Use of Sampling Methods in Bayesian Inference

Christel Faes

Interuniversity Institute for Biostatistics and statistical Bioinformatics Hasselt University

christel.faes@uhasselt.be

WWW.UHASSELT.BE/DSI

Contents

1	Ba	ayes theorem: computing the posterior distribution	1	
	1.1	Bayes theorem	2	
	1.2 Numerical techniques to determine the posterior			
		1.2.1 Numerical integration	8	
		1.2.2 Sampling from the posterior distribution	10	
2	2 More than one parameter			
	2.1 The Method of Composition			
3	М	arkov chain Monte Carlo sampling	30	
	3.1	The Gibbs sampler	32	

	3.1.1	The bivariate Gibbs sampler	33
	3.1.2	The general Gibbs sampler	43
3.2	The M	etropolis(-Hastings) algorithm	51
	3.2.1	The Metropolis algorithm	52
	3.2.2	The Metropolis-Hastings algorithm	62
	3.2.3	Review of Metropolis(-Hastings) approaches	65
3.3	Choice	of the sampler	70
3.4	Softwa	re	74

Chapter 1 Bayes theorem: computing the posterior distribution

Bayes theorem

$$p(\theta \mid y) = \frac{p(y \mid \theta)p(\theta)}{p(y)}$$

Probability can have two meanings: limiting proportion (objective) or personal belief (subjective)

Use of Sampling Methods in Bayesian Inference

1.1 Bayes theorem

• Bayes theorem for parameter θ with two possible values, $\theta = 1$ or $\theta = 0$:

$$p(\theta = 1 | y) = \frac{p(y | \theta = 1) p(\theta = 1)}{p(y | \theta = 1) p(\theta = 1) + p(y | \theta = 0) p(\theta = 0)}$$

• Bayes theorem for categorical parameter, $heta_1, heta_2, \dots, heta_K$

$$p\left(\theta_{k} \mid y\right) = \frac{p\left(y \mid \theta_{k}\right)p\left(\theta_{k}\right)}{\sum_{k=1}^{K} p\left(y \mid \theta_{k}\right)p\left(\theta_{k}\right)}$$

• Bayes theorem for continuous parameter θ :

$$p\left(\theta \mid y\right) = \frac{p\left(y \mid \theta\right) p\left(\theta\right)}{\int p\left(y \mid \theta\right) p\left(\theta\right) d\theta}$$

- Data y can be binary, categorial, continuous
- i.i.d. sample $\boldsymbol{y} = y_1, \ldots, y_n$
- Joint distribution of sample = $p(y|\theta) = \prod_{i=1}^{n} p(y_i|\theta) = \text{likelihood } L(\theta|y)$
- \Rightarrow Bayes' Theorem for continuous parameters:

$$p(\boldsymbol{\theta}|\boldsymbol{y}) = \frac{L(\boldsymbol{\theta}|\boldsymbol{y})p(\boldsymbol{\theta})}{p(\boldsymbol{y})} = \frac{L(\boldsymbol{\theta}|\boldsymbol{y})p(\boldsymbol{\theta})}{\int L(\boldsymbol{\theta}|\boldsymbol{y})p(\boldsymbol{\theta})d\boldsymbol{\theta}}$$

Special Cases: use of conjugate priors

- Binomial likelihood + **beta** prior = **beta** posterior
- Normal likelihood + normal prior (σ known) = normal posterior
- Poisson likelihood + **gamma** prior = **gamma** posterior
- Features:
 - Posterior compromise between prior and likelihood
 - Posterior mode/mean/median can be analytically obtained from MLE and prior mode/mean/median
 - When parameter changes then also prior and posterior must change accordingly using transformation rule

Use of Sampling Methods in Bayesian Inference

1.2 Numerical techniques to determine the posterior

- In general, posterior distribution cannot be obtained analytically
- Solutions to calculate the normalizing factor are required

$$p\left(\theta \mid y\right) = \frac{p\left(y \mid \theta\right) p\left(\theta\right)}{\int p\left(y \mid \theta\right) p\left(\theta\right) d\theta}$$

- Two approaches
 - ▷ Numerical integration
 - ▷ Sampling from the posterior

- Study describing caries experience in Flanders
- ▷ Longitudinal oral health study in Flanders from 1996 to 2001
- ▷ Caries experience measured by dmft-index in 4351 children
- \triangleright The sum of the dmft-index in all children was 9758
- ▷ Outcome is a count: Poisson likelihood
- \triangleright Prior information based on literature: Gamma(α_0, β_0)=Gamma(3,1)
- \triangleright Posterior: Gamma with $\bar{\alpha}=\sum y_i+\alpha_0=9758+3=9761$ and $\bar{\beta}=n+\beta_0=4351+1=4352$

- Replace gamma prior by lognormal prior
- Posterior distribution

$$\propto \theta^{\sum_{i=1}^{n} y_i - 1} \mathbf{e}^{-n\theta - \left(\frac{\log(\theta) - \mu_0}{2\sigma_0}\right)^2}, \ (\theta > 0)$$

• Posterior moments cannot be evaluated & AUC not known

1.2.1 Numerical integration

• Numerical integration: replacing integral by summation

- Simple integration techniques: equidistant grid + approximate sub integrals by polynomial
 - \circ Mid-point rule: constant
 - \circ Trapezoidal rule: linear
 - \circ Simpson's rule: quadratic
- Gaussian quadrature
 - $\circ \ \text{Non-adaptive}$
 - \circ Adaptive (M = 1 = Laplace approximation)

- Monte Carlo integration: usefulness of sampling idea
- General purpose sampling algorithms

Monte-Carlo integration

- Monte Carlo integration: replace integral by a Monte Carlo sample $\{\widetilde{\theta}_1, \ldots, \widetilde{\theta}_K\}$
- \bullet Approximate $p(\boldsymbol{\theta}|\boldsymbol{y})$ by sample histogram
- Classical Strong Law of Large Numbers:

$$\int t(\theta) \, p(\theta | \boldsymbol{y}) \, d\theta \approx \overline{t} = \frac{1}{K} \sum_{k=1}^{K} \, t(\widetilde{\theta}_{k}), \text{ for } K \text{ large}$$

• Classical Central Limit Theorem: 95% confidence interval

 $[\bar{t} - 1.96 \, s_t / \sqrt{K}, \bar{t} + 1.96 \, s_t / \sqrt{K}]$

• 95% equal tail CI: [2.5%, 97.5%] quantile from sample

- > Stroke study Monitoring safety
- ▷ **Rt-PA**: thrombolytic for ischemic stroke
- Outcome: complication SICH (Symptomatic intracerebral hemorrhage) in patients with acute ischemic stroke
- ▷ Fictive situation:
 - \circ First interim analysis: 50 rt-PA patients with 10 SICHs
 - \circ Historical data: 100 rt-PA patients with 8 ISCHs

- Posterior for θ = probability of SICH with rt-PA = Beta(19, 133)
- 5,000 sampled values of θ from Beta(19,133)-distribution
- \bullet Posterior of $\log(\theta):$ one extra line in $R\text{-}\mathrm{program}$
- \bullet Sample summary measures \approx true summary measures
- 95% equal tail CI for θ : [0.0782, 0.182]
- 95% equal tail CI for $\log(\theta)$: [-2.56, -1.70]
- Approximate 95% HPD interval for θ : [0.0741, 0.179]

General purpose sampling algorithms

- Many algorithms are available to sample from standard distributions
 - ▷ Inverse cumulative distribution function (ICDF) method:

sample from $u \sim U(0,1)$ and calculate corresponding sampling point $x = F^{-1}(u)$

- Dedicated procedures/general purpose algorithms for non-standard distributions:
 - ▷ Accept-reject (AR) algorithm:
 - sample from a (user-defined) proposal distribution $\widetilde{\theta} \sim q(\theta)$
 - accept this sample from the posterior if $p(\widetilde{\theta}\mid \pmb{y})/A\,q(\widetilde{\theta})$ is large (otherwise reject)
 - $\triangleright \text{ Importance sampling if interest in } E\left[t(\theta) \mid \boldsymbol{y}\right]$
 - sample from a (user-defined) proposal distribution $\widetilde{\theta} \sim q(\theta)$
 - estimate weighted average with importance weights $w(\theta^k) = p(\theta^k \mid \pmb{y}) / q(\theta^k)$

▷ Binomial likelihood + beta prior (for illustration purposes)

▷ proposal: uniform distribution

$$\triangleright A = \max(L(\widetilde{\theta}|\boldsymbol{y})p(\widetilde{\theta})/q(\widetilde{\theta}))$$

 $\triangleright \text{ sample additionaly } u \text{ from a uniform(0,1) distribution} \\ \triangleright \text{ accept when } p(\widetilde{\theta} \mid \boldsymbol{y}) / A q(\widetilde{\theta}) \geq u$

In practice

- Adaptive rejection sampling algorithm
 - \triangleright Builds up envelope distribution in an adaptive manner
 - Builds up squeezing density in an adaptive manner
 - Examples: Tangent methods or Derivative-free method
- Weighted sampling-resampling method to compare results from different priors

Chapter 2 More than one parameter

Joint posterior inference

- Let
 - $\circ \boldsymbol{y} = \mathsf{sample} \ \mathsf{of} \ n \ \mathsf{independent} \ \mathsf{observations}$
 - $\circ \boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_d)^T$
 - $\circ \ L(\boldsymbol{\theta} \mid \boldsymbol{y})$
 - Multivariate prior: $p(\theta)$
- Multivariate posterior: $p(\boldsymbol{\theta} \mid \boldsymbol{y}) = \frac{L(\boldsymbol{\theta} \mid \boldsymbol{y})p(\boldsymbol{\theta})}{\int L(\boldsymbol{\theta} \mid \boldsymbol{y})p(\boldsymbol{\theta}) d \boldsymbol{\theta}}$
 - Posterior mode: $\widehat{\boldsymbol{\theta}}_M$
 - \circ Posterior mean: $\overline{\theta}$
 - \circ HPD region of content (1- $\alpha)$

2.1 The Method of Composition

A method to yield a random sample from a multivariate distribution

- Stagewise approach
- Based on factorization of joint distribution into a marginal & several conditionals

$$p(\theta_1, \dots, \theta_d \mid \boldsymbol{y}) = p(\theta_d \mid \boldsymbol{y}) p(\theta_{d-1} \mid \theta_d, \boldsymbol{y}) \dots p(\theta_1 \mid \theta_d, \dots, \theta_2, \boldsymbol{y})$$

- Sampling approach:
 - $\triangleright \mathsf{Sample} \ \widetilde{\theta}_d \ \mathsf{from} \ p(\theta_d \mid \boldsymbol{y})$
 - $\vartriangleright \mathsf{Sample}\ \widetilde{\theta}_{(d-1)} \ \mathsf{from}\ p(\theta_{(d-1)} \ | \ \widetilde{\theta}_d, \boldsymbol{y})$
 - $\triangleright \dots$

$$\triangleright$$
 Sample $\widetilde{\theta}_1$ from $p(\theta_1 \mid \widetilde{\theta}_d, \dots, \widetilde{\theta}_2, \boldsymbol{y})$

Sampling from N(μ , σ^2), both parameters unknown

- Sampling approach from normal posterior $p(\mu,\sigma^2\mid \pmb{y})\equiv \mathsf{N}(\mu,\sigma^2)$
- Three cases:
 - ▷ No prior knowledge
 - > Historical data available
 - Expert knowledge available

Case 1: No prior knowledge on μ and σ^2

Sample from $p(\mu, \sigma^2 \mid \boldsymbol{y})$: Sample from $p(\sigma^2 \mid \boldsymbol{y})$ & Sample from $p(\mu \mid \sigma^2, \boldsymbol{y})$

- 1. Sample from $p(\sigma^2 \mid \boldsymbol{y})$:
 - \circ Sample $\widetilde{\nu}^k$ from a $\chi^2(n-1)\text{-distribution}$ \circ Solve $\widetilde{\sigma}^{2k}$ in $(n-1)s^2/\widetilde{\sigma}^{2k}=\widetilde{\nu}^k$
- 2. Sample from $p(\mu \mid \sigma^2, \boldsymbol{y})$:
 - \circ Sample $\widetilde{\mu}^k$ from a N(\overline{y} , $\widetilde{\sigma}^{2k}/n$)-distribution

 $\Rightarrow \widetilde{\mu}^1, \dots, \widetilde{\mu}^K = \text{random sample from } p(\mu \mid \boldsymbol{y}) \ (t_{n-1}(\overline{y}, s^2/n) - \text{distribution})$

Case 1 (continued)

To sample from the posterior predictive distribution $p(\tilde{y} \mid \boldsymbol{y})$, 2 approaches:

1. Sample directly from $t_{n-1}\left[\overline{y}, s^2\left(1+\frac{1}{n}\right)\right]$ -distribution

2. Use Method of Composition

$$\begin{split} & \triangleright \text{ Sample } \widetilde{\sigma}^{2k} \text{ from } \text{Inv-}\chi^2(\sigma^2 \mid n-1, s^2) \\ & \triangleright \text{ Sample } \widetilde{\mu}^k \text{ from } \mathsf{N}(\mu \mid \overline{y}, \widetilde{\sigma}^{2k}/n) \\ & \triangleright \text{ Sample } \widetilde{y}^k \text{ from } \mathsf{N}(y \mid \widetilde{\mu}^k, \widetilde{\sigma}^{2k}) \end{split}$$

- retrospective study predicting the incidence of common bile duct (CBD) stones in patients with gallstone disease
- \triangleright study on a prospective set of 250 'healthy' patients.
- ▷ outcome: serum alkaline phosphatase (SAP)
- $\triangleright y_i = 100/\sqrt{SAP_i}$ has a Gaussian distribution

Example: Sampling the posterior with NI prior

- Sampled posterior distributions on next page (K = 1000)
- Posterior mean (95% confidence interval)

 $\circ \mu$: 7.11 ([7.106, 7.117]) $\circ \sigma^2$: 1.88 ([1.869, 1.890])

- 95% equal tail Cl
 - μ : [6.95, 7.27] • σ^2 : [1.58, 2.23]

Example (continued)

Use of Sampling Methods in Bayesian Inference

Case 2: Historical data are available

Same procedure as before!

Case 3: Expert knowledge is available

- This is no longer a conjugate setting
- Problem: $p(\sigma^2 \mid \boldsymbol{y})$ does not have a known distribution
- \bullet For a given $\widetilde{\sigma}^2,$ sampling $\widetilde{\mu}$ is straightforward
- \bullet Use weighted resampling to sample from $p(\sigma^2 \mid \pmb{y})$

Example (continued)

Chapter 3 Markov chain Monte Carlo sampling

Aims:

> Introduce the sampling approach(es) that revolutionized Bayesian approach

- Solving the posterior distribution analytically is often not feasible due to the difficulty in determining the integration constant
- Computing the integral using numerical integration methods is a practical alternative if only a few parameters are involved
- \Rightarrow New computational approach is needed
 - > Sampling is the way to go!
 - ▷ With Markov chain Monte Carlo (MCMC) methods:
 - 1. Gibbs sampler
 - 2. Metropolis-(Hastings) algorithm

MCMC approaches have revolutionized Bayesian methods!

- **Gibbs Sampler**: introduced by Geman and Geman (1984) in the context of image-processing for the estimation of the parameters of the Gibbs distribution
- Gelfand and Smith (1990) introduced Gibbs sampling to tackle complex estimation problems in a Bayesian manner

Method of Composition:

- $p(\theta_1, \theta_2 \mid \boldsymbol{y})$ is completely determined by: > marginal $p(\theta_2 \mid \boldsymbol{y})$ > conditional $p(\theta_1 \mid \theta_2, \boldsymbol{y})$
- Split-up yields a simple way to sample from joint distribution

Gibbs sampling:

- $p(\theta_1, \theta_2 \mid \boldsymbol{y})$ is completely determined by: > conditional $p(\theta_2 \mid \theta_1, \boldsymbol{y})$ > conditional $p(\theta_1 \mid \theta_2, \boldsymbol{y})$
- Property yields another simple way to sample from joint distribution:
 - \triangleright Take starting values θ_1^0 and θ_2^0 (only 1 is needed)
 - \triangleright Given θ_1^k and θ_2^k at iteration k, generate the (k+1)-th value according to iterative scheme:
 - 1. Sample $\theta_1^{(k+1)}$ from $p(\theta_1 \mid \theta_2^k, \boldsymbol{y})$ 2. Sample $\theta_2^{(k+1)}$ from $p(\theta_2 \mid \theta_1^{(k+1)}, \boldsymbol{y})$

Result of Gibbs sampling:

• Chain of vectors: $\boldsymbol{\theta}^k = (\theta_1^k, \theta_2^k)^T, k = 1, 2, \dots$

 \circ Consists of dependent elements

- \circ Markov property: $p(\boldsymbol{\theta}^{(k+1)} \mid \boldsymbol{\theta}^k, \boldsymbol{\theta}^{(k-1)}, \dots, \boldsymbol{y}) = p(\boldsymbol{\theta}^{(k+1)} \mid \boldsymbol{\theta}^k, \boldsymbol{y})$
- Chain depends on starting value + initial portion/burn-in part must **be discarded**
- Under mild conditions: sample from the posterior distribution = target distribution
- \Rightarrow From k_0 on: summary measures calculated from the chain consistently estimate the true posterior measures

Gibbs sampler is called a Markov chain Monte Carlo method

Use of Sampling Methods in Bayesian Inference

Example: SAP study – Gibbs sampling the posterior with NI priors

- Example: sampling from posterior distribution of the normal likelihood based on 250 *alp* measurements of 'healthy' patients with NI prior for both parameters
- Now using Gibbs sampler based on $y = 100/\sqrt{alp}$
- Determine two conditional distributions:

1. $p(\mu \mid \sigma^2, \boldsymbol{y})$: $N(\mu \mid \bar{y}, \sigma^2/n)$ 2. $p(\sigma^2 \mid \mu, \boldsymbol{y})$: $Inv - \chi^2(\sigma^2 \mid n, s_{\mu}^2)$ with $s_{\mu}^2 = \frac{1}{n} \sum_{i=1}^n (y_i - \mu)^2$

- Iterative procedure: At iteration (k+1)
 - 1. Sample $\mu^{(k+1)}$ from N $(\bar{y}, (\sigma^2)^k/n)$ 2. Sample $(\sigma^2)^{(k+1)}$ from Inv $-\chi^2(n, s^2_{\mu^{(k+1)}})$

Gibbs sampling:

• Sampling from conditional density of μ given σ^2 • Sampling from conditional density of σ^2 given μ

Gibbs sampling path and sample from joint posterior:

 \circ Zigzag pattern in the (μ , σ^2)-plane

- \circ 1 complete step = 2 substeps (blue=genuine element)
- \circ Burn-in = 500, total chain = 1,500

Posterior distributions:

Solid line = true posterior distribution

Example: SAP study – Gibbs sampling the posterior with I priors

• Example: now with independent informative priors (semi-conjugate prior)

$$\label{eq:main_states} \begin{split} & \circ \; \mu \sim \mathsf{N}(\mu_0, \sigma_0^2) \\ & \circ \; \sigma^2 \sim \mathsf{Inv} - \chi^2(\nu_0, \tau_0^2) \end{split}$$

• Posterior:

$$p(\mu, \sigma^{2} | \boldsymbol{y}) \propto \frac{1}{\sigma_{0}} e^{-\frac{1}{2\sigma_{0}^{2}}(\mu - \mu_{0})^{2}} \\ \times (\sigma^{2})^{-(\nu_{0}/2+1)} e^{-\nu_{0} \tau_{0}^{2}/2\sigma^{2}} \\ \times \frac{1}{\sigma^{n}} \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^{2}}(y_{i} - \mu)^{2}} \\ \propto \prod_{i=1}^{n} e^{-\frac{1}{2\sigma^{2}}(y_{i} - \mu)^{2}} e^{-\frac{1}{2\sigma_{0}^{2}}(\mu - \mu_{0})^{2}} (\sigma^{2})^{-(\frac{n+\nu_{0}}{2}+1)} e^{-\nu_{0} \tau_{0}^{2}/2\sigma^{2}}$$

Conditional distributions:

• Determine two conditional distributions:

1.
$$p(\mu \mid \sigma^2, \boldsymbol{y})$$
: $\prod_{i=1}^{n} e^{-\frac{1}{2\sigma^2}(y_i - \mu)^2} e^{-\frac{1}{2\sigma_0^2}(\mu - \mu_0)^2} (N(\overline{\mu}^k, (\overline{\sigma}^2)^k))$
2. $p(\sigma^2 \mid \mu, \boldsymbol{y})$: $Inv - \chi^2 \left(\nu_0 + n, \frac{\sum_{i=1}^{n}(y_i - \mu)^2 + \nu_0 \tau_0^2}{\nu_0 + n}\right)$

- Iterative procedure: At iteration (k+1)
 - 1. Sample $\mu^{(k+1)}$ from N $(\overline{\mu}^k, (\overline{\sigma}^2)^k)$ 2. Sample $(\sigma^2)^{(k+1)}$ from Inv $-\chi^2 \left(\nu_0 + n, \frac{\sum_{i=1}^n (y_i - \mu^{(k+1)})^2 + \nu_0 \tau_0^2}{\nu_0 + n}\right)$

Trace plots:

3.1.2 The general Gibbs sampler

Starting position $\boldsymbol{\theta}^0 = (\theta_1^0, \dots, \theta_d^0)^T$

Multivariate version of the Gibbs sampler:

Iteration (k+1):

1. Sample
$$\theta_1^{(k+1)}$$
 from $p(\theta_1 \mid \theta_2^k, \dots, \theta_{(d-1)}^k, \theta_d^k, \boldsymbol{y})$
2. Sample $\theta_2^{(k+1)}$ from $p(\theta_2 \mid \theta_1^{(k+1)}, \theta_3^k, \dots, \theta_d^k, \boldsymbol{y})$
i
d. Sample $\theta_d^{(k+1)}$ from $p(\theta_d \mid \theta_1^{(k+1)}, \dots, \theta_{(d-1)}^{(k+1)}, \boldsymbol{y})$

- Full conditional distributions: $p(\theta_j \mid \theta_1^k, \dots, \theta_{(j-1)}^k, \theta_{(j+1)}^k, \dots, \theta_{(d-1)}^k, \theta_d^k, \boldsymbol{y})$
- Also called: full conditionals
- Under mild regularity conditions: $\theta^k, \theta^{(k+1)}, \ldots$ ultimately are observations from the posterior distribution

With the help of advanced sampling algorithms (AR, ARS, etc) sampling the full conditionals is done based on the prior \times likelihood

Example: Osteoporosis study – Using the Gibbs sampler

Bayesian linear regression model with NI priors:

- ▷ Regression model: $tbbmc_i = \beta_0 + \beta_1 bmi_i + \varepsilon_i$ (i = 1, ..., n = 234)▷ Priors: $p(\beta_0, \beta_1, \sigma^2) \propto \sigma^{-2}$
- \triangleright Notation: $oldsymbol{y} = (tbbmc_1, \dots, tbbmc_{234})^T$, $oldsymbol{x} = (bmi_1, \dots, bmi_{234})^T$

Full conditionals:

$$p(\sigma^2 \mid \beta_0, \beta_1, \boldsymbol{y}) = \mathsf{Inv} - \chi^2(n, s_{\boldsymbol{\beta}}^2)$$
$$p(\beta_0 \mid \sigma^2, \beta_1, \boldsymbol{y}) = \mathsf{N}(r_{\beta_1}, \sigma^2/n)$$
$$p(\beta_1 \mid \sigma^2, \beta_0, \boldsymbol{y}) = \mathsf{N}(r_{\beta_0}, \sigma^2/\boldsymbol{x}^T\boldsymbol{x})$$

with

$$s_{\beta}^{2} = \frac{1}{n} \sum (y_{i} - \beta_{0} - \beta_{1} x_{i})^{2}$$
$$r_{\beta_{1}} = \frac{1}{n} \sum (y_{i} - \beta_{1} x_{i})$$
$$r_{\beta_{0}} = \sum (y_{i} - \beta_{0}) x_{i} / \boldsymbol{x}^{T} \boldsymbol{x}$$

Comparison with Method of Composition:

Parameter	Method of Composition						
	$\mathbf{2.5\%}$	25%	$\mathbf{50\%}$	75%	97.5%	Mean	\mathbf{SD}
eta_0	0.57	0.74	0.81	0.89	1.05	0.81	0.12
eta_1	0.032	0.038	0.040	0.043	0.049	0.040	0.004
σ^2	0.069	0.078	0.083	0.088	0.100	0.083	0.008
	Gibbs sampler						
	$\mathbf{2.5\%}$	25%	$\mathbf{50\%}$	75%	97.5%	Mean	\mathbf{SD}
β_0	0.67	0.77	0.84	0.91	1.10	0.77	0.11
eta_1	0.030	0.036	0.040	0.042	0.046	0.039	0.0041
σ^2	0.069	0.077	0.083	0.088	0.099	0.083	0.0077

 \circ Method of Composition = 1,000 independently sampled values

 \circ Gibbs sampler: burn-in = 500, total chain = 1,500

Use of Sampling Methods in Bayesian Inference

Trace versus index plot:

Comparison of index plot with trace plot shows:

- σ^2 : index plot and trace plot similar \Rightarrow (almost) independent sampling
- β_1 : trace plot shows **slow mixing** \Rightarrow quite **dependent** sampling
- \Rightarrow Method of Composition and Gibbs sampling: similar posterior measures of σ^2
- \Rightarrow Method of Composition and Gibbs sampling: less similar posterior measures of β_1

Autocorrelation:

▷ Autocorrelation of lag 1: correlation of β_1^k with $\beta_1^{(k-1)}$ (k=1, ...) ▷ Autocorrelation of lag 2: correlation of β_1^k with $\beta_1^{(k-2)}$ (k=1, ...)

 \triangleright Autocorrelation of lag m: correlation of β_1^k with $\beta_1^{(k-\mathbf{m})}$ (k=1, ...)

. . .

High autocorrelation:

 \Rightarrow **burn-in part is larger** \Rightarrow takes longer to forget initial positions

 \Rightarrow remaining part needs to be longer to obtain stable posterior measures

Metropolis-Hastings (MH) algorithm = general Markov chain Monte Carlo technique to sample from the posterior distribution but **does not require full conditionals**

- Special case: Metropolis algorithm proposed by Metropolis in 1953
- General case: Metropolis-Hastings algorithm proposed by Hastings in 1970
- Became popular only after introduction of Gelfand & Smith's paper (1990)
- Further generalization: Reversible Jump MCMC algorithm by Green (1995)

Sketch of algorithm:

- New positions are proposed by a **proposal density** q
- Proposed positions will be:

▷ Accepted:

- \circ Proposed location has higher posterior probability: with probability f 1
- \circ Otherwise: with probability proportional to ratio of posterior probabilities

▷ Rejected:

- $\circ \ Otherwise$
- Algorithm satisfies again Markov property \Rightarrow MCMC algorithm
- Similarity with AR algorithm

Metropolis algorithm:

Chain is at $\theta^k \Rightarrow$ Metropolis algorithm samples value $\theta^{(k+1)}$ as follows:

- 1. Sample a candidate $\tilde{\theta}$ from the symmetric proposal density $q(\tilde{\theta} \mid \theta)$, with $\theta = \theta^k$
- 2. The next value $\theta^{(k+1)}$ will be equal to:
 - $\widetilde{\boldsymbol{\theta}}$ with probability $\alpha(\boldsymbol{\theta}^k, \widetilde{\boldsymbol{\theta}})$ (accept proposal),
 - $\boldsymbol{\theta}^k$ otherwise (reject proposal),

with

$$\alpha(\boldsymbol{\theta}^k, \widetilde{\boldsymbol{\theta}}) = \min\left(r = \frac{p(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{y})}{p(\boldsymbol{\theta}^k \mid \boldsymbol{y})}, 1\right)$$

Function $\alpha(\pmb{\theta}^k, \widetilde{\pmb{\theta}}) = \text{probability of a move}$

The MH algorithm only requires the product of the prior and the likelihood to sample from the posterior

Example: SAP study – Metropolis algorithm for NI prior case

Settings as in before, now apply Metropolis algorithm:

 \triangleright Proposal density: $N(\theta^k, \Sigma)$ with $\theta^k = (\mu^k, (\sigma^2)^k)^T$ and $\Sigma = \text{diag}(0.03, 0.03)$

• Jumps to any location in the (μ, σ^2) -plane • Burn-in = 500, total chain = 1,500

MH-sampling:

Marginal posterior distributions:

- \circ Acceptance rate = 40%
- \circ Burn-in = 500, total chain = 1,500

Trace plots:

 \circ Accepted moves = blue color, rejected moves = red color

Second choice of proposal density:

 \triangleright Proposal density: $N(\theta^k, \Sigma)$ with $\theta^k = (\mu^k, (\sigma^2)^k)^T$ and $\Sigma = diag(0.001, 0.001)$

 \circ Acceptance rate = 84%

 \circ Poor approximation of true distribution

Accepted + rejected positions:

Problem:

What should be the acceptance rate for a good Metropolis algorithm?

From theoretical work + simulations:

• Acceptance rate: 45% for d = 1 and $\approx 24\%$ for d > 1

Metropolis-Hastings algorithm:

Chain is at $\theta^k \Rightarrow$ Metropolis-Hastings algorithm samples value $\theta^{(k+1)}$ as follows:

- 1. Sample a candidate $\tilde{\theta}$ from the (asymmetric) proposal density $q(\tilde{\theta} \mid \theta)$, with $\theta = \theta^k$
- 2. The next value $\boldsymbol{\theta}^{(k+1)}$ will be equal to:
 - $\widetilde{\boldsymbol{\theta}}$ with probability $\alpha(\boldsymbol{\theta}^k,\widetilde{\boldsymbol{\theta}})$ (accept proposal),
 - $\boldsymbol{\theta}^k$ otherwise (reject proposal),

with

$$\alpha(\boldsymbol{\theta}^k, \widetilde{\boldsymbol{\theta}}) = \min\left(r = \frac{p(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{y}) \, q(\boldsymbol{\theta}^k \mid \widetilde{\boldsymbol{\theta}})}{p(\boldsymbol{\theta}^k \mid \boldsymbol{y}) \, q(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{\theta}^k)}, 1\right)$$

- **Reversibility condition**: Probability of move from θ to $\tilde{\theta}$ = probability of move from $\tilde{\theta}$ to θ
- **Reversible chain**: chain satisfying reversibility condition
- Example asymmetric proposal density: $q(\tilde{\theta} \mid \theta^k) \equiv q(\tilde{\theta})$ (Independent MH algorithm)

Example: Sampling a *t*-distribution using Independent MH algorithm

Target distribution : $t_3(3, 2^2)$ -distribution

(a) Independent MH algorithm with proposal density $N(3,4^2)$ (b) Independent MH algorithm with proposal density $N(3,2^2)$

- The Random-Walk Metropolis(-Hastings) algorithm
- The Independent Metropolis-Hastings algorithm
- The Block Metropolis-Hastings algorithm
- The Reversible Jump MCMC (RJMCMC) algorithm

The Random-Walk Metropolis(-Hastings) algorithm

- Proposal density: q(θ̃ | θ) = q(θ̃ − θ). When q(θ̃ − θ) ≡ q(|θ̃ − θ|) proposal density is symmetric and gives the Metropolis algorithm
 Multivariate normal density: WinBUGS & SAS[®] procedures
 Multivariate *t*-distribution: SAS[®] PROC MCMC for long tailed posteriors
- Acceptance rate: 45% for d = 1 and 23.4% for d > 1
- Tuning the proposal density:
 - ▷ WinBUGS (one-dimensional MH algorithm): in first 4000 iterations to produce an acceptance rate between 20% and 40%
 - \triangleright SAS[®] procedure MCMC: in several loops

The Independent Metropolis-Hastings algorithm

• Proposal density: does not depend on the position in the chain, e.g.

$$q(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{\theta}) = \mathsf{N}_d(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma})$$

- \bullet One of the possible samplers of the SAS $^{\ensuremath{\mathbb{R}}}$ procedure MCMC
- Similar to AR algorithm but accepts $\widetilde{\boldsymbol{\theta}}$ when $p(\widetilde{\boldsymbol{\theta}} \mid \boldsymbol{y})/q(\widetilde{\boldsymbol{\theta}}) > p(\boldsymbol{\theta}^k \mid \boldsymbol{y})/q(\boldsymbol{\theta}^k)$
- \bullet High acceptance rate is desirable when proposal density $q(\theta)$ is close to the posterior density
- (Robert and Casella) If $p(\theta \mid y) \leq A q(\theta)$ for all θ , then the Markov chain generated by the Independent MH algorithm has excellent convergence properties and is more efficient than the AR algorithm

Use of Sampling Methods in Bayesian Inference

The Block Metropolis-Hastings algorithm

- MH algorithm within Gibbs sampling: Metropolis-within-Gibbs
- \bullet SAS $^{\ensuremath{\mathbb{R}}}$ procedure MCMC: blocks specified by the user
- WinBUGS: regression coefficients in one block (blocking option switched on) and variance parameters in other block

The Reversible Jump MCMC (RJMCMC) algorithm

- Special case of the MH algorithm
- Jumps within space and between spaces
- Important application: Bayesian variable selection
Choice of the sampler depends on a variety of considerations

Subset of n = 500 children of the Signal-Tandmobiel[®] study at 1st examination:

- ▷ Research questions:
 - Have girls a different risk for developing caries experience (CE) than boys (gender) in the first year of primary school?
 - Is there an east-west gradient (*x-coordinate*) in CE?
- \triangleright Bayesian model: logistic regression + $N(0,100^2)$ priors for regression coefficients
- No standard full conditionals
- \triangleright Three algorithms:
 - \circ Self-written R program: evaluate full conditionals on a grid + ICDF-method
 - WinBUGS program: multivariate MH algorithm (blocking mode on)
 - \circ SAS $^{\ensuremath{\mathbb{R}}}$ procedure MCMC: Random-Walk MH algorithm

Program	Parameter	Mode	Mean	\mathbf{SD}	Median	MCSE
MLE	Intercept	-0.5900		0.2800		
	gender	-0.0379		0.1810		
	x-coord	0.0052		0.0017		
R	Intercept		-0.5880	0.2840	-0.5860	0.0104
	gender		-0.0516	0.1850	-0.0578	0.0071
	x-coord		0.0052	0.0017	0.0052	6.621E-5
WinBUGS	Intercept		-0.5800	0.2810	-0.5730	0.0094
	gender		-0.0379	0.1770	-0.0324	0.0060
	x-coord		0.0052	0.0018	0.0053	5.901E-5
SAS®	Intercept		-0.6530	0.2600	-0.6450	0.0317
	gender		-0.0319	0.1950	-0.0443	0.0208
	x-coord		0.0055	0.0016	0.0055	0.00016

Conclusions:

- Posterior means/medians of the three samplers are close (to the MLE)
- Precision with which the posterior mean was determined (high precision = low MCSE) differs considerably
- The clinical conclusion was the same
- \Rightarrow Samplers may have quite a different efficiency

- WinBUGS + MCMC techniques implied a **revolution** in use of Bayesian methods
- WinBUGS has been long the standard software for many Bayesians
- But, WinBUGS is not further updated and is replaced by OpenBUGS
- To avoid the repetitive 'click and point' actions need to start up a Bayesian run with Win/OpenBUGS, a batch version of these programs is available
- R programs such as: R2WinBUGS & R2OpenBUGS, BRugs make use of the script option in Win/OpenBUGS to allow for batch processing starting from R
- But more packages in R have recently been developed: rjags, NIMBLE, STAN, ...

Use of Sampling Methods in Bayesian Inference

WinBUGS = Windows version of Bayesian inference Using Gibbs Sampling (BUGS)

- > Windows-only program for Bayesian estimation with a graphical user interface
- ▷ Start: 1989 in MRC Biostatistics at Cambridge with BUGS
- ▷ Spiegelhalter et al. 2003
- \triangleright Final version = 1.4.3

Freely available!

- Difficulties installing WinBUGS under Windows 10
- > Available at http://www.mrc-bsu.cam.ac.uk/software/bugs/

OpenBUGS = open source version of WinBUGS

- ▷ Started in 2004 in Helsinki
- ⊳ Lunn et al. 2009
- ▷ Based on BUGS language
- Larger class of sampling algorithms
- Improved blocking algorithms
- \triangleright New functions and distributions added to OpenBUGS
- ▷ Allows censoring C(lower, upper) and truncation T(lower, upper)
- ▷ More details on samplers by default
- Also freely available, but only OpenBUGS is kept up-to-date
- > OpenBUGS is available as a Windows program at http://www.openbugs.net

Use of Sampling Methods in Bayesian Inference

- WinBUGS and OpenBUGS are the first tools to use for novel users of the Bayesian approach
- But, the repetitive 'clicking and pointing' needed to finalize a Bayesian statistical analysis becomes tiring after some time
- ▷ Batch processing of the OpenBUGS analysis then becomes the tool in practice
- ▷ There are several programs that make a link between BUGS software and R:
 - * R2WinBUGS: makes a link between R and WinBUGS, but also for OpenBUGS
 - * R2OpenBUGS: makes a link between R and OpenBUGS

JAGS = "Just Another Gibbs Sampler"

- ⊳ Plummer 2011
- ▷ rjags: makes a link between R and JAGS
- \triangleright JAGS is written in C++ and is portable to all major operating systems
- > A JAGS model is defined in a text file using a dialect of the BUGS language
- \triangleright It is a free, open-source program
- > JAGS manual at http://sourceforge.net/projects/mcmc-jags/.

NIMBLE = "Numerical Inference for statistical Models using Bayesian and Likelihood Estimation"

- > A framework for statistical models and algorithms.
- \triangleright Uses almost same model syntax as WinBUGS, OpenBUGS, and JAGS, with C++ in the background for faster computations.
- Extension of BUGS language: Additional syntax, call to existing R functions, and implementation of your own functions/distributions.
- ▷ Flexibility in MCMC samplers config: change defaults, write your own algorithms.
- > Examples, documentation and download: https://r-nimble.org/

Osteoporosis WinBUGS simple linear regression program

```
model
{
  for (i in 1:N)
  tbbmc[i] ~ dnorm(mu[i],tau)
  mu[i] <- beta0+beta1*bmi[i]</pre>
   sigma2 <- 1/tau
  sigma <- sqrt(sigma2)</pre>
   beta0 ~ dnorm(0,1.0E-6)
   beta1 ~ dnorm(0,1.0E-6)
   tau ~ dgamma(1.0E-3,1.0E-3)
}
# data
list(tbbmc=c(1.798, 2.588, 2.325, 2.236, 1.925, 2.304, .....),
bmi=c(23.61, 30.48, 27.18, 34.68, 26.72, 25.78, 29.24, ....), N=234)
#initial values
list(beta0=0.4,beta1=0.025,tau=1/0.05)
```

Osteoporosis simple linear regression: WinBUGS program

Take home messages

- The two MCMC approaches allow fitting basically any proposed model
- There is no free lunch: computation time can be MUCH longer than with likelihood approaches
- The choice between Gibbs sampling and the Metropolis-Hastings approach depends on computational and practical considerations
- Checking of convergence is necessary when using MCMC!