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Data driven discovery

chemical structure, molecular formula, SMILES identifier of the common 
anti-inflammatory drug paracetamol
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Representation of the five classes of theoretical descriptors and the relationship between their dimensionality, the 
information they provide and the ease of calculation. 

Grisoni, F., Ballabio, D., Todeschini, R. & Consonni, V. Molecular descriptors for 
structure–activity applications: A hands-on approach. Methods Mol. Biol. 1800, 3–53 (2018)
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Compound Descriptors



Yang, H., Sun, L., Li, W., Liu, G. & Tang, Y. In Silico Prediction of Chemical Toxicity for Drug 
Design Using Machine Learning Methods and Structural Alerts. Front. Chem. 6, (2018)
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Types of Machine Learning models and standard workflow

SMILES

Standardisation

Fingerprint 
Generation

Training 

Model Generation

Testing

Model Validation 
and Predictions



Bender, A. & Cortes-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? 
Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040–1052 (2021) 4

The Pyramid of data-based discovery



Compounds induce systems-level phenotypes through effects across multiple biological 
scales which can be studied using different model systems.

Anika Liu and Srijit Seal et al 5

Biological effects and their Model Systems



Modalities of cellular response to compound perturbation and 
hypothesis-free assays which measure it.

Anika Liu and Srijit Seal et al 6

Biological effects and Assays to measure them…



Supervised learning of properties (Y) from compound descriptors (X). 

Anika Liu and Srijit Seal et al 7

Supervised Machine Learning



The PCA shows the global structure of the chemical space covered, while the Tanimoto similarity describes the similarity of each 
compound to the query compound.

Anika Liu and Srijit Seal et al 8

Molecular Similarity Measure: Is chemical structure 
sufficient?



Hypothesis-based assays aim to measure a known, and often low-dimensional, readout which is mechanistically linked to an in vivo 
endpoint and hence generally interpretable. In contrast, hypothesis-free assays measure biological response broadly. As a consequence, 

their interpretation is not straightforward, however, they can potentially be informative for a wide range of endpoints.

Anika Liu and Srijit Seal et al 9

Assay data: Hypothesis free and Hypothesis based
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Schematic Representation of Workflow
Compounds to Assay to Prediction

Yang, H., Sun, L., Li, W., Liu, G. & Tang, Y. In Silico Prediction of Chemical Toxicity for Drug Design 
Using Machine Learning Methods and Structural Alerts. Front. Chem. 6, (2018)
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Representing a datapoint (1 of 3)

Bender, A. & Cortes-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? 
Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040–1052 (2021)
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Representing a datapoint (2 of 3)

Bender, A. & Cortes-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? 
Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040–1052 (2021)
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Representing a datapoint (3 of 3)

Bender, A. & Cortes-Ciriano, I. Artificial intelligence in drug discovery: what is realistic, what are illusions? 
Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040–1052 (2021)



Cell Painting Assay 

6 stains, 

5 channels imaged, 

8 constituents/organelles

Morphological profiling information
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Cell Painting, human U2OS (human 
osteosarcoma) for more than 30,000 
small molecules contains cell 
morphology statistics including intensity, 
texture and adjacency statistics.

Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30 
000 Small-Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford 

University Press December 1, 2017, 1–5.
@srijitseal



Cell Painting Assay 

Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30 
000 Small-Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford 

University Press December 1, 2017, 1–5.
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For each identified substructures, measurements include :

• Counts: number of cells
• Size : area, volume, perimeter, diameter
• Shape
• Texture (smoothness)
• Intensity
• Spatial relationships

@srijitseal
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2. Detection of Mitochondrial Toxicity
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• We explored Cell Painting features for information on mitochondrial toxicity

• Cell Painting and Gene Expression features extrapolate the applicability domain of structure-based models

• We interpret the biological significance of Cell Painting features
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Detection of Mitochondrial Toxicity
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Dataset

Training Dataset: 
• Tox21 Mitochondrial membrane potential disruption assay hit calls (summary assay) 
• 382 compounds
• 62 Mitotoxic

External Test:  
• Additional mitotox assays from CHEMBL, PubChem, Mitotox Database relevant to 

mitochondria, mitochondria potential and mitochondria complex
• 244 compounds
• 47 Mitotoxic

Hemmerich, J., Troger, F., Füzi, B. & F.Ecker, G. Using Machine Learning Methods and 
Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020) 18

@srijitseal



Methods

Model: Random Forest models 

Nested Cross Validation 50 repeated 4-fold nested cross-validations on 382 compounds

Models were evaluated on an external test set of 244 compounds

Hemmerich, J., Troger, F., Füzi, B. & F.Ecker, G. Using Machine Learning Methods and 
Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020)

3 Individual Models

Cell Painting, 
Gene  Expression
Morgan fingerprints

2 Fusion models 
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Morphology space clusters compounds with similar mechanisms
Compounds clustered further 
away from the distribution of 
majority of compounds having 
similar mechanisms of actions, 
for example, microtubule 
disruptors

Principal Component Analysis of 542 
compounds in 110-dimensional Cell 

Painting feature space. 
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Toxic compounds are more similar in morphology space

21

Morphological space is more able to discriminate between mitochondrial toxicants and 
non-toxicants than structural fingerprints.

Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic) 

@srijitseal



Fusion models detect mitotoxicity better than structure
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• External test set: F1 Score increases by 60% (0.25 to 0.42 in 
absolute terms) when using fusion models compared to 
Morgan fingerprints.

• Our method achieve higher sensitivity (0.79 in our study vs 
0.37 in Apredica MitoMass4) with comparable balanced 
accuracies (0.69 in our study vs 0.65 in Apredica MitoMass).

Hallinger, D. R., Lindsay, H. B., Friedman, K. P., Suarez, D. A. & Simmons, S. O. 
Respirometric screening and characterization of mitochondrial toxicants within the toxcast 

phase i and II chemical libraries. Toxicol. Sci. 176, 175–192 (2020)
@srijitseal



Biological significance of Cell Painting features with respect to Mitochondrial Toxicity :
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Cell Painting features related to Mitotoxicity
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Cell Painting predicts Mitotoxicity
• Mitochondrial toxicants significantly differ from non-toxic compounds in morphological space; 

clusters with similar mechanisms; granularity features are highly predictive mitochondrial 
toxicity

• Models combining Cell Painting, Gene Expression features and Morgan Fingerprints improved 
detection (by 60% from 0.25 to 0.40) compared to models using only structural features

• Models extrapolated well into new chemical space and perform with better sensitivity than 
some dedicated hypothesis-based experimental assays for mitochondrial toxicity
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Seal, S. et al. Integrating cell morphology with gene 
expression and chemical structure to aid mitochondrial 
toxicity detection. Commun. Biol. 2022 51 5, 1–15 
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3. Combining Predictions from Cell Morphology Data and 
Structural Fingerprint by Leveraging Distance to Training Data 
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• Predictions from a model using morphology work best when compounds are similar in 
morphology space

• Structural models are local and work best when training compounds are similar in structure

• Instead of averaging models, can we merge morphology and structure models based on 
similarity to training set in both spaces?

Aim

Different regions in the morphology vs structure space 
will have different weights to the individual models
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Structural features
Morgan fingerprints

Morphological descriptors
Cell Painting Data

Bioactivity Datasets
Assay hit calls 

Features
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Dataset and Method
92 assays and 10,402 unique compounds from ChEMBL (Hofmarcher et al) 

Hofmarcher et al . Accurate Prediction of Biological Assays with High-Throughput Microscopy 
Images and Convolutional Networks. J. Chem. Inf. Model. 2019, 59 (3), 1163–1171 28
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For the held-out test set, greater number of assays with AUC>0.60 higher for merged model compared to 
individual and average ensemble models

Results

Significant improvement in performance when using the merged model compared to the average ensemble 
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Cell PaintingMorgan Fingerprint Average Ensemble Merged Models

qHTS Assay for Lipid Storage Modulators in Drosophila S3 Cells
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Merged Models can improve applicability domain
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Similarity is a good measure to merge models

• Merged models improve the applicability domain 

• 30 out of 90 assays exclusively show an improvement in performance AUC>0.70 in merged 
models which could not perform well in other models.

• Merged models can hence better combine feature spaces of structure and cell morphology 

31@srijitseal

Seal, S. et al. Merging Bioactivity Predictions from Cell 
Morphology and Chemical Fingerprint Models by Leveraging 
Similarity to Training Data. (accepted to Journal of 
Chemoinformatics)
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4. Interpreting Cell Morphology using Convolutional Neural 
Networks for Compound Toxicity
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• Cell morphological readouts contain information on several bioactivity endpoints 

• Features are highly correlated

• Can we use interpret these features from a biological context without diluting feature importance 
due to correlation?

• Convolutional Neural networks leverage neighbourhood correlation

• We can obtain per endpoint and per compound importance heatmaps using Grad-CAM.
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Cell Painting Feature Space is highly correlated
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Dataset
Training Dataset: Tox21 assay (8 broad biological activities)
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• apoptosis
• cytotoxicity BLA
• cytotoxicity SRB
• ER stress
• heat shock
• mitochondrial disruption
• oxidative stress
• proliferation decrease

@srijitseal



t-SNE of Feature Map 

Jonker-Volgenant 
algorithm

Image
s

Cell_Texture_SumAvergage_AGP_10_0

Method1. Prepare Feature Map
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Tox21 
Assays

e.g.  ER Stress

2. Predict Endpoint of test set

Model: EfficientNet B0

3. Interpretation using Grad-CAM

More important to model

Less contributing to model

@srijitseal



Features are related by measurement type
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• Majority of features are related by 
measurement function than by 
objects they were measured in 
(cells, cytoplasm, or nuclei)

• For example, granularity, features 
are clustered together from all 
compartments which means 
information on granularity was 
homogenous throughout the 
channels. 

@srijitseal



Compounds with similar MOA have similar importance regions
For models predicting proliferation decrease endpoint: 
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Niclosamide Colchicine Lovastatin Cycloheximide Nilutamide Mifepristone

mitochondrial toxicity

inhibits cell proliferation in the 
G(1) phase of the cell cycle antiandrogens
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Microtubule disruptors
 causing apoptosis

Microtubule disruptors and ER Stressors affect texture features

Causing ER stress.
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Cycloheximide Daunorubicin Niclosamide

2,5-Di-tert-butylhydroquinoneParbendazolePaclitaxel Fluspirilene

Pimozide

@srijitseal



Novel Representation of Cell Painting features 
may  reveal mechanistic understanding

• We present a new representation, modelling and interpretation technique for cell morphological 

• Leverage corelated Cell Painting features in the prediction of biological processes using CNN

• Compounds with similar MOA have similar regions of interest

• ER Stressors/Microtubule disruptors exhibit importance in 2 different regions of texture features

• Understanding these morphological regions help understand Cell Painting features biologically 

• We can interpret the models to guide experiments and develop new approach methodologies
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Conclusions

• Similar structures causing similar effect cannot always be leveraged as it depends on the 
representation of the compound for ML.

• Hypothesis free data from cell morphology, like gene expression, are versatile biological 
descriptors of a system

• Cell morphology provides an alternative feature space to predict drug toxicity, for example 
mitochondrial toxicity

• Developing methods to combine morphology and structural models improve predictions further

• We could also interpret morphological readouts for insights into biological activity.

• In future, morphological data will certainly help to look at the chemical space with a biological lens
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