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Data driven discovery

Paracetamol
Formula C8HI9NO2
HN OH .
Identifiers
O% IUPAC name: N-(4-hydroxyphenyl)acetamide
CHs SMILES: C1=CC(0O)=CC=CINC(=0)C

chemical structure, molecular formula, SMILES identifier of the common
anti-inflammatory drug paracetamol
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Compound Descriptors

oD 1D
(0] @]
O

e g™ d‘o"o\o/o
e%e o %o
o} o

Information content -
<

Ease of calculation

Representation of the five classes of theoretical descriptors and the relationship between their dimensionality, the
information they provide and the ease of calculation.

Grisoni, F., Ballabio, D., Todeschini, R. & Consonni, V. Molecular descriptors for

structure-activity applications: A hands-on approach. Methods Mol. Biol. 1800, 3-53 (2018)



Types of Machine Learning models and standard workflow
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Yang, H., Sun, L., Li, W,, Liu, G. & Tang, Y. In Silico Prediction of Chemical Toxicity for Drug
Design Using Machine Learning Methods and Structural Alerts. Front. Chem. 6, (2018)




The Pyramid of data-based discovery

A method cannot

Can be save an unsuitable

combined Method representation

(eg end-to- (captures relevant which cannot

end relationships) :

— remedy irrelevant
I Representation data for an ill

(captures relevant thought—through
information) question

Data

(relevance for question asked/labelling,
amount, quality)

Question/Hypothesis
(identification of key parameters/readouts needed for
analysis; practically relevant)

Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040-1052 (2021) 4




Biological effects and their Model Systems

®

DNA/Protein/Small molecule adducts,

Interaction with receptor

Molecular effects
<Y> Binding assays

Cellular effects C)

Stress response, Immune cell activation Cell-based assays

Tissue/Organ effects Micro-physiological
Necrosis, Inflammation, hyperplasia Systems

== Understand ==

€= Predict s

Clinical phenotype ‘ In vivo studies

Adverse effect, e.g. liver failure

Compounds induce systems-level phenotypes through effects across multiple biological
scales which can be studied using different model systems.
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Biological effects and Assays to measure them...

Compound Cellular response | Measured readout

Altered metabolism | Metabolomics

'\
X
Altered protein activity | Phospho-proteomics

bod
|

=/ Altered protein levels | Proteomics
A

7/

Altered gene expression | Transcriptomics

Altered cell and | Imaging
> organelle morphology

Modalities of cellular response to compound perturbation and
hypothesis-free assays which measure it.
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Supervised Machine Learning

Descriptor Property

E.g. chemical structure, hypothesis- E.g. hypothesis-based assay
based or hypothesis-free assays or in vivo effect

Y

Compounds
X
Compounds

N~ e

Machine Learning Algorithms

X /Y

Supervised learning of properties (Y) from compound descriptors (X).
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Molecular Similarity Measure: Is chemical structure
sufficient?

g

- O
P o)
e
S 5 | Similar compound

g O OH
3

c ® / OH

2 ;

@ o / WO
= 0 y
:', ~ @/ Query Compound

c N '1,’

2 1° 0% @

2 @ @

h

£ o\ o ®
H 5 — B N

— o
2 v NPT
x O

9 Dissimilar Compounds =
0 5 10 15
Principal Component 1 (explained variance 22.4%)

Similarity of Compounds — = e
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The PCA shows the global structure of the chemical space covered, while the Tanimoto similarity describes the similarity of each
compound to the query compound.
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Assay data: Hypothesis free and Hypothesis based

Compound profiling

v N

Hypothesis-based assay Hypothesis-free assay
[] il E"1I HiIf ITHiI
Low-dimensional readout with established High-dimensional readout with
relevance for in vivo endpoint unknown relevance for in vivo endpoint

Hypothesis-based assays aim to measure a known, and often low-dimensional, readout which is mechanistically linked to an in vivo
endpoint and hence generally interpretable. In contrast, hypothesis-free assays measure biological response broadly. As a consequence,
their interpretation is not straightforward, however, they can potentially be informative for a wide range of endpoints.
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Schematic Representation of Workflow
Compounds to Assay to Prediction

In vitro or in vivo assay
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Yang, H., Sun, L., Li, W,, Liu, G. & Tang, Y. In Silico Prediction of Chemical Toxicity for Drug Design 1(

‘ CAMBRIDGE Using Machine Learning Methods and Structural Alerts. Front. Chem. 6, (2018)



Representing a datapoint (1 of 3)

Object Representation Model Object label

™

I e . M ResNet?

ITliege . ®, — B, — A AlexNet? : Cat

domain F \ “eeecen. . CapsuleNet?

. Largely

Representation and model are intrinsically linked (i.e., unconditional
model uses native object represenation by pixels) labels

~“B% UNIVERSITY OF Bender, A. & Cortes-Ciriano, |. Artificial intelligence in drug discovery: what is realistic, what are illusions?

Sl C AMBRIDGE Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040-1052 (2021) L




Representing a datapoint (2 of 3)

Obiject Representation Model Object label
Dru NH; -0 Artificial Neural
; J L/ 9 NyT oH ' - network/DNN? Property A
dISCOVery: \/s G i | \\ b O o © 4 Q.‘u,f¢‘ : ? S rt t r
i Y Nl — e, Y. — upport vecto Conditional labela (e.g.,
Chemical ' o logP = ... é, machine? random > dependent on assay
. Molecular weight = ... Forest? Bayesin system, genotype, '7
domaln Molar refractivity = ... Classifier? dose, endotype, sex,
o age, comedications,
l I J lifestyle, ...)
Both representation and modeling approach are largely trial and
error (and not intrinsic to the chemical domain)

» UNIVERSITY OF Bender, A. & Cortes-Ciriano, |. Artificial intelligence in drug discovery: what is realistic, what are illusions?

C AMBRIDGE Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040-1052 (2021) 12




Representing a datapoint (3 of 3)

Obiject Representation Model Object label
Drug U — State/Effect B

e
discove ry: .-I I-’ ?  Transcript-/proteomics?High- 2 network/support? IHga:/Silx(/ conditional
. . : : . : — . abels (e.g.,
Blologlcal —p content imaging? Epigenetics? vector machine? = dependentan

domain l Histopathology?.... random forest)’? genotype, dose, ?

_ o _ endotype, sex, age,
Both representation and modeling approach are largely trial and co-medications

error (in particular the information content of biological readouts lifestyle, ...)
has only been established for particular cases) '

Drug Discovery Today

» UNIVERSITY OF Bender, A. & Cortes-Ciriano, . Artificial intelligence in drug discovery: what is realistic, what are illusions? 13

C AMBRIDGE Part 2: a discussion of chemical and biological data. Drug Discov. Today 26, 1040-1052 (2021)




Cell Painting Assay

Hoechst Conc.A SYTO 14 ) Mitotracker Merge

Cell Painting, human U20S (human
osteosarcoma) for more than 30,000
small molecules contains cell
morphology statistics including intensity,
texture and adjacency statistics.

‘-b & 1 Albendazole

Morphological profiling information

6 stains,
5 channels imaged,

8 constituents/organelles

Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30
000 Small-Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford 14
University Press December 1, 2017, 1-5.
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Cell Painting Assay
For each identified substructures, measurements include :

« Counts: number of cells

« Size : area, volume, perimeter, diameter
« Shape

» Texture (smoothness)

* Intensity

« Spatial relationships

SINGLE MICROSCOPY- FEATURE MORPHOLOGICAL
) BASED ASSAY CELLULAR IMAGES IMAGE ANALYSIS EXTRACTION OROFILES
N " —
o/©/ \g/ ;\ Vi AGGREGATED
; ! Uz _ INTOPROFILES i
g o f—]
" =

CHEMICAL | "
PERTURBATION P 5 Z
\’/

UNIVERSITY OF Bray, M. A.; Gustafsdottir, S. M et al., A Dataset of Images and Morphological Profiles of 30
: CAMBRIDGE 000 Small-Molecule Treatments Using the Cell Painting Assay. GigaScience. Oxford 15

University Press December 1, 2017, 1-5.
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2. Detection of Mitochondrial Toxicity
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Detection of Mitochondrial Toxicity

®* We explored Cell Painting features for information on mitochondrial toxicity

® Cell Painting and Gene Expression features extrapolate the applicability domain of structure-based models

®* We interpret the biological significance of Cell Painting features

MORPHOLOGICAL
FEATURES ___

@srijitseal

Cell Painting

1729 numerical Image-based
" morphological descriptors

Improves detection of in vitro
mitochondrial membrane
depolarization?

GENE EXPRESSION

$ | Gene Expression FEATURES / R 3
2 . . . — It ,“! i L\\
2 4438 numerical descriptors corresponding /\/\ - W i I &
o | to different gene ontologies \, = MACHINE LEARNING e,
8 ~_’C¥ - o MITOCHONDRIAL TOXICITY
. STRUCTURAL
Chemical Structure FEATURES °
. . —|
—Represented by Morgan Fingerprints from P ®
standardized chemical structure © -




Dataset

Training Dataset:

« Tox21 Mitochondrial membrane potential disruption assay hit calls (summary assay)
« 382 compounds

* 62 Mitotoxic

External Test:

« Additional mitotox assays from CHEMBL, PubChem, Mitotox Database relevant to
mitochondria, mitochondria potential and mitochondria complex

e 244 compounds

« 47 Mitotoxic

UNIVERSITY OF Hemmerich, J., Troger, F., Fuzi, B. & F.Ecker, G. Using Machine Learning Methods and

Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020) 18
CAMBRIDGE
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Model: Random Forest models

3 Individual Models

Cell Painting,
Gene Expression
Morgan fingerprints

Methods

2 Fusion models

Early Stage Fusion Late Stage Fusion

Cell Painting Gene Expression Morgan Fingerprints Cell Painting Gene Expression Morgan Fingerprints
I PR DR T I [eefezfoefos| [os]osfosfor| [oa ot [os |02
\_ / e
Y V
Appending features into single vector Averaging probabilities of separate models

I T nen i

Nested Cross Validation 50 repeated 4-fold nested cross-validations on 382 compounds

Models were evaluated on an external test set of 244 compounds

@srijitseal

Hemmerich, J., Troger, F., Fuzi, B. & F.Ecker, G. Using Machine Learning Methods and

Structural Alerts for Prediction of Mitochondrial Toxicity. Mol. Inform. 39, (2020)




Morphology space clusters compounds with similar mechanisms

Compounds clustered further
away from the distribution of
majority of compounds having
similar mechanisms of actions,
for example, microtubule
disruptors

Principal Component Analysis of 542
compounds in 110-dimensional Cell
Painting feature space.

@srijitseal

Principal Component 2 (explained variance percentage: 19.2 %)
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Toxic compounds are more similar in morphology space

Morphological space is more able to discriminate between mitochondrial toxicants and
non-toxicants than structural fingerprints.
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Intra- and inter-class pairwise similarity for 486 compounds (85 mitotoxic)
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Fusion models detect mitotoxicity better than structure

1.0 -
[ Nested CV
Bl External Test
0.8 1
« External test set: F1 Score increases by 60% (0.25 to 0.42 in
absolute terms) when using fusion models compared to
v o0 Morgan fingerprints.
= * Our method achieve higher sensitivity (0.79 in our study vs

0.37 in Apredica MitoMass?) with comparable balanced
accuracies (0.69 in our study vs 0.65 in Apredica MitoMass).

0.2 4

ey UNIVERSITY OF Hallinger, D. R., Lindsay, H. B., Friedman, K. P., Suarez, D. A. & Simmons, S. O.
Respirometric screening and characterization of mitochondrial toxicants within the toxcast 22

CAMBRIDGE phase i and Il chemical libraries. Toxicol. Sci. 176, 175-192 (2020)
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Cell Painting features related to Mitotoxicity

Biological significance of Cell Painting features with respect to Mitochondrial Toxicity :

Cells Intensity MaxintensityEdge Mito Cells Correlation Costes DNA AGP

(PPV0.83) (PPV 0.52)

Edge of segmented object potentially indicates loss of
membrane integrity Potentially indicates DNA fragmentation and

entering apoptosis or cell death

UNIVERSITY OF
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Cell Painting predicts Mitotoxicity

Mitochondrial toxicants significantly differ from non-toxic compounds in morphological space;
clusters with similar mechanisms; granularity features are highly predictive mitochondrial

toxicity

Models combining Cell Painting, Gene Expression features and Morgan Fingerprints improved
detection (by 60% from 0.25 to 0.40) compared to models using only structural features

Models extrapolated well into new chemical space and perform with better sensitivity than
some dedicated hypothesis-based experimental assays for mitochondrial toxicity

ﬂm/‘ Seal, S. et al. Integrating cell morphology with gene

COMMUNICATIONS  expression and chemical structure to aid mitochondrial
BIOLOGY toxicity detection. Commun. Biol. 2022 51 5, 1-15




3. Combining Predictions from Cell Morphology Data and
Structural Fingerprint by Leveraging Distance to Training Data
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Aim
* Predictions from a model using morphology work best when compounds are similar in

morphology space

« Structural models are local and work best when training compounds are similar in structure

« |nstead of averaging models, can we merge morphology and structure models based on
similarity to training set in both spaces?

Different regions in the morphology vs structure space
will have different weights to the individual models

UNIVERSITY OF

CAMBRIDGE
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Features

Bioactivity Datasets

InChiCode_standardised 262_740 263_741 264_742 265 743 266_744 267_745

Assay hit calls INChI=1S/C20H22N20382/c1-3-25-19(23)15-4-8-16(... 0.0 0.0 0.0 0.0 0.0 0.0
= INChI=1S/C15H13N303/c19-13(8-12-14(20)18-15(21 NaN 0.0 0.0 1.0 0.0 0.0

. InChl=18/C20H22N4/c1-15(16-9-3-2-4-10-16)21-19... 0.0 0.0 0.0 NaN 0.0 0.0

T INChI=1S/C21H21BrN403S/c1-4-5-16(29-13-8-6-12(.... NaN 0.0 NaN 0.0 0.0 NaN
INChl=1S/C20H17FN205/c1-11-17(18(23-20(25)22-1... 0.0 0.0 0.0 1.0 0.0 0.0

InChiCode_standardised Cells_Correlation_Correlation_RNA_AGP

Cells_Correlation_Costes_ AGP_RNA Cells_Correlation_K_AGP_DNA

Morphological descriptors ~chi-rscaorzznzosszer-

e e 0.157784 -0.096680 -0.164428
N 3.25-19(23)15-4-8-16(...
Cell Painting Data
InChl=13/C15H13N203/016- aoRr P AR
13(8-12-14(20)18-15(21 v RS SRR
! InChl=1S/C20H22Ndic1-15(1€
NChl=1S/C20H22N4/c1-15(16- (o oo T
& @%m R -0.119915 -0.060212 -0.379775
]
[ @ fee INChl=*1S/IC21HZ21BrN403S/c1- 0 087385 0101862 5074047
= 4-5-16(29-13-8-6-12( dedbics N poiifissls
InChi=1S/C20H17FN205/c1- - T iy o
11-17(18(23.20(25122.1... 0.020787 -0.037733 0210272
InChiCode_standardised Mfp0 Mfp1 Mfp2 Mfp3 Mfpd Mfp5 Mfpé Mfp7 Mfp8 ... Mfp2038 Mfp2039 Mfp2040
Structural features INChI=1S/2C24H28N204/c2*1-
. . szaTAbvzeet.,., ¢ 2 W o0 G 0n 00 0 1 0
Morgan fingerprints
InChl=1S/2C28H35N303/c2"1-
j\ sratiotese., 2 4 B 0 O 0 9 0 0 0 1 9
HN CH, .
InChi=1S/2C28H35N303/c2"1-
3721101124252, ° Y o0 o0 0 0 0 0O 0 0 ! 0
INChI=18/2C28H29N504/c2*1-
3-7-19-10-11-23-24-2..  © . SN R . L L . ! .
OH
INChI=18/2C22H30N205/c2"1- o o o o o o o o o ; 1 5

3-4-15-5-6-17-20-19(...

UNIVERSITY OF

CAMBRIDGE




Dataset and Method

92 assays and 10,402 uniqgue compounds from ChEMBL (Hofmarcher et al)

(7) Decision tree to find node
boundaries

— Predictions for training data
Morphological (1) Cell Painting %
Features Model (4) Compute ® LR Model’
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©
nel o
@ 0.8 ° °
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B o (Node 2) . LR Model
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g 06 [ ®
o .
(3) Predict activity for £ os * y oo
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£
T o ¢ . (Node3)
b= °
g
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Morphological Similarity to compoundsin trainingdata

UNIVERSITY OF Hofmarcher et al . Accurate Prediction of Biological Assays with High-Throughput Microscopy

CAMBRIDGE Images and Convolutional Networks. J. Chem. Inf. Model. 2019, 59 (3), 1163-1171 28
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Results

For the held-out test set, greater number of assays with AUC>0.60 higher for merged model compared to
individual and average ensemble models

Significant improvement in performance when using the merged model compared to the average ensemble

sokokok

t-test paired samples
Ttk p-value annotation legend:
d L ns: p <= 1.00e+00
. - . *:1.00e-02 < p <= 5.00e-02
ns ook **:1.00e-03 < p <= 1.00e-02

***.1.00e-04 < p <= 1.00e-03

**EX: p <= 1.00e-04
1.0 4 /‘}"\‘
0.8 - D
> 06 \ /
< \
0.4 \‘//
. \ / u
0.2 4 ‘ﬁ}:
I
|
Cell Painting Structural Soft-voting  Hierarchical Similarity based
Models Models Ensemble Model Merger Models
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Structural Similarity
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Merged Models can improve applicability domain

Morgan Fingerprint

Cell Painting

-

Average Ensemble

Merged Models

gHTS Assay for Lipid Storage Modulators in Drosophila S3 Cells
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Similarity is a good measure to merge models

 Merged models improve the applicability domain

« 30 out of 90 assays exclusively show an improvement in performance AUC>0.70 in merged
models which could not perform well in other models.

 Merged models can hence better combine feature spaces of structure and cell morphology

Seal, S. et al. Merging Bioactivity Predictions from Cell
Morphology and Chemical Fingerprint Models by Leveraging
Similarity to Training Data. (accepted to Journal of
Chemoinformatics)
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O Spring
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4. Interpreting Cell Morphology using Convolutional Neural
Networks for Compound Toxicity
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Cell Painting Feature Space is highly correlated

® Cell morphological readouts contain information on several bioactivity endpoints
® Features are highly correlated

® Can we use interpret these features from a biological context without diluting feature importance
due to correlation?

® Convolutional Neural networks leverage neighbourhood correlation

®* We can obtain per endpoint and per compound importance heatmaps using Grad-CAM.

> UNIVERSITY OF
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Dataset

Training Dataset: Tox21 assay (8 broad biological activities)

« apoptosis

* cytotoxicity BLA

« cytotoxicity SRB

* ER stress

» heat shock

» mitochondrial disruption
 oxidative stress

« proliferation decrease

UNIVERSITY OF

CAMBRIDGE

@srijitseal



1. Prepare Feature Map

Method

0 1 2 3 4 Tox21
Metadata_profile_id  profile_0  profile_1 profile_2 profile_3 profile_4 t-SNE Of Feature Map Assays
Metadata_cell_line A549 A549 A549 A549 A549 ]
Metadata_pert_name  AKT1-1  AKT1-2 ARID1B-1 ARID1B-2 71 \ ° " '} £ »
Cells_AreaShape_Center Y -0.18016 0.370572 -0.360905  0.26245 -0.110264 081 .' . a2 . ® &
Cells_AreaShape_Compactness -0.155631 -0.247842 0.79474 0.480421 -0.074895 ’ ' .‘ ... [/ ‘
061 & “ g - m&& Jonker-Volgenant
Nuclei_Texture_SumVariance_DNA_5_0 0.923143 0.504751 -0.497296 0.063444 0.594059 ..’ ® } .‘ ’ -. algorithm
Nuclei_Texture_Variance_AGP_5_0 0.944998 0.407462 -0.748232 -0.560178 0.674015 041 ® ‘ ...
Nuclei_Texture_Variance_DNA_10_0 0.984938 0.522251 -0.51524 -0.062851 0.140325 o ...‘* ... x.. Y %
Nuclei_Texture_Variance_DNA_20_0 1.122724 0.64437  -0.42144 0.085026 0.29123 021 .‘ [} 2. 4 ‘ ‘
Nuclei_Texture_Variance_DNA_5_0 0.961945 0.519441 -0.526734 0.026056 0.417465 004 ]
0?0 0.'2 0?4 0.'6 0.'8 1.'0

Cell_Texture_SumAvergage_AGP_10_0

e.g. ER Stress

More important to model

2. Predict Endpoint of test set

MBConvs

Model: EfficientNet BO

3. Interpretation using Grad-CAM

MBConvs Convs

MBConvs

Less contributing to model

~ UNIVERSITY OF

CAMBRIDGE
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Features are related by measurement type

Intensity
Correlation
Granularity
Texture
AreaShape
Location
Neighbors
Number

Parent
RadialDistribution

« Majority of features are related by
measurement function than by
objects they were measured in
(cells, cytoplasm, or nuclei)

Cytoplasm
Nuclei

« For example, granularity, features
are clustered together from all

i Granularity
compartments which  means TR il
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Compounds with similar MOA have similar importance regions

For models predicting proliferation decrease endpoint:

inhibits cell proliferation in the

mitochondrial toxicity G(1) phase of the cell cycle antiandrogens
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Microtubule disruptors and ER Stressors affect texture features
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Novel Representation of Cell Painting features
may reveal mechanistic understanding

 We present a new representation, modelling and interpretation technique for cell morphological
» Leverage corelated Cell Painting features in the prediction of biological processes using CNN

« Compounds with similar MOA have similar regions of interest

» ER Stressors/Microtubule disruptors exhibit importance in 2 different regions of texture features
« Understanding these morphological regions help understand Cell Painting features biologically

« We can interpret the models to guide experiments and develop new approach methodologies
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Conclusions

« Similar structures causing similar effect cannot always be leveraged as it depends on the
representation of the compound for ML.

» Hypothesis free data from cell morphology, like gene expression, are versatile biological
descriptors of a system

« Cell morphology provides an alternative feature space to predict drug toxicity, for example
mitochondrial toxicity

» Developing methods to combine morphology and structural models improve predictions further
« We could also interpret morphological readouts for insights into biological activity.

 In future, morphological data will certainly help to look at the chemical space with a biological lens
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