncertainty quantification can guide design algorithm selection
Design algorithm: sample Xn+1 from Dx (Xn—l—l) X exp()\ . ,Ulzn(Xn+1))

Inverse temperature

Greater A means both (i) higher predicted fluorescence

and (ii) higher predictive uncertainty.

true brightness of designed proteins empirical coverage o confidence interval widths
. R 1.00 e 1.2
© 1.5 T L e 2 1.0
O 0 95 n =192 § 0.8
2 1.0 77 e = 384 2
3 I . D06
o) -
S 0.90 —emm—— S * 04
6 0.5 O
= AR A A 5 0.2 1]
© 0.0 0.85 0 0.0
0 2 4 6 0 2 4 6 0 0 2 4 4
Inverse temperature Inverse temperature Inverse temperature

Data from Poelwijk et al. (2019), Nat. Commun.

Design algorithm from Biswas et al. (2021), Nat. Method’s
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Uncertainty quantification can guide design algorithm selection
Design algorithm: sample Xn+1 from Dx (Xn—|—1) X exp()\ . Ml:n(Xn+1))

Inverse temperature

Greater A means both (i) higher predicted fluorescence < 1.0 o A=6
O
and (ii) higher predictive uncertainty. =
. . (©
How should we set A ? We can use confidence interval > 0e gr=4
q) o
width to navigate trade-oft between (i) and (ii). c
O
- : ) g gA=2 A=6
More details and examples: = 0.6 - ©
-
.. . A=4
Fannjiang, Bates, Angelopoulos, Listgarten, & Jordan. | O TA=2
-
"Conformal prediction for the design problem” 5 ¢' =007 _
. . . c 0.4
arXiv:2202.03613, in submission. 0.25 0.50 0.75 1.00 1.25
K J mean predicted fitness

Data from Poelwijk et al. (2019), Nat. Commun.

Design algorithm from Biswas et al. (2021), Nat. Method’s
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