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sSources

* NeurlPS Tutorial 2020: Practical Uncertainty Estimation and Out-of-Distribution
Robustness in Deep Learning

* Eyke Hiullermeier’s recent talks & publications,e.g.

- Hullermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An introduction to
concepts and methods. Machine Learning, 110(3), 457-506.

* The main papers

- Hendrycks, D., & Gimpel, K. (2016). A baseline for detecting misclassified and out-of-distribution examples in neural
networks. arXiv preprint arXiv:1610.02136.

- Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, June). Weight uncertainty in neural network. In
International conference on machine learning (pp. 1613-1622). PMLR.

- Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model
uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.

- Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation
using deep ensembles. Advances in neural information processing systems, 30.

- Malinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks. Advances in neural
information processing systems, 31.
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https://nips.cc/virtual/2020/protected/tutorial_0f190e6e164eafe66f011073b4486975.html
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O. Notation

The machine learning model g(x;w) will be p(y | w, ) or at times pw(y | )
We will use D = {(®1,y1),...,(x~,yn~)} to denote the labeled training data.
The prediction ¢ will become p or pi.

A new data point that we aim to predict will be denoted as (x***, y**")

or just: (x,y)

A model class will be denoted with M
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0. Likelihood, Prior, Posterior, Evidence

 Maximum likelihood: find the most likely parameters given data
L(D;w) = p(D | w)

* However, for complex models this leads to overfitting. Therefore,
some w should be more likely than others

- Prior distribution over parameters: p(w)

p(D | w) p(w)
Pw (D)

- Important note! Usually: p(D) # p., (D)

- Bayes formula p(w | D) =

 Maximum A Posteriori: (last term does not depend on params)

—logp(w | D) = —log p(D|w) — log p(w) + log pw (D)
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0. Maximum A Posteriori (MAP) approach
for Deep Nets: a usual case

e Usually, the aim is to find the most likely parameters given data

w = argmax p(w | ¢, y)
w

= argmin —log p(y | =, w) — log p(w)

w

* For example, softmax & cross-entropy at output and L2
regularization lead to

w = argmin » _ yy, log(px) + Al|w]’
w
k

* Note: p(y | «,w) should represent uncertainty about the label.
However, we can make only a single prediction with the parameters

« Still a point estimate! No full Bayesian treatment! We want a full
distribution over parameters!
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0. A Bayesian approach: a distribution
of parameters is wanted; supervised!

* Bayesian setting:

- ply|lw,z) -p(w)  ply|w,z) p(w)
2 e T P R D)

* Posterior: p(w | x,y)
 Prior: p(w)
 Likelihood: p(y | w, x)
« Evidence: [y, 2(y | w,z) - p(w)dw
— Usually intractable; especially for DNNs

— |If all other distributions are Gaussian: tractable. “Gaussian
process”
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0. Example: Gaussian data, Gaussian
prior
e Data: z |~ N(u,o2) Pior: 1~ N (v, Ui)

« Parameter posterior

p(z | w)p(p)
p(z | m)p(m)dm

Muhﬁzfm o< p(x | pw)p(p)

— o0

1 _ (e 1 _w=n)?
e QGx

m¢mmm=¢%% ,%ﬁ%

« Completing squares in exponent and assuming normalized
distributions, we see that this is again a Gaussian

,uaz—l—uaa% 1
UEL +02 '1/02 + 1/02

MM~N<
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0. Difference between frequentist and
Bayesian approach: marginalization

* Full predictive distribution / distribution of outputs:

p(ytest ’ wteSt,D) _ Ewmp(wﬂD) [p(ytest ’ w’wtest)} 7

:/ p(ytest | w’wtest)p(w ’ D)dw
w

* Defines probability for class label given input and dataset
* Marginalization over parameters

* “Bayesian model averaging (BMA)”

J z JOHANNES KEPLER
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0. Full predictive distribution

e Linear regression
example

* Intuitively:

- Uncertainty
close to data
points is small

— High uncertainty
elsewhere

* However:
high-dimensional
spaces
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1. Introductory example:
Intuition

« Assume you train a QSAR model p(y | &, w) that should predict
binary activity (“active” vs “inactive”).

* |t provides for a particular molecule:

ply=1|z,w)=05
* |Is the model uncertain about it's prediction?
* Correct answer: we don’t know!

- A) It could be the perfect model, but the assay is random (for this
molecule or in general)

the prediction is correct: everytime one measures the molecule it is
50% active and 50% inactive; — aleatoric uncertainty

- B) The model is garbage and the molecule is indeed inactive (or:
active); uncertainty about the parameters - epistemic uncertainty

J z U JOHANNES KEPLER
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1. Weirdness of uncertainy

* Levels of uncertainty representations

ir il

* Note: the softmax output of a neural network “pretends” to
have no epistemic uncertainty and to just provide aleatoric
uncertainty

Eyke Hullermeier: "Uncertainty Quantification in Machine Learning: From Aleatoric to
Epistemic I";
Jzu JOHANNES KEPLER | \glinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks.
UNIVERSITY LINZ ! ! : )
Advances in neural information processing systems, 31. 14



https://www.youtube.com/watch?v=vvUUmk9qfuA

1. Weirdness of uncertainy

* Levels of uncertainty representations

(a) Confident Prediction (b) High data uncertainty  (c) Out-of-distribution

* Note: the softmax output of a neural network “pretends” to
have no epistemic uncertainty and to just provide aleatoric
uncertainty

Eyke Hullermeier: "Uncertainty Quantification in Machine Learning: From Aleatoric to
Epistemic I";
Jzu JOHANNES KEPLER | \glinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks.
UNIVERSITY LINZ ! ! : )
Advances in neural information processing systems, 31.
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1. Weirdness of uncertainy
Definition of uncertainty

* Total uncertainty often defined as entropy of the predictive
distribution (e.g. Gal, 2016; Hullermeier, 2021):

Hipy |2 D) = | Hlply | e @) pli | D) di + [Y,0)
w
* The aleatoric uncertainty is given by

Epwip) Hp(y |z, w)]] =— | Hlp(y |z, w)] p(w | D) dw
V4%

* Epistemic uncertainty obtained as difference
I(Y;W) = Hlp(y | 2,D)] — Epp) Hp(y |z, w)]]
= | (b 2.D) ~ Hip(y | 2.9)) p(@ | D) di

JXUitversivinz: p(y | 2, D) = p(y |z, w”) =/ p(y |z, w) p(w | D) dw
w

16



2. Neural network generalization

pDIM) )

Well-Specified Model
Calibrated Inductive Biases
Example: CNN

Simple Model
Poor Inductive Biases
FExample: Linear Function

Complex Model '
Poor Inductive Biases .
Fxample: MLP .
i
]
é é
Corrupted CIFAR-10 MNIST e
CIFAR-10 - > Dataset

Structured Image Datasets

 How is model class performance (~inductive bias)

distributed over the range of all possible datasets (support)

JXU

JOHANNES KEPLER
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2. A probabilistic perspective of
generalization

Prior Hypothesis Space : :
1 Pl Prior Hypothesis Space

Prior Hypothesis Space

S

True Model

Posterior

>osterior

True Model

(b) (c) (d)

J z U JOHANNES KEPLER
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3. A selection of Bayesian DL
approaches

1. Weight uncertainty in DNNs (variational approach)

2. Infinite Width Bayesian Deep Networks are Gaussian
Processes

3. Monte-Carlo Dropout
4. Deep Ensembles

5. Hessian-based approach

JOHANNES KEPLER
UNIVERSITY LINZ
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3.1 Variational approach:
Weight Uncertainty in DNNs

Approximate predictive distribution

Approach: “Bayes-By-Backprop”
Weight uncertainty in neural networks (Blundell et al., 2015).

Variational approach, learning finds the parameters w of a
parameterized distribution of the weights ¢(w | 6)

New new set of parameters @ that we did not have before.
— parameters determine the distribution of weights,
- e.g. mean and standard deviation of Gaussian

JOHANNES KEPLER Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, June). Weight uncertainty in neural
UNIVERSITY LINZ network. In International Conference on Machine Learning (pp. 1613-1622). PMLR.
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3.1 Weight Uncertainty in DNNs

e (Gaussian approximation of the parameter posterior

* Minimization of KL divergence with true posterior

~

6 = argming|KL (q(w | 0) || p(w | D))
q(w | 0)
p(w)p(D | w)
— argming|KL (q(w | 8) || p(w))|— Eupmg(uwje) log p(D | w)]

= argminQ/ q(w | 0)log dw
W

J z JOHANNES KEPLER
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3.1 Weight Uncertainty in DNNs

* Objective function (ELBO):

L(07D) — L(97X7Y) = KL (Q(w ’ 0) H p(’ll))) - IE:qu('w|(9) [logp(D ‘ w)]

— Similar to objective in VAEs
- Involves sampling from posterior estimates

- How to approach this with gradient descent? We cannot
backpropagate to a sampling procedure

J z JOHANNES KEPLER
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3.1 Weight Uncertainty in DNNs:
Reparametrization trick

We assume that weights are determined by some function that
has both a deterministic and a random part:

w = h(0,€)
— €. noise
— 0 : parameters of probability distribution
— Similar to reparametrization trick in VAEs
- E.g. mean and variance of Gaussian plus standard noise

JOHANNES KEPLER
UNIVERSITY LINZ
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3.1 Weight Uncertainty in DNNs:
Reparametrization trick

* Backpropagation to parameters of probability distribution

0 9,
S Bt (w, 0)] = . [ (w00 | 0)dw -
~ 00

) o

R dfw@)dw_l_@f(w,Q)
€| w96 50
* We used Leibnitz integral rule to switch integration and

differentiation
« Weuse: f(w,0) =logq(w | 0)—logp(w) —logp(D | w)

J z JOHANNES KEPLER
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3.1 Weight Uncertainty in DNNs:
Reparametrization trick

» With f(w,0) =logq(w | 0) —logp(w) — logp(D | w)
we approximate the objective function by

L(6, D)~ ) logg(w'™ | @) —logp(w™) —logp(D | w™)
| ——
1 usual obj of a DNN

. Where w(™is a parameter vector randomly drawn from the
estimated posterior distribution g(w | 0)

J z JOHANNES KEPLER
UNIVERSITY LINZ
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3.1 Weight Uncertainty in DNNs:
Algorithm

= Sample e ~ N(0,1),
msetw=p+o@e

mletd = (pu, o),

w let f(w,0) = logg(w | ) — log p(w) — logp(D | w)

m calculate gradients of f(w, @) with respect to u backprop:

_ A (w.0) | 0f(w.0)

A
H ow op

» calculate gradients of f(w, @) with respect to o using backprop:

_0fw.8) _ 9f(w,6)

Ao ow Jdo

» and update the variational parameters:

J XU txiverst
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3.2 Infinite Width Bayesian Deep
Networks are Gaussian Processes

We revisit linear regression:

g(z) =j=w'f(z)=w'h

Now we assume a Gaussian prior over the parameters
2
p(w) =N(w|0,07°1)
We stack representations and labels of different samples

y=Hw
Then we calculate mean and covariance to define I
E[g) = HE[w] = 0
Cov[y]| = E[g9’] = HE[ww!|H' =¢*HH" = K

J.
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3.2 Gaussian processes

* A Gaussian process is defined as probability distribution over
functions g(x)

» such that the set of values of g(x)evaluated at a set{z’,...,z"}
IS jointly a Gaussian distribution.

e Gaussian distribution is fully determined by its first two
moments, mean and covariance

 The mean vector must be assumed to be zero 0O, such that the
specification is mostly determined by the covariance

* Covariance is determined by the kernel function and thus the
pairwise similarity of data points in some space

J z JOHANNES KEPLER
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3.2 Connection of neural networks and
Gaussian processes

* Discovered by Neal (1994) in his PhD thesis as pessimistic
result

 Two-layer network with weights v;q ~ N (0,07) and wg; ~ N(0,02).
* Pre-activations have identical means and second moments
D , _ 2 _ D 2,271 _ 2
E[>_g—1 Zavja] = 0 E[Sj(m)] = E[X gy zqv5d) = Elsj ()]
* Activations in hidden layer have some mean m; and variance V;.
e Distributions of outputs:

of
Eloy(z)] = E[Z wyihj(x)] = JElwg,| Elhi(z)] = 0.

(o ( E[z (wijhi())?] = JE[ “M |E[(hy(2))?] = Jo2 V.

J z JOHANNES KEPLER
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3.2 Connection of neural networks and
Gaussian processes

* We can use the Central Limit Theorem to show that outputs
are Gaussian distributed

* The joint distribution of two data points then is

J
E[()ﬁ.z(mn.)ok(mm)] — Z E[“--"jkhj (m-n.)rwjk:}-’-j(93-”:.)] — Ui;ﬁ;.ff(m-r;,, mm)

J=1
e Gaussian for multiple data points, thus a Gaussian process
whose covariance depends on kernel between data points
* Covariance between two different output units is zero

e Connection is often used for Deep Learning theory
- Also for Neural Tangent Kernels

J z JOHANNES KEPLER
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3.3 Monte-Carlo (MC) Dropout

y BXXD

Wi\

(b) After applying dropout.

(a) Standard Neural Net

J z U JOHANNES KEPLER
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3.3 MC Dropout

« Similar derivation to Weight Uncertainty in DNNs
» Use of the equivalence to Gaussian processes
« Consider a two-layer network

* Intractable posterior; approximation with g(w)
- Weights assumed to come from mixture

Q(Wq) — plﬁ\"r(mq: JEII{) + (l — P1 )-Ar(o JEII{)
- Applying Dropout is like drawing from this posterior estimates
- Objective is again ELBO approximated with sampling

J z U JOHANNES KEPLER
UNIVERSITY LINZ
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3.3 MC Dropout

 Two-layer network (one hidden layer):
p(y | &, W, W) = softmax(WE f(wllg))
e Gaussian prior on weights
p(WH)y = N(0,I) and p(WB) = N(0,1)
* Full predictive distribution

p(ytest | a}teSt,D) _ / p(,ytest | W[l],W[2],:I}teSt) p(W[l],W[Q] | D) dW[l]dW[2]
W N ~ _J/

untractable

* Minimizing KL-divergence and connection to ELBO (see VAES)

D (qW!, wih||p(w!, wk | D))

D (qWH, WD |p(wp(w)) — Z/Q(W[”,W[Q])log(yn | 2, WH, WE)
n=1

e With variational distribution; mixture of Gaussians
g W Wk = gowlthgw?)
q(W) = pN (M, c*I) + (1 — p)N(0,0*1)

J z U JOHANNES KEPLER
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3.3 MC Dropout

* KL divergence between variational and prior

D (qWH)[[p(Wl)) ~ dI(0® —log(c?) — 1) 4 p/2||[W!|[3 + const

 Hence: weight matrices sampled from
Wl ~ diag(z") MY z ~ Bernoulli(p)
* Objective:
Dir(¢q(WH, Wl jpwt, wil | D)) Zlogp Un | 2n, W, W) 4 U /2| M3 + pP /2] | My |5
=
where w, = diag(z,)M, =z~ Bernoulli(p) are Monte Carlo samples

Same loss as used when training with dropout! (and reg.)

J z U JOHANNES KEPLER
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3.4 Deep Ensembles

* Main idea: approximate expectation with averages

p(yte&zt | mte&atjp) _ Ewwp(w|’D) [p( test | w. xte&;t)]

 Train several DNNs with different random seeds, obtain
parameters w™ and take average

p(ytest ‘ wtest D Z p test ‘ ’LU test )

* Averages can be weighted differently

* Appears as simple technigue, but performs well in practice

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017, December). Simple and scalable predictive uncertainty

J z U JOHANNES KEPLER estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural Information

UNIVERSITY LINZ Processing Systems (pp. 6405-6416).
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3.4 Deep Ensembles

Algorithm 1 Pseudocode of the training procedure for our method

|

4
5:
6

> Let each neural network parametrize a distribution over the outputs, i.e. pg(y|x). Use a proper

scoring rule as the training criterion {(60,x,y). Recommended default values are M = 5 and

€ = 1% of the input range of the corresponding dimension (e.g 2.55 if input range is [0,255]).

Initialize A1, 605, ..., 0y randomly

form=1: M do > train networks independently in parallel
Sample data point n,, randomly for each net  © single n,, for clarity, minibatch in practice
Generate adversarial example using x;, =X, + € Sigu(‘?xnm (O, Xn, s Un ))

- - - i 7 'r . N N N
Minimize ((0,,, Xy, , Yn,.) + (O, Xy s Yn, ) W.I.t. O, > adversarial training (optional)

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017, December). Simple and scalable predictive uncertainty

J z JOHANNES KEPLER estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural Information

UNIVERSITY LINZ Processing Systems (pp. 6405-6416).
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4. Bayesian DL methods compared

—8— MC Dropout

& MFVI

Deep Ensemble —@— Deterministic

#— Ensemble MC Dropout
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(d) distribution shift, accuracy

Filos, A., Farquhar, S., Gomez, A. N.,

Rudner, T. G., Kenton, Z., Smith, L., ... &
Gal, Y. (2019). A systematic comparison
of Bayesian deep learning robustness in
diabetic retinopathy tasks. arXiv preprint

arXiv:1912.10481. a7




4. Applications of Bayesian DL
in drug discovery

* Plenty of work on
uncertainty estimation,
calibration, etc.

 Bayesian DL in DD:
several publications

Melting Point Freesolv ESOL

Episternic uncertainty
— Alatoric uncorainty
— Total uncestainty

RAMSEkcal mol
o
RMSEfog M
= E) =
[ = o

s
=

o 20 40 &0 80 100 20 40 &0 80 100 20 40 60 80 100
Confidence percentie Caonfidence percentile Confidence percentile

Cats Malaria

=)
=

e
n

J E

1 =
1.
05 :
0.

SENoguM
- B om

AMSENogM
o o oo
Bk B E

RMSEfloguM

5
o o
o 20 40 60 B0 100 0 20 40 &0 80 100 o 20 40 60 80 100
Confidence percentie Confidence percentile Confidence percentile

Zhang, Y. (2019). Bayesian semi-supervised learning
for uncertainty-calibrated prediction of molecular
properties and active learning. Chemical science,

10(35), 8154-8163.
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Test-Time Dropout Conformal Prediction

2. Computa N forward passes

! 3. Reliable errors in
1. Train 1 Meural Natwork o generate an ansemble e
| using dropout ‘ . using only 1 Metwark . :ﬂ':di':‘:;:;';;
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[:]
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Cortes-Ciriano, ., & Bender, A. (2019). Reliable prediction errors for deep neural
networks using test-time dropout. Journal of chemical information and modeling,
A9(7), 3330-3339
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Fotis, C., Meimetis, N., Sardis, A., & Alexopoulos, L. G. (2021). DeepSIBA:
chemical structure-based inference of biological alterations using deep learning.
Molecular Omics, 17(1), 108-120.
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4. Applications of Bayesian DL
in drug discovery
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Renz, P., Hochreiter, S., & Klambauer, G. (2019). Uncertainty
Estimation Methods to Support Decision-Making in Early Phases of

Drug Discovery. In Workshop on Safety and Robustness in
Decision-making at 33rd Conference on Neural Information
Processing Systems (NeurlPS 2019), Vancouver, Canada.

Lamb, G., & Paige, B. (2020). Bayesian graph neural networks for

molecular property prediction. arXiv preprint arXiv:2012.02089.
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Summary

We have investigated Bayesian Deep Learning
approaches

Discussed main difference to frequentist approaches
Can capture uncertainty about parameters
Usually approximation of parameter posterior

Variational approach, Monte-Carlo Dropout, Deep
Ensembles

JOHANNES KEPLER
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5. Hessian-based approach

* Regression task: Gaussian noise on labels

ply |z, w,0f) = N(y | g(z;w), of)
e (Gaussian prior on weights

p(w|oy)=N(w|0,0})

* Dataset D of data points and labels; posterior and log post.:

p(w | D,0y,07) o< plw | 03,)p(D | w 02)

1
logp(w\D,aQ,JQ)—ﬁfw w—ﬁz —yn)> +C

The last function is optimized with the usual gradient descent
techniques and we obtain parameters: wnmap

J z JOHANNES KEPLER
UNIVERSITY LINZ
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5. Hessian-based approach

Having found wwmap, we can make a local Gaussian
approximation by evaluation the matrix of second derivatives of
the negative log posterior:

A=-Vilogp(w|D,o2,02) =1/ +1/0°H

where H is the usual Hessian of the loss function of the neural
network. Can be approximated in various ways for small
networks (see later lecture)

Intractable because
distribution on
weights is
Inside the neural net/

Gaussian approximation of posterior
q(w | D) = N (w | wyiap, A

Predictive distribution (still intractable, s Ing from approx)

p(y | z,D) = / Ny | g(x,15), 02)g(w | D)duw

J z U JOHANNES KEPLER
UNIVERSITY LINZ
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5. Hessian-based approach

If we would have a linear model instead of g(x; w), this
Integral would be analytically tractable.

Let us approximate the neural net around wyap with a Taylor
approximation up to first degree

g(x;w) ~ g(x; wymap) + g° (W — wrap)
where g = Vo g(T; W) |wyap

Linear Gaussian model with Gaussian distribution of weights
and prior whose mean is linear function of weights

p(y |z, w,02) =~ N(y | g(z,wmap) +g' (w — wnap),0?)

General results on marginal Gaussian provide:

p<y ‘ 3377370627030) ~ N(y ‘ g(m7wMAP>7O-€2 _I_gTAg)
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