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topics of today

▪ AI and the replicability crisis

▪ why experimentation?

▪ how to do it, or rather how NOT 
to do it
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AI hype and machine learning renaissance

▪ machine learning (or rather deep learning) has dramatically 
improved over the last years

▪ we can now use huge data sets for finding patterns

▪ we can search really huge search trees efficiently with 
randomized (!) methods

▪ we can have the AI immitate complex human behavior

▪ but under the hood, this is mostly machine learning:

▪ supervised learning for classification or regression 
(this leads to model building)

▪ unsupervised learning for clustering

▪ we use models for decision making (sort of interpolation)

▪ but to a large extend, we do not understand what is going 
on!
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“engineered success”: AlphaStar
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Vinyals, O., Babuschkin, I., Czarnecki, W.M. et al. Grandmaster level in 

StarCraft II using multi-agent reinforcement learning. Nature (2019)

▪ this challenge was regarded as 
most difficult in gaming

▪ bot competitions since 2010

▪ never reached the level of 
professional humans

▪ human samples are back:
for diversity of strategies

▪ extensive multi-agent league
based training

▪ human comparable constraints:
this is quite fair

▪ professional player says plays like 
a human

▪ super-complex system composed 
only via intuition and experiment
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the replicability crisis

▪ many of our algorithms use randomization at 
different levels 

▪ (e.g. start weights of artificial neural 
networks)

▪ the algorithms and their combination are 
fairly complex and have dozens of parameters

▪ many papers go without statistical testing 
because of long runtimes

▪ usually we do not get enough information 
from scientific papers to rebuild the system

▪ universities do not possess enough CPU/GPU 
power to replicate company research results 
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types of replication

▪ repeatability: same experimenter, 
same conditions 

▪ reproducibility: different 
experimenter, same conditions

▪ these two occur in literature also with 
opposite meanings

▪ triangulation: multiple approaches to 
the same problem

▪ criticism: most studies are neither 
repeated nor reproduced
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the success bias

▪ what you see is only what works (at least 
has been working at least once for one 
problem)

▪ largely no negative results are published

▪ the process to obtain one positive result 
can be long and tedious

▪ example: to arrive at AlphaGo has 
required years of research, failure, and 
lots of intermediate steps

▪ replicating successful results is often not 
possible due to under-specification
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science based on empiricism

▪ who is this?

▪ one of the most important heads in philosophy of science ever: 
Karl Popper (Austrian)

▪ Popper rejected the classical inductivist view in favor of the 
empirical falsification

▪ theories cannot be proven, but they can be falsified: experiments 
shall attempt to contradict a theory 

▪ if something cannot be falsified in principle, it is not a scientific 
theory

▪ modern statistics (statistical testing) goes along with this: 
reasoning is indirect, you falsify hypotheses

▪ he rejects also logical justification of induction: 
just because something has always happened, it is not guaranteed 
to happen again
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paradigm shift in science

▪ 1962 book: The Structure of Scientific 
Revolutions

▪ scientific fields undergo “paradigm shifts” 
instead of linearly progressing

▪ these shifts open up new approaches to 
understanding what has not been 
considered as valid before

▪ “I have a hammer, give me a nail”…

▪ scientific findings are not completely 
based on objective criteria

▪ scientific truth is defined by consensus of 
the scientific community

▪ all objective conclusions are ultimately 
based on subjective views of researchers
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Rosenthal effect

▪ in a famous study, Rosenthal/Fode showed 
that expectations of experimenters can lead 
to wrong conclusions 

▪ they gave rats from the same origin to two 
groups of students to test them

▪ students were told that “their” rats were 
especially intelligent or stupid

▪ this was actually reported by students as 
conclusions of experiments albeit not true

▪ Rosenthal/Jacobson showed similar results 
for “primed” primary school teachers when 
testing their pupils’ IQ…

▪ there are more effects like this, advice from 
me: “never watch a running experiment”
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experimentation… 
with algorithms?

• we perform experiments since our childhood

• randomized methods are being evaluated
experimentally most of the time

• big driver of the whole AI revolution…

• but is it taught?
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example: the game show problem

▪ imagine a gameshow, 3 closed doors, a car and 2 goats

▪ you point to one door, but the moderator does not open it but opens another door with a goat

▪ does it make sense to change your choice or stay with it?

▪ this problem has provoked long dialogues of math professors, but it is very easy to solve via 
simulation  (let us check)
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what is an experiment?

Wikipedia (en):

An experiment is a method of testing - with the goal of

explaining - the nature of reality. [...]

More formally, an experiment is a methodical procedure

carried out with the goal of verifying, falsifying, or

establishing the accuracy of a hypothesis.

keywords: goal, reality, methodical procedure, hypothesis
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the theory “wars”

• up to today, I see reviews aiming at rejecting 
papers because they are “purely empirical and 
lacking theory”

• the term “empirical” is not wrong, but disregards 
that we have control, we do it “experimentally”

• in many areas in computer science, research is 
Either theoretical Or experimental

• but ideally, it shall be both interacting with each 
other

• do you think experiments are easy? this is from 
the foreword of this book:

However, experiments require a lot of 
work, so the reader may be warned: 
Performing a good experiment is as 
demanding as proving a new theorem. 

Dortmund, November 2005

Hans-Paul Schwefel
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why experiment with computers/algorithms?

• practitioners have to solve problems even if no matching theory 
is available

• counter argument of practitioners:
we tried that once, does not work (experimental experiences 
help to apply methods)

• experiments may hint to theory to find usable principles

in the past (often): 

• funny performance pictures
with little meaning

• new algorithms invented steadily, 
most of them gone after short time

instead, we converge to:

• deliberate and justified choice of parameters, problems,
performance criteria—much less arbitrariness

• better generalizability (not quite resolved, but targetted)
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are we alone with this problem?

long tradition in natural sciences:

▪ many inventions (batteries, x-rays) made unintentionally 
while experimenting

▪ experiment leads to theory, theory must be useful
-> predictions?

somewhat different in computer science:

▪ 2 well spread stereotypes influence our view onto
computer experiments:

1. programs do exactly what the algorithms specify

2. computers are deterministic, so why statistics?
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lessons from other sciences

in economics, experimentation was established quite recently
(compared to its age):

▪ modeling human behavior as rationality
assumption (of former theories) had failed

▪ no accepted new model available:
experimentation came in as substitute 

in (evolutionary) biology, experimentation and
theory building both have problems:

▪ active experimentation only possible in
special cases, otherwise only observation

▪ mainly concepts (working principles)
instead of theories: always exceptions

⇒ stochastical distributions, population thinking

nonlinear behavior

Ernst Mayr
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example from physics: looking for the top quark

▪ quarks are the constituents of protons and 
neutrons

▪ they come in 6 flavors: (up, down, strange, charm, 
bottom, and top)

▪ since the bottom quark was found experimentally 
in 1977, the top quark was postulated theoretically

▪ in 1994, ’t Hooft and Veltman estimated its mass 
to 145–185 GeV (Nobel prize 1999)

▪ one year it was actually found experimentally at 
Fermilab, IL, USA 

▪ its real mass (measured) is now given as 172.9 ±
2.9 GeV

▪ this is based on the measurements of different 
experimental teams worldwide
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unexpected experimentation

since ≈1960s: Experimental Archaeology

• gather (e.g. performance) data that is not
available otherwise

• task: concept validation, fill conceptual
holes

experimentation in management of technology and product innovation

• product cycles are sped up by ‘fail-fast’,
‘fail-often’ experimentation

• what-if questions may be asked by using
improved computational ressources

• innovation processes have to be tailored
towards experimentation 
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a recent example

▪ from the 9. to the 11. century AD, the Franks produced 
“modern” swords with very high quality iron (near steel)

▪ these were named “Ulfberht swords” as they have an 
engraving with crosses and this name on the blade

▪ these swords were very popular also in Scandinavia

▪ the amount of blades found in Viking tombs is so large 
that archaeologists doubt that so many could have been 
produced in the middle German region

▪ additionally, especially later swords come with spelling 
mistakes

▪ recently, scientists presume that many of these swords 
are not original but fake

▪ but how difficult is it to make an “Ulfberht sword”?

➔ they performed experiments. can you guess what they tried?
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Ulfberht sword  (Hendrik Zwietasch /
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the experiment:

▪ they tried out if it is easily possible to 
take an existing sword and….

▪ just add the engraving to make it an 
“Ulfberht sword”

▪ they found it is dead simple

▪ this is no proof but strongly supports 
the hypothesis that a lot of fake 
swords may have been made

▪ medieval smiths just had to buy cheap 
swords and add the engraving
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blade of an Ulfberht sword  (Hendrik Zwietasch /

State Museum Württemberg, Stuttgart)
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ingredients for a good experiment

▪ fairness (even if we want to show that our method is 
better)

▪ openness (provide the means to get surprised)

▪ defined targets

▪ how do we determine which method is the best 
(comparison)

▪ what are the minimal conditions that must be 
reached?

▪ defined methodology (not ad-hoc)

▪ documentation (sufficient for replication)

▪ iteration (the first research question/hypothesis is 
usually not very good)
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untargeted and unstructured experimentation

recall: hypothesis and goals are keywords of the definition

Cohens investigation of 1990 (all papers of the AAAI
conference):

• almost no relation between theory and experiment

• 60% test on only one problem instance

• 80% report only the result, no explanation or 
interpretation

• 16% provide a hypothesis or define aims
of the investigation
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Paul R. Cohen
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openness example: clutch control in torcs

• EvoStar 2011: Mr Racer bot (Jan Quadflieg, Tim Delbrügger, Mike Preuss) is good but has bad clutch 
control

• first approach as in reference bot Autopia clutch control: speed based

• Autopia closes clutch at below 70 km/h

• we adapt a closing (generalized logistic) function with a bit more freedom

• result: using the clutch until 180 km/h is profitable!

• we would be much worse with restriction to 70 km/h

(see the videos)
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factors

26
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parameters and seeds

▪ many algorithms do have parameters

▪ solving a specific problem often requires 
parameter tuning

▪ it is tempting to prefer the own method 
(tune parameters on that method only)

▪ successful parameters for own method may 
be imposed for other methods

▪ example: population sizes for evolutionary 
optimization method

▪ benchmark sets can lead to over-adaptation 
(methods only good for these problems)

▪ generalization is hardly possible any more

▪ for fixed random seeds, the seeds become 
parameters of the method
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example result of a tuning process
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parameter / hyperparameter investigation

▪ first do some pretesting to see what 
parameters are most sensitive

▪ be brave, throw parameters away, you cannot 
test everything

▪ do a first ‘experimental design’ (set of 
configurations): grid or random

▪ more complex: design of experiments 
methods (less samples)

▪ take into account that non-determinism is 
involved! do repetitions, at least 5, better 20

▪ there are many more methods for 
hyperparameter tuning, e.g. SCMAC

▪ AutoML packages as e.g. Optuna optuna.org

▪ getting an idea of parameter interactions and 
finding the ‘best’ parameters is not the same!
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randomization and noise

▪ we often think of computer programs generally 
as deterministic (always give the same result)

▪ however, many algorithms nowadays have 
randomized elements (very popular since the 
80s)

▪ example: quick sort, we recursively choose a 
middle "pivot" element and sort into two parts

▪ then again we do that for the two subsets and so 
on, but how do we find "middle" elements?

▪ this is done by randomly choosing an element!

▪ there are improved versions which use the 
middle one of 3 randomly chosen elements

▪ single decisions may be bad, on average a 
randomized decision is not optimal but often ok
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research questions

▪ not trivial -> many investigations not focussed

▪ the true question is not if one method is better than another 
on a benchmark problem

▪ we want to tackle real-world problems

explaining observations leads to new questions:

▪ explaining models can be evaluated experimentally

▪ range of validity must be checked
(problems, environmental conditions, parameters…)

30
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how do I find my research question?

▪ for comparisons: is the measured difference 
relevant in a real-world situation?

▪ for experimental studies: which quality must 
a method reach to be useful?

▪ usually, the perfect question is not known 
initially
-> experimentation can help to find it

▪ an inherent problem of experimentation: we 
do not know the result (or we should not 
know it)

▪ but this can lead to new, better questions

▪ proceed in small steps, expect the 
unexpected

31



Discover the world at Leiden University

process of experimentation

how do we generate decision criteria from a research question?

▪ at first: set up scientific claims

▪ reshape into statistical hypotheses

▪ perform experiment, then transform backwards
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hypothesis testing

▪ many papers now employ statistical testing

▪ but we claim: fundamental ideas from statistics are misunderstood!

▪ for example: what is the p value?

⇒ the p value is not related to any probability whether the null
hypothesis is true or false

Definition (p value)
the p value is the probability that the null hypothesis is true

Definition (p value)
the p value is 
p = P { obtain observed result, or greater | null model is true }
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to test or not to test?

yes, but:

▪ we often have non-normal data
⇒ non-parametric tests, permutation
tests

▪ temptation to “make” tests valid by
enlarging sample (not always helpful,
e.g. if distribution bimodal)
⇒ rule-of-thumb fixed size (e.g. 30)
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distributions

▪ in the real world, the normal
distribution often is a good model

▪ but in learning/optimization we
often have limits

▪ due to complicated effects, 
distributions may get bimodal

▪ or discrete: not all values can
be realized

▪ don't trust small effects

▪ don't conclude from a running
experiment!

35
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Wilcoxon rank sum test

▪ aka Mann-Whitney U-test or just U-test (equivalent)

▪ more robust than t-test, now a standard test e.g. in
Evolutionary Computation

▪ basic assumption: distribution functions G and F of X and Y
only differ by a shift a, G(x) = F(y − a)

▪ this also means homogeneity of variances (may require F-test)!

▪ null hypothesis: H0 : a = 0, H1 : a ≠ 0

▪ R-command:
wilcox.test(x, y, alternative = "two.sided", 

conf.level = 0.95)

▪ also available in Excel or Python environments, e.g. SciPy
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earth is round (p < 0.05)

▪ paper of Jacob Cohen (in American 
Psychologist, 1994)

▪ summarizes criticism on ’unreflected’ use of 
statistical testing

▪ be careful with small samples!

▪ first understand and improve data (EDA, 
Exploratory Data Analysis, after Tukey), then 
testing

▪ actually, one should test the other way around:
postulate null hypothesis and try to falsify it
(very time-consuming procedure)

▪ providing confidence intervals gives important 
information!

▪ importance of reproducing a result
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reporting and keeping track of experiments

around 40 years of experimental tradition in Computational Intelligence/Machine Learning, 
but:

• no standard scheme for reporting experiments (experimental protocols)

• instead: one (“Experiments”) or two (“Experimental Setup” and “Results”) sections in 
papers, often providing a bunch of largely unordered information

• affects readability and impairs reproducibility

keeping experimental journals helps:

• record context and rough idea

• report each experiment 

• running where (machine)

• finished when (date/time), link to result file(s)

⇒ we suggest a 7-part reporting scheme (that is actually very much borrowed from Physics 
experiments)
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experimental report

suggested structure:

1. research question: what do we investigate?

2. pre-experimental planning – first explorative ad-hoc expereriments to find target and 
setup (parameters etc.)

3. task – scientific and related statistical hypotheses – under which conditions is a method 
“successful”?

4. setup – exact setup of an experiment that enables replication

5. results/visualizations – tables, pictures – not interpreted

6. observations – peculiarities we find in the results

7. discussion – statistical test results, subjective interpretation of results and observations
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floor and ceiling effects

▪ floor effect: compared methods attain set 
task very rarely ⇒ problem is too hard

▪ ceiling effect: methods nearly always reach 
given task ⇒ problem is too easy

if problem is too hard or too easy, nothing is 
shown.

▪ pre-experimentation is necessary to obtain 
reasonable tasks

▪ if task is reasonable (e.g. practical 
requirements), then algorithms are 
unsuitable (floor) or all good enough 
(ceiling), statistical testing does not provide 
more information

▪ arguing on minimal differences is 
statistically unsupported and scientifically 
meaningless
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confounded effects

an algorithm is improved by means of 2 or more 
“extensions”:

▪ what exactly leads to improvement?

▪ it is necessary to test the 
extensions separately

▪ possibly only the combination helps,
or just one of the extensions?

▪ this knowledge is important for
subsequent application

41



Discover the world at Leiden University

underestimated randomness

▪ idea: find pareto front of two parameter tuning criteria

▪ parameter changes not interpretable

▪ validation failed

▪ reason: deviations much too high!

▪ problem: human willingness to settle on a model
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there is a problem with the experiment

after all data is in, we realize that something was wrong 
(code, parameters, environment?), what to do?

▪ current approach: either do not mention it, or redo 
everything

▪ if redoing is easy, nothing is lost

▪ if it is not, we must either:

- let people know about it, explaining why it 
probably does not change results

- or do validation on a smaller subset: how large 
is the difference (e.g. statistically significant)?

▪ do not worry, this situation is rather normal

▪ Thomke: there is nearly always a problem with an 
experiment

▪ early experimentation reduces the danger of 
something going completely wrong
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diagrams instead of tables
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some links

David S. Johnson: a theoretician's guide to the 
experimental analysis of algorithms (last version 
2001)
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take home

▪ meaningful experimentation is difficult:
some structure is needed

▪ experimentation is the only way to work with 
methods that do not possess enough theory

▪ structure is important: research question, targeted 
experiments, statistical tests, proper reporting

If in doubt, try it out!
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