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Chapter 1

Bayes theorem: computing the posterior distribution

Bayes theorem

p(θ | y) =
p(y | θ)p(θ)

p(y)

posterior probability =
likelihood× prior probability

p(y)

Probability can have two meanings: limiting proportion (objective) or personal belief
(subjective)
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1.1 Bayes theorem

• Bayes theorem for parameter θ with two possible values, θ = 1 or θ = 0:

p (θ = 1 | y) =
p (y | θ = 1) p (θ = 1)

p (y | θ = 1) p (θ = 1) + p (y | θ = 0) p (θ = 0)

• Bayes theorem for categorical parameter, θ1, θ2, . . . , θK

p (θk | y) =
p (y | θk) p (θk)
K∑
k=1

p (y | θk) p (θk)

• Bayes theorem for continuous parameter θ:

p (θ | y) =
p (y | θ) p (θ)∫
p (y | θ) p (θ)dθ
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• Data y can be binary, categorial, continuous

• i.i.d. sample y = y1, . . . , yn

• Joint distribution of sample = p(y|θ) =
∏n

i=1 p(yi|θ) = likelihood L(θ|y)

⇒ Bayes’ Theorem for continuous parameters:

p(θ|y) =
L(θ|y)p(θ)

p(y)
=

L(θ|y)p(θ)∫
L(θ|y)p(θ)dθ
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Special Cases: use of conjugate priors

• Binomial likelihood + beta prior = beta posterior

• Normal likelihood + normal prior (σ known) = normal posterior

• Poisson likelihood + gamma prior = gamma posterior

• Features:

. Posterior compromise between prior and likelihood

. Posterior mode/mean/median can be analytically obtained from MLE and prior
mode/mean/median

. When parameter changes then also prior and posterior must change accordingly
using transformation rule
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1.2 Numerical techniques to determine the posterior

• In general, posterior distribution cannot be obtained analytically

• Solutions to calculate the normalizing factor are required

p (θ | y) =
p (y | θ) p (θ)∫
p (y | θ) p (θ)dθ

• Two approaches

. Numerical integration

. Sampling from the posterior
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Example

. Study describing caries experience in Flanders

. Longitudinal oral health study in Flanders from 1996 to 2001

. Caries experience measured by dmft-index in 4351 children

. The sum of the dmft-index in all children was 9758

. Outcome is a count: Poisson likelihood

. Prior information based on literature: Gamma(α0, β0)=Gamma(3,1)

. Posterior: Gamma with ᾱ =
∑
yi + α0= 9758 + 3 = 9761 and

β̄ = n + β0= 4351 + 1 = 4352
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Example

• Replace gamma prior by lognormal prior

• Posterior distribution

∝ θ
∑n
i=1 yi−1e

−nθ−
(
log(θ)−µ0

2σ0

)2
, (θ > 0)

• Posterior moments cannot be evaluated & AUC not known
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1.2.1 Numerical integration

• Numerical integration: replacing integral by summation∫ b

a

L(θ|y)p(θ)dθ ≈
M+1∑
m=0

wmL(θm|y)p(θm)
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• Simple integration techniques: equidistant grid + approximate sub integrals by
polynomial

◦ Mid-point rule: constant

◦ Trapezoidal rule: linear

◦ Simpson’s rule: quadratic

• Gaussian quadrature

◦ Non-adaptive

◦ Adaptive (M = 1 = Laplace approximation)
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1.2.2 Sampling from the posterior distribution

• Monte Carlo integration: usefulness of sampling idea

• General purpose sampling algorithms
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Monte-Carlo integration

• Monte Carlo integration: replace integral by a Monte Carlo sample {θ̃1, . . . , θ̃K}

• Approximate p(θ|y) by sample histogram

• Classical Strong Law of Large Numbers:

∫
t(θ) p(θ|y) dθ ≈ t =

1

K

K∑
k=1

t(θ̃k), for K large

• Classical Central Limit Theorem: 95% confidence interval

[t− 1.96 st/
√
K, t + 1.96 st/

√
K]

• 95% equal tail CI: [2.5%, 97.5%] quantile from sample
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Example

. Stroke study – Monitoring safety

. Rt-PA: thrombolytic for ischemic stroke

. Outcome: complication SICH (Symptomatic intracerebral hemorrhage) in patients
with acute ischemic stroke

. Fictive situation:

◦ First interim analysis: 50 rt-PA patients with 10 SICHs

◦ Historical data: 100 rt-PA patients with 8 ISCHs
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Example

• Posterior for θ = probability of SICH with rt-PA = Beta(19, 133)

• 5, 000 sampled values of θ from Beta(19, 133)-distribution

• Posterior of log(θ): one extra line in R-program

• Sample summary measures ≈ true summary measures

• 95% equal tail CI for θ: [0.0782, 0.182]

• 95% equal tail CI for log(θ): [-2.56, -1.70]

• Approximate 95% HPD interval for θ: [0.0741, 0.179]
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Example
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General purpose sampling algorithms

• Many algorithms are available to sample from standard distributions

. Inverse cumulative distribution function (ICDF) method:

sample from u ∼ U(0, 1) and calculate corresponding sampling point
x = F−1(u)
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• Dedicated procedures/general purpose algorithms for non-standard distributions:

. Accept-reject (AR) algorithm:

- sample from a (user-defined) proposal distribution θ̃ ∼ q(θ)

- accept this sample from the posterior if p(θ̃ | y)/A q(θ̃) is large (otherwise
reject)

. Importance sampling if interest in E [t(θ) | y]

- sample from a (user-defined) proposal distribution θ̃ ∼ q(θ)
- estimate weighted average with importance weights w(θk) = p(θk | y)/q(θk)
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Example

. Binomial likelihood + beta prior (for illustration purposes)

. proposal: uniform distribution

. A = max(L(θ̃|y)p(θ̃)/q(θ̃))

. sample additionaly u from a uniform(0,1) distribution

. accept when p(θ̃ | y)/A q(θ̃) ≥ u
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In practice

• Adaptive rejection sampling algorithm

. Builds up envelope distribution in an adaptive manner

. Builds up squeezing density in an adaptive manner

. Examples: Tangent methods or Derivative-free method

• Weighted sampling-resampling method to compare results from different priors

Use of Sampling Methods in Bayesian Inference Christel Faes 18



Chapter 2

More than one parameter

Joint posterior inference

• Let

◦ y = sample of n independent observations

◦ θ = (θ1, θ2, . . . , θd)
T

◦ L(θ | y)

◦ Multivariate prior: p(θ)

• Multivariate posterior: p(θ | y) =
L(θ | y)p(θ)∫
L(θ | y)p(θ) dθ

◦ Posterior mode: θ̂M

◦ Posterior mean: θ

◦ HPD region of content (1-α)
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2.1 The Method of Composition

A method to yield a random sample from a multivariate distribution

• Stagewise approach

• Based on factorization of joint distribution into a marginal & several conditionals

p(θ1, . . . , θd | y) = p(θd | y) p(θd−1 | θd,y) . . . p(θ1 | θd, . . . , θ2,y)

• Sampling approach:

. Sample θ̃d from p(θd | y)

. Sample θ̃(d−1) from p(θ(d−1) | θ̃d,y)

. . . .

. Sample θ̃1 from p(θ1 | θ̃d, . . . , θ̃2,y)

Use of Sampling Methods in Bayesian Inference Christel Faes 20



Sampling from N(µ, σ2), both parameters unknown

• Sampling approach from normal posterior p(µ, σ2 | y) ≡ N(µ, σ2)

• Three cases:

. No prior knowledge

. Historical data available

. Expert knowledge available
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Case 1: No prior knowledge on µ and σ2

Sample from p(µ, σ2 | y): Sample from p(σ2 | y) & Sample from p(µ | σ2,y)

1. Sample from p(σ2 | y):

◦ Sample ν̃k from a χ2(n− 1)-distribution

◦ Solve σ̃2k in (n− 1)s2/σ̃2k = ν̃k

2. Sample from p(µ | σ2,y):

◦ Sample µ̃k from a N(y, σ̃2k/n)-distribution

⇒ µ̃1, . . . , µ̃K = random sample from p(µ | y) (tn−1(y, s
2/n)-distribution)
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Case 1 (continued)

To sample from the posterior predictive distribution p(ỹ | y), 2 approaches:

1. Sample directly from tn−1
[
y, s2

(
1 + 1

n

)]
-distribution

2. Use Method of Composition

. Sample σ̃2k from Inv-χ2(σ2 | n− 1, s2)

. Sample µ̃k from N(µ | y, σ̃2k/n)

. Sample ỹk from N(y | µ̃k, σ̃2k)

Use of Sampling Methods in Bayesian Inference Christel Faes 23



Example

. retrospective study predicting the incidence of common bile duct (CBD) stones in
patients with gallstone disease

. study on a prospective set of 250 ‘healthy’ patients.

. outcome: serum alkaline phosphatase (SAP)

. yi = 100/
√
SAPi has a Gaussian distribution
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Example: Sampling the posterior with NI prior

• Sampled posterior distributions on next page (K = 1000)

• Posterior mean (95% confidence interval)

◦ µ: 7.11 ([7.106, 7.117])

◦ σ2: 1.88 ([1.869, 1.890])

• 95% equal tail CI

◦ µ: [6.95, 7.27]

◦ σ2: [1.58, 2.23]
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Example (continued)
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Case 2: Historical data are available

Same procedure as before!
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Case 3: Expert knowledge is available

• This is no longer a conjugate setting

• Problem: p(σ2 | y) does not have a known distribution

• For a given σ̃2, sampling µ̃ is straightforward

• Use weighted resampling to sample from p(σ2 | y)
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Example (continued)
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Chapter 3

Markov chain Monte Carlo sampling

Aims:

. Introduce the sampling approach(es) that revolutionized Bayesian approach
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. Solving the posterior distribution analytically is often not feasible due to the
difficulty in determining the integration constant

. Computing the integral using numerical integration methods is a practical
alternative if only a few parameters are involved

⇒ New computational approach is needed

. Sampling is the way to go!

. With Markov chain Monte Carlo (MCMC) methods:

1. Gibbs sampler

2. Metropolis-(Hastings) algorithm

MCMC approaches have revolutionized Bayesian methods!
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3.1 The Gibbs sampler

• Gibbs Sampler: introduced by Geman and Geman (1984) in the context of
image-processing for the estimation of the parameters of the Gibbs distribution

• Gelfand and Smith (1990) introduced Gibbs sampling to tackle complex
estimation problems in a Bayesian manner
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3.1.1 The bivariate Gibbs sampler

Method of Composition:

• p(θ1, θ2 | y) is completely determined by:

. marginal p(θ2 | y)

. conditional p(θ1 | θ2,y)

• Split-up yields a simple way to sample from joint distribution
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Gibbs sampling:

• p(θ1, θ2 | y) is completely determined by:

. conditional p(θ2 | θ1,y)

. conditional p(θ1 | θ2,y)

• Property yields another simple way to sample from joint distribution:

. Take starting values θ01 and θ02 (only 1 is needed)

. Given θk1 and θk2 at iteration k, generate the (k + 1)-th value according to
iterative scheme:

1. Sample θ
(k+1)
1 from p(θ1 | θk2 ,y)

2. Sample θ
(k+1)
2 from p(θ2 | θ(k+1)

1 ,y)
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Result of Gibbs sampling:

• Chain of vectors: θk = (θk1 , θ
k
2)T , k = 1, 2, . . .

◦ Consists of dependent elements

◦Markov property: p(θ(k+1) | θk, θ(k−1), . . . , y) = p(θ(k+1) | θk,y)

• Chain depends on starting value + initial portion/burn-in part must be discarded

• Under mild conditions: sample from the posterior distribution = target distribution

⇒ From k0 on: summary measures calculated from the chain consistently estimate
the true posterior measures

Gibbs sampler is called a Markov chain Monte Carlo method

Use of Sampling Methods in Bayesian Inference Christel Faes 35



Example: SAP study – Gibbs sampling the posterior with NI priors

• Example: sampling from posterior distribution of the normal likelihood based on
250 alp measurements of ‘healthy’ patients with NI prior for both parameters

• Now using Gibbs sampler based on y = 100/
√
alp

• Determine two conditional distributions:

1. p(µ | σ2,y): N(µ | ȳ, σ2/n)

2. p(σ2 | µ,y): Inv− χ2(σ2 | n, s2µ) with s2µ = 1
n

∑n
i=1(yi − µ)2

• Iterative procedure: At iteration (k + 1)

1. Sample µ(k+1) from N(ȳ, (σ2)k/n)

2. Sample (σ2)(k+1) from Inv− χ2(n, s2
µ(k+1))
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Gibbs sampling:
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◦ Sampling from conditional density of µ given σ2

◦ Sampling from conditional density of σ2 given µ
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Gibbs sampling path and sample from joint posterior:
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◦ Zigzag pattern in the (µ, σ2)-plane

◦ 1 complete step = 2 substeps (blue=genuine element)

◦ Burn-in = 500, total chain = 1,500
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Posterior distributions:
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Example: SAP study – Gibbs sampling the posterior with I priors

• Example: now with independent informative priors (semi-conjugate prior)

◦ µ ∼ N(µ0, σ
2
0)

◦ σ2 ∼ Inv− χ2(ν0, τ
2
0 )

• Posterior:

p(µ, σ2 | y) ∝ 1

σ0
e
− 1

2σ20
(µ−µ0)2

× (σ2)−(ν0/2+1) e−ν0 τ
2
0/2σ

2

× 1

σn

n∏
i=1

e
− 1

2σ2
(yi−µ)2

∝
n∏
i=1

e
− 1

2σ2
(yi−µ)2 e

− 1
2σ20

(µ−µ0)2
(σ2)−(n+ν02 +1) e−ν0 τ

2
0/2σ

2
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Conditional distributions:

• Determine two conditional distributions:

1. p(µ | σ2,y):
∏n

i=1 e
− 1

2σ2
(yi−µ)2 e

− 1
2σ20

(µ−µ0)2
(N
(
µk, (σ2)k

)
)

2. p(σ2 | µ,y): Inv− χ2
(
ν0 + n,

∑n
i=1(yi−µ)2+ν0τ20

ν0+n

)

• Iterative procedure: At iteration (k + 1)

1. Sample µ(k+1) from N
(
µk, (σ2)k

)
2. Sample (σ2)(k+1) from Inv− χ2

(
ν0 + n,

∑n
i=1(yi−µ(k+1))2+ν0τ

2
0

ν0+n

)
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Trace plots:
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3.1.2 The general Gibbs sampler

Starting position θ0 = (θ01, . . . , θ
0
d)
T

Multivariate version of the Gibbs sampler:

Iteration (k + 1):

1. Sample θ
(k+1)
1 from p(θ1 | θk2 , . . . , θk(d−1), θkd,y)

2. Sample θ
(k+1)
2 from p(θ2 | θ(k+1)

1 , θk3 , . . . , θ
k
d,y)

...

d. Sample θ
(k+1)
d from p(θd | θ(k+1)

1 , . . . , θ
(k+1)
(d−1), y)
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• Full conditional distributions: p(θj | θk1 , . . . , θk(j−1), θk(j+1), . . . , θ
k
(d−1), θ

k
d,y)

• Also called: full conditionals

• Under mild regularity conditions:

θk,θ(k+1), . . . ultimately are observations from the posterior distribution

With the help of advanced sampling algorithms (AR, ARS, etc) sampling the
full conditionals is done based on the prior × likelihood
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Example: Osteoporosis study – Using the Gibbs sampler

Bayesian linear regression model with NI priors:

. Regression model: tbbmci = β0 + β1bmii + εi (i = 1, . . . , n = 234)

. Priors: p(β0, β1, σ
2) ∝ σ−2

. Notation: y = (tbbmc1, . . . , tbbmc234)
T , x = (bmi1, . . . , bmi234)

T

Full conditionals: p(σ2 | β0, β1,y) = Inv− χ2(n, s2β)

p(β0 | σ2, β1,y) = N(rβ1, σ
2/n)

p(β1 | σ2, β0,y) = N(rβ0, σ
2/xTx)

with
s2β = 1

n

∑
(yi − β0 − β1 xi)2

rβ1 = 1
n

∑
(yi − β1 xi)

rβ0 =
∑

(yi − β0)xi/xTx
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Comparison with Method of Composition:

Parameter Method of Composition

2.5% 25% 50% 75% 97.5% Mean SD

β0 0.57 0.74 0.81 0.89 1.05 0.81 0.12

β1 0.032 0.038 0.040 0.043 0.049 0.040 0.004

σ2 0.069 0.078 0.083 0.088 0.100 0.083 0.008

Gibbs sampler

2.5% 25% 50% 75% 97.5% Mean SD

β0 0.67 0.77 0.84 0.91 1.10 0.77 0.11

β1 0.030 0.036 0.040 0.042 0.046 0.039 0.0041

σ2 0.069 0.077 0.083 0.088 0.099 0.083 0.0077

◦ Method of Composition = 1,000 independently sampled values

◦ Gibbs sampler: burn-in = 500, total chain = 1,500
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Index plot from Method of Composition:
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Trace plot from Gibbs sampler:
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Trace versus index plot:

Comparison of index plot with trace plot shows:

• σ2: index plot and trace plot similar ⇒ (almost) independent sampling

• β1: trace plot shows slow mixing ⇒ quite dependent sampling

⇒ Method of Composition and Gibbs sampling: similar posterior measures of σ2

⇒ Method of Composition and Gibbs sampling: less similar posterior measures of
β1
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Autocorrelation:

. Autocorrelation of lag 1: correlation of βk1 with β
(k−1)
1 (k=1, . . .)

. Autocorrelation of lag 2: correlation of βk1 with β
(k−2)
1 (k=1, . . .)

. . .

. Autocorrelation of lag m: correlation of βk1 with β
(k−m)
1 (k=1, . . .)

High autocorrelation:

⇒ burn-in part is larger ⇒ takes longer to forget initial positions

⇒ remaining part needs to be longer to obtain stable posterior measures
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3.2 The Metropolis(-Hastings) algorithm

Metropolis-Hastings (MH) algorithm = general Markov chain Monte Carlo
technique to sample from the posterior distribution but does not require full
conditionals

• Special case: Metropolis algorithm proposed by Metropolis in 1953

• General case: Metropolis-Hastings algorithm proposed by Hastings in 1970

• Became popular only after introduction of Gelfand & Smith’s paper (1990)

• Further generalization: Reversible Jump MCMC algorithm by Green (1995)
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3.2.1 The Metropolis algorithm

Sketch of algorithm:

• New positions are proposed by a proposal density q

• Proposed positions will be:

. Accepted:

◦ Proposed location has higher posterior probability: with probability 1

◦ Otherwise: with probability proportional to ratio of posterior probabilities

. Rejected:

◦ Otherwise

• Algorithm satisfies again Markov property ⇒ MCMC algorithm

• Similarity with AR algorithm
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Metropolis algorithm:

Chain is at θk ⇒ Metropolis algorithm samples value θ(k+1) as follows:

1. Sample a candidate θ̃ from the symmetric proposal density q(θ̃ | θ), with
θ = θk

2. The next value θ(k+1) will be equal to:

• θ̃ with probability α(θk, θ̃) (accept proposal),

• θk otherwise (reject proposal),

with

α(θk, θ̃) = min

(
r =

p(θ̃ | y)

p(θk | y)
, 1

)

Function α(θk, θ̃) = probability of a move
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The MH algorithm only requires the product of the prior and the likelihood
to sample from the posterior
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Example: SAP study – Metropolis algorithm for NI prior case

Settings as in before, now apply Metropolis algorithm:

. Proposal density: N(θk,Σ) with θk = (µk, (σ2)k)T and Σ = diag(0.03, 0.03)
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◦ Jumps to any location in the (µ, σ2)-plane

◦ Burn-in = 500, total chain = 1,500
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MH-sampling:
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Marginal posterior distributions:
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◦ Acceptance rate = 40%

◦ Burn-in = 500, total chain = 1,500
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Trace plots:
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◦ Accepted moves = blue color, rejected moves = red color
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Second choice of proposal density:

. Proposal density: N(θk,Σ) with θk = (µk, (σ2)k)T and Σ = diag(0.001, 0.001)
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◦ Acceptance rate = 84%

◦ Poor approximation of true distribution
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Accepted + rejected positions:
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Problem:

What should be the acceptance rate for a good Metropolis algorithm?

From theoretical work + simulations:

• Acceptance rate: 45% for d = 1 and ≈ 24% for d > 1
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3.2.2 The Metropolis-Hastings algorithm

Metropolis-Hastings algorithm:

Chain is at θk ⇒ Metropolis-Hastings algorithm samples value θ(k+1) as follows:

1. Sample a candidate θ̃ from the (asymmetric) proposal density q(θ̃ | θ), with
θ = θk

2. The next value θ(k+1) will be equal to:

• θ̃ with probability α(θk, θ̃) (accept proposal),

• θk otherwise (reject proposal),

with

α(θk, θ̃) = min

(
r =

p(θ̃ | y) q(θk | θ̃)

p(θk | y) q(θ̃ | θk)
, 1

)
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• Reversibility condition: Probability of move from θ to θ̃ = probability of move
from θ̃ to θ

• Reversible chain: chain satisfying reversibility condition

• Example asymmetric proposal density: q(θ̃ | θk) ≡ q(θ̃) (Independent MH
algorithm)
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Example: Sampling a t-distribution using Independent MH algorithm

Target distribution : t3(3, 2
2)-distribution

(a) Independent MH algorithm with proposal density N(3,42)

(b) Independent MH algorithm with proposal density N(3,22)
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3.2.3 Review of Metropolis(-Hastings) approaches

• The Random-Walk Metropolis(-Hastings) algorithm

• The Independent Metropolis-Hastings algorithm

• The Block Metropolis-Hastings algorithm

• The Reversible Jump MCMC (RJMCMC) algorithm
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The Random-Walk Metropolis(-Hastings) algorithm

• Proposal density: q(θ̃ | θ) = q(θ̃ − θ). When q(θ̃ − θ) ≡ q(|θ̃ − θ|) proposal
density is symmetric and gives the Metropolis algorithm

. Multivariate normal density: WinBUGS & SASr procedures

. Multivariate t-distribution: SASr PROC MCMC for long tailed posteriors

• Acceptance rate: 45% for d = 1 and 23.4% for d > 1

• Tuning the proposal density:

. WinBUGS (one-dimensional MH algorithm): in first 4000 iterations to produce
an acceptance rate between 20% and 40%

. SASr procedure MCMC: in several loops
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The Independent Metropolis-Hastings algorithm

• Proposal density: does not depend on the position in the chain, e.g.

q(θ̃ | θ) = Nd(θ̃ | µ,Σ)

• One of the possible samplers of the SASr procedure MCMC

• Similar to AR algorithm but accepts θ̃ when p(θ̃ | y)/q(θ̃) > p(θk | y)/q(θk)

• High acceptance rate is desirable when proposal density q(θ) is close to the
posterior density

• (Robert and Casella) If p(θ | y) ≤ Aq(θ) for all θ, then the Markov chain
generated by the Independent MH algorithm has excellent convergence properties
and is more efficient than the AR algorithm
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The Block Metropolis-Hastings algorithm

• MH algorithm within Gibbs sampling: Metropolis-within-Gibbs

• SASr procedure MCMC: blocks specified by the user

• WinBUGS: regression coefficients in one block (blocking option switched on) and
variance parameters in other block
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The Reversible Jump MCMC (RJMCMC) algorithm

• Special case of the MH algorithm

• Jumps within space and between spaces

• Important application: Bayesian variable selection
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3.3 Choice of the sampler

Choice of the sampler depends on a variety of considerations
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Example: Caries study – MCMC approaches for logistic regression

Subset of n = 500 children of the Signal-Tandmobielr study at 1st examination:

. Research questions:

◦ Have girls a different risk for developing caries experience (CE ) than boys
(gender) in the first year of primary school?

◦ Is there an east-west gradient (x-coordinate) in CE?

. Bayesian model: logistic regression + N(0, 1002) priors for regression coefficients

. No standard full conditionals

. Three algorithms:

◦ Self-written R program: evaluate full conditionals on a grid + ICDF-method

◦ WinBUGS program: multivariate MH algorithm (blocking mode on)

◦ SASr procedure MCMC: Random-Walk MH algorithm
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Program Parameter Mode Mean SD Median MCSE

Intercept -0.5900 0.2800

MLE gender -0.0379 0.1810

x-coord 0.0052 0.0017

Intercept -0.5880 0.2840 -0.5860 0.0104

R gender -0.0516 0.1850 -0.0578 0.0071

x-coord 0.0052 0.0017 0.0052 6.621E-5

Intercept -0.5800 0.2810 -0.5730 0.0094

WinBUGS gender -0.0379 0.1770 -0.0324 0.0060

x-coord 0.0052 0.0018 0.0053 5.901E-5

Intercept -0.6530 0.2600 -0.6450 0.0317

SASr gender -0.0319 0.1950 -0.0443 0.0208

x-coord 0.0055 0.0016 0.0055 0.00016
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Conclusions:

• Posterior means/medians of the three samplers are close (to the MLE)

• Precision with which the posterior mean was determined (high precision = low
MCSE) differs considerably

• The clinical conclusion was the same

⇒ Samplers may have quite a different efficiency
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3.4 Software

• WinBUGS + MCMC techniques implied a revolution in use of Bayesian methods

• WinBUGS has been long the standard software for many Bayesians

• But, WinBUGS is not further updated and is replaced by OpenBUGS

• To avoid the repetitive ‘click and point’ actions need to start up a Bayesian run
with Win/OpenBUGS, a batch version of these programs is available

• R programs such as: R2WinBUGS & R2OpenBUGS, BRugs make use of the
script option in Win/OpenBUGS to allow for batch processing starting from R

• But more packages in R have recently been developed: rjags, NIMBLE, STAN, ...
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WinBUGS = Windows version of Bayesian inference Using Gibbs Sampling (BUGS)

. Windows-only program for Bayesian estimation with a graphical user interface

. Start: 1989 in MRC Biostatistics at Cambridge with BUGS

. Spiegelhalter et al. 2003

. Final version = 1.4.3

. Freely available!

. Difficulties installing WinBUGS under Windows 10

. Available at http://www.mrc-bsu.cam.ac.uk/software/bugs/
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OpenBUGS = open source version of WinBUGS

. Started in 2004 in Helsinki

. Lunn et al. 2009

. Based on BUGS language

. Larger class of sampling algorithms

. Improved blocking algorithms

. New functions and distributions added to OpenBUGS

. Allows censoring C(lower, upper) and truncation T(lower, upper)

. More details on samplers by default

. Also freely available, but only OpenBUGS is kept up-to-date

. OpenBUGS is available as a Windows program at http://www.openbugs.net
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. WinBUGS and OpenBUGS are the first tools to use for novel users of the
Bayesian approach

. But, the repetitive ‘clicking and pointing’ needed to finalize a Bayesian statistical
analysis becomes tiring after some time

. Batch processing of the OpenBUGS analysis then becomes the tool in practice

. There are several programs that make a link between BUGS software and R:

∗ R2WinBUGS: makes a link between R and WinBUGS, but also for OpenBUGS

∗ R2OpenBUGS: makes a link between R and OpenBUGS
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JAGS = “Just Another Gibbs Sampler”

. Plummer 2011

. rjags: makes a link between R and JAGS

. JAGS is written in C++ and is portable to all major operating systems

. A JAGS model is defined in a text file using a dialect of the BUGS language

. It is a free, open-source program

. JAGS manual at http://sourceforge.net/projects/mcmc-jags/.
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NIMBLE = “Numerical Inference for statistical Models using Bayesian and Likelihood
Estimation’

. A framework for statistical models and algorithms.

. Uses almost same model syntax as WinBUGS, OpenBUGS, and JAGS, with C++
in the background for faster computations.

. Extension of BUGS language: Additional syntax, call to existing R functions, and
implementation of your own functions/distributions.

. Flexibility in MCMC samplers config: change defaults, write your own algorithms.

. Examples, documentation and download: https://r-nimble.org/
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Osteoporosis WinBUGS simple linear regression program

model

{

     for (i in 1:N) 

     { 

     tbbmc[i] ~ dnorm(mu[i],tau) 

     mu[i] <- beta0+beta1*bmi[i] 

     } 

     sigma2 <- 1/tau 

     sigma <- sqrt(sigma2) 

     beta0 ~ dnorm(0,1.0E-6) 

     beta1 ~ dnorm(0,1.0E-6) 

     tau ~ dgamma(1.0E-3,1.0E-3) 

}

# data 

list(tbbmc=c(1.798, 2.588, 2.325, 2.236, 1.925, 2.304, ......), 

bmi=c(23.61, 30.48, 27.18, 34.68, 26.72, 25.78, 29.24, .....), N=234) 

#initial values 

list(beta0=0.4,beta1=0.025,tau=1/0.05)
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Osteoporosis simple linear regression: WinBUGS program
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Take home messages

• The two MCMC approaches allow fitting basically any proposed model

• There is no free lunch: computation time can be MUCH longer than with
likelihood approaches

• The choice between Gibbs sampling and the Metropolis-Hastings approach
depends on computational and practical considerations

• Checking of convergence is necessary when using MCMC!
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