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Feedback covariate shift (FCS)

A distribution shift where the training and designed data are statistically dependent, 
because the training data are used to choose the distribution of designed inputs.
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Introduction to conformal prediction

Train regression model       on training data.  
Goal: given a test input,             , construct a confidence set,                         , that gives coverage: 

for any user-specified miscoverage level,     . 
• no assumptions on the model      or on 
• finite-sample guarantee that holds for any amount of training data,  
• exchangeability is the key assumption! 

exchangeable training and test data points
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Introduction to conformal prediction

exchangeable training and test data points

Train regression model       on training data.  
Goal: given a test input,             , construct a confidence set,                         , that gives coverage: 

for any user-specified miscoverage level,     . 
• no assumptions on the model      or on 
• finite-sample guarantee that holds for any amount of training data,  
• exchangeability is the key assumption!  
• “full” conformal prediction
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Intuition behind full conformal prediction: include all real values,    , such that the 
candidate test point,                      , looks sufficiently similar to training data as quantified by a score. 

Score function                             : user-specified function that quantifies how similar data point             
is to a multiset of data points     . Smaller score means more similar. 
• representative example is model residual, 
• variance of predictions from ensemble of models 
• variance of predictions for small, random perturbations of input 
• …or any other heuristic notion of model’s uncertainty

Introduction to conformal prediction
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Introduction to conformal prediction

heuristic uncertainty statistically valid uncertaintyconformal prediction

Angelopoulos & Bates (2021) arxiv:2107.07511
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Introduction to conformal prediction

train regression model
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Introduction to conformal prediction

train regression model

: regression model trained on all but ith training point + candidate test point
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Introduction to conformal prediction
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Introduction to conformal prediction

If the data are exchangeable, this confidence set achieves coverage:

Vovk et al. (2005), Vovk et al. (2009) Ann. Stat.
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Introduction to conformal prediction

exchangeable random variables

smallest variable
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Introduction to conformal prediction

exchangeable random variables
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Introduction to conformal prediction

Proof. Since                                      are exchangeable, the rank of              is 
uniformly distributed on                                .

exchangeable random variables
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Introduction to conformal prediction

If the data are exchangeable, this confidence set achieves coverage:
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Introduction to conformal prediction

Proof:

If the data are exchangeable, this confidence set achieves coverage:

exchangeable data
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Introduction to conformal prediction
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Intuition for exchangeable data: include all real values,    , such that the candidate test point, 
                      , looks sufficiently similar to training data as quantified by a score.

Introduction to conformal prediction

equal weights

score of candidate test point
scores of training + candidate test points 
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Intuition for data under FCS: include all real values,    , such that the candidate test point, 
                      , looks sufficiently similar to the weighted training data as quantified by a score.

Conformal prediction for feedback covariate shift

weights that take into account that the data 
are statistically dependent through FCS

score of candidate test point
scores of training + candidate test points 

designed input 
(e.g., designed protein)

Fannjiang et al. (2022), arXiv:2202.03613
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Intuition for data under FCS: include all real values,    , such that the candidate test point, 
                      , looks sufficiently similar to the weighted training data as quantified by a score.

Conformal prediction for feedback covariate shift

weights that take into account that the data 
are statistically dependent through FCS

score of candidate test point
scores of training + candidate test points 

designed input 
(e.g., designed protein)

Fannjiang et al. (2022), arXiv:2202.03613

This set achieves coverage for data under feedback covariate shift:
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example blue fluorescent protein example red fluorescent protein

• “Complete landscape” data set: blue/red brightness of all 213 variants that differ at 13 sites 
• Training data: sample                                                  uniformly from the 213 variants 
• Regression model: ridge regression model with singleton and pairwise features 

• Design algorithm: sample sequence,              , from
regression model 

fit to n training points

Protein design experiments
Goal: design brighter blue fluorescent and red fluorescent proteins

Data from Poelwijk et al. (2019), Nat. Commun. 
Design algorithm from Biswas et al. (2021), Nat. Methods

52



Greater      means both (i) higher predicted fluorescence 
and (ii) higher predictive uncertainty. 
How should we set     ? We can use confidence interval 
width to navigate trade-off between (i) and (ii).

Uncertainty quantification can guide design algorithm selection
Design algorithm: sample              from

Data from Poelwijk et al. (2019), Nat. Commun. 
Design algorithm from Biswas et al. (2021), Nat. Methods

inverse temperature trained regression model 
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Greater      means both (i) higher predicted fluorescence 
and (ii) higher predictive uncertainty. 
How should we set     ? We can use confidence interval 
width to navigate trade-off between (i) and (ii).

inverse temperature

Uncertainty quantification can guide design algorithm selection
Design algorithm: sample              from

Data from Poelwijk et al. (2019), Nat. Commun. 
Design algorithm from Biswas et al. (2021), Nat. Methods

inverse temperature trained regression model 
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Uncertainty quantification can guide design algorithm selection

Data from Poelwijk et al. (2019), Nat. Commun. 
Design algorithm from Biswas et al. (2021), Nat. Methods

Design algorithm: sample              from
inverse temperature trained regression model 

Greater      means both (i) higher predicted fluorescence 
and (ii) higher predictive uncertainty. 
How should we set     ? We can use confidence interval 
width to navigate trade-off between (i) and (ii).

More details and examples: 
Fannjiang, Bates, Angelopoulos, Listgarten, & Jordan. 
“Conformal prediction for the design problem”, 
arXiv:2202.03613, in submission.
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thank you!
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