

1

Cell Painting

an unbiased multiparameter phenotypic screening assay at COMAS

Axel Pahl AIDD Summer School, May 2022 What is "unbiased" and Why is it important?

How Is Activity Identified in New Chemical Matter?

- By dedicated, target- or pathway-based assays
 - mostly in-vitro or in cells
 - often reasonably easy to perform
 - BUT: requires a target hypothesis for the tested compound
 - most appropriate when working in compound series

But What To Do When There Is No Prior Information About The Activity?

- E.g. when generating new compound series / classes
- The target- / pathway-based approach would not work
 - most of the activity would be missed

- Target prediction would be an option
 - but needs experimental confirmation

An Assay Is Needed That Identifies Biological Activity Without Requiring a Prior Target Hypothesis

- This assay should not only find bioactivity in cpds. but also be able to...
- Identify a broad range of activities
 - without requiring a hypothesis (\rightarrow "Unbiased")
- Be still reasonably easy to perform
 - medium to high throughput

• Does the Cell Painting fullfill these criteria?

Introduction to the Cell Painting Assay

Cell Painting Assay - Principle

- Developed by the Carpenter group from Broad institute
 - Bray, M.-A, Carpenter, A. et al. Cell Painting, a High-Content Image-Based Assay for Morphological Profiling Using Multiplexed Fluorescent Dyes. Nature Protocols 2016, 11 (9), 1757–1774. https://doi.org/10.1038/nprot.2016.105.
- Unbiased monitoring of changes in numerous cellular features and biological processes
 - staining of cellular compartments in five different fluorescent channels
 - image analysis
 - hundreds of parameters
 - numeric fingerprint of the cellular phenotype
- Deviations from control fingerprints define activity
- Comparison of fingerprints to reference compounds may reveal possible mode of action
- Service for scientists at the institute to identify activity in new chemical matter

Data Acquisition – Assay & Imaging

Default: U2OS; 20h compound incubation

Data Processing

- Images are processed on a SLURM-managed in-house computing cluster (96 cores)
- Processing with CellProfiler 3.0.0

 \rightarrow >1700 features for *each cell* / ~1800 cells per microtiter well

Processing of each replicate plate is distributed over 96 parallel jobs
 → each job takes a slice of 36 sites (180 images (36 * 5 channels))
 → ~5 h per 384 well replicate plate

\rightarrow 15 h compute time for 3 replicates

- Results from the individual jobs are concatenated into one result file and aggregated per microscope site as Medians
 - \rightarrow spreadsheet of 3456 rows x 1700 columns per replicate plate

Data Analysis and Reporting

- All further downstream processing also on the computing cluster
 - \rightarrow Data aggregation per well (Median) over all replicates \rightarrow Determination of phenotypic profiles (fingerprints)
 - \rightarrow Calculation of phenotypic fingerprint similarity to references \rightarrow Generation of static HTML-based reports
- In addition: interactive web tools for flexible querying and visualization of the data by the users
- In total: ~5000 lines of in-house written Python code
 - with some performance-critical code written in Rust (e.g. calculation of profile-similarity)

Determination of Relevant Features

Features

	remaining:		
are	>1700	Determined by CellProfiler	
res has	₽	Remove features that have a high or a very low variability among the controls	
	~1300		
	Ţ	Keep features that have a minimum correlation of 0.8 between repeats for all cpds	
eat*			
	579	Final set of relevant features. Used for all further analyses	

- Not all collected features are suitable for analysis
- The set of relevant features has to be determined
- This is done only once
 - one plate of reference compounds and one repeat

*) Selecting CP features based on biological reproducibility adapted from *Woehrmann et al, Mol. BioSyst.*, 2013, 9, 2604

Activity Profile – Z-Scores

- For each feature the Median and Median Absolute Deviation (MAD) of the controls are calculated
- Z-score of measured feature value from test compound = how many times the MAD of the controls the measured value deviates from the Median of the controls:

```
z\text{-score} = \frac{value_{meas.} - Median_{Controls}}{MAD_{Controls}}
```

The phenotypic profile is then the list of z-scores for a given test compound

• Induction: number of features with an abs(z-score) > 3 divided by the total number of features

 \rightarrow expressed in %

laduation 10/1 -	number of features with abs(z-score) > 3
Induction [%] =	total number of features

Z-score Profiles are Represented as Heat Maps or Line Plots

Z-score Profiles are Represented as Heat Maps or Line Plots

Profile Similarity

• Similarity by Correlation Distance*

 $CorrDist = 1 - \frac{(u - \overline{u}) \cdot (v - \overline{v})}{Norm(u - \overline{u})Norm(v - \overline{v})}$

- 0: low distance, 1: large distance
- Similarity = 1 CorrDist

Profiles can have similar shapes

- \rightarrow High profile similarity, even when Z-scores differ in their absolute values.
- \rightarrow BUT: better not compare compounds with very different inductions.
- → Robust against dose-dependent effects

Data Reporting

Detailed Report

Compound Id 392589

Well Id:		392589:01:10_02.00					
Producer:		SIEVERS					
Chiral:		False					
	Pur	ity Flag	:	Ok			
	Cor	nc:		2.0 µ	M		
	Ind	uction:		45.9 %			
Similarity to Lysosomotropic Profile:		0.0		Sar	nple images from Mitoc		
Cell Count:			100	%Ctrl		V . V . V	
Similar Referenc			es			1	
	ldx		Mol		C o		
	1	~	^	ſ		m p o u n d	
	39	2589				u	- Non
	39	2563					69 84
	39	2634					200 100
392656					1. 20		
	39	2616				0	1000
	39	2616				0	as An
	39	2770				n	
	39	2708				t	40
	39	2604				0	Prana
	39	2630				Ĩ	1
	39	2513					A PA D

site 5

to	Sample mages nom site 5.							
otropic 0.0		Mitochondria	Golgi / Cell Membrane / Cytoskeleton	Cytoplasmic RNA / Nucleoli	Endoplasmatic Reticulum	Nuclei		
nt: 100 %Ctrl eferences		の肥子	ショント	クロト	1 S MUNA			
Mol	0 m							
	o u n							
	d	1 Martin		A Strat				
	C o n t							
1	r o l							

Selected Results

Cell Painting Profiles of Mixtures (Racemate): can be (Partially) Additive

CP Profiles Can Be (Partially) Additive

- The pure enantiomers and the racemate show comparable CP inductions
- Only the (S)-enantiomer and the racemate are active GLUT inhibitors
- The CP profiles of the two enantiomers are very different (0% similarity)
- The racemate shows (in part) additive features from both enantiomers

Selected Results

Profiles are Dose-Dependent

Concentration dependant phenotypes

LOPAC: selective T-type calcium channel inhibitor.

Concentration dependant phenotypes

LOPAC: Dequalinium dichloride; K⁺-channel blocker

>> In rare cases a change in the phenotype can be observed

Selected Results

Clustering by Dimension Reduction (UMAP)

Uniform Manifold Approximation and Projection (UMAP)

 Reduction of the 579 features to 2-3 dimensions using UMAP (or PCA, t-SNE) allows distinction of biological clusters

Selected Results

Hierarchical Clustering

Hierarchical Clustering

 Hierarchical clustering of the feature profiles allows distinguishing between different mechanism of actions within the same biological pathway (here: DNA synthesis cluster)

Limitations

- Works only for compounds that induce a phenotypic change in the cells
 - Only ~1/3 of reference cpds. and of internal research cpds. show significant effect (>=5% Induction)
- Higher induction values do not identify higher compound activity
 - just means the phenotype was changed in more features
 - but: experience shows induction often is concentration dependent
- Relies on known / published annotations of the references
 - limited annotation of polypharmacology!
- Target / MoA-identification rely on representation in a reference
 - target bias of reference libraries!
- Changes in the fingerprints cannot easily be translated back into changes of cell morphology

Acknowledgements

Prof. Dr. Dr. Herbert Waldmann

Dr. Sonja Sievers (Head of COMAS)

COMAS Team (left to right): Carina Birke, Axel Pahl, Heike Rimpel, Carla Brinkmann, Sonja Sievers (Head), Matthias Bischoff, Christiane Pfaff, Claude Ostermann; Philipp Lampe (not on picture)

MAX-PLANCK-GESELLSCHAFT

Selected Publications

- Akbarzadeh, M.; Deipenwisch, I.; Schoelermann, B.; Pahl, A.; Sievers, S.; Ziegler, S.; Waldmann, H.
 Morphological Profiling by Means of the Cell Painting Assay Enables Identification of Tubulin-Targeting Compounds. *Cell Chemical Biology 2021 (accepted, in press)*. https://doi.org/10.1016/j.chembiol.2021.12.009.
- Schneidewind, T.; Brause, A.; Schölermann, B.; Sievers, S.; Pahl, A.; Sankar, M. G.; Winzker, M.; Janning, P.; Kumar, K.; Ziegler, S.; Waldmann, H.
 Combined Morphological and Proteome Profiling Reveals Target-Independent Impairment of Cholesterol Homeostasis.
 Cell Chemical Biology 2021. https://doi.org/10.1016/j.chembiol.2021.06.003.
- Grigalunas, M.; Burhop, A.; Zinken, S.; Pahl, A.; Gally, J.-M.; Wild, N.; Mantel, Y.; Sievers, S.; Foley, D. J.; Scheel, R.; Strohmann, C.; Antonchick, A. P.; Waldmann, H.
 Natural Product Fragment Combination to Performance-Diverse Pseudo-Natural Products.
 Nat Commun 2021, 12 (1), 1883. https://doi.org/10.1038/s41467-021-22174-4.
- Liu, J.; Cremosnik, G. S.; Otte, F.; Pahl, A.; Sievers, S.; Strohmann, C.; Waldmann, H.
 Design, Synthesis, and Biological Evaluation of Chemically and Biologically Diverse Pyrroquinoline Pseudo Natural Products. Angewandte Chemie International Edition 2021, 60 (9), 4648–4656. https://doi.org/10.1002/anie.202013731.
- Christoforow, A.; Wilke, J.; Binici, A.; Pahl, A.; Ostermann, C.; Sievers, S.; Waldmann, H.
 Design, Synthesis, and Phenotypic Profiling of Pyrano-Furo-Pyridone Pseudo Natural Products.
 Angewandte Chemie International Edition 2019, 58 (41), 14715–14723.
 https://doi.org/10.1002/anie.201907853.