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Sources

● NeurIPS Tutorial 2020: Practical Uncertainty Estimation and Out-of-Distribution 
Robustness in Deep Learning
https://nips.cc/virtual/2020/protected/tutorial_0f190e6e164eafe66f011073b4486975.html

● Eyke Hüllermeier’s recent talks & publications,e.g.
– Hüllermeier, E., & Waegeman, W. (2021). Aleatoric and epistemic uncertainty in machine learning: An introduction to 

concepts and methods. Machine Learning, 110(3), 457-506.

● The main papers
– Hendrycks, D., & Gimpel, K. (2016). A baseline for detecting misclassified and out-of-distribution examples in neural 

networks. arXiv preprint arXiv:1610.02136.

– Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, June). Weight uncertainty in neural network. In 
International conference on machine learning (pp. 1613-1622). PMLR.

– Gal, Y., & Ghahramani, Z. (2016, June). Dropout as a bayesian approximation: Representing model 
uncertainty in deep learning. In international conference on machine learning (pp. 1050-1059). PMLR.

– Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017). Simple and scalable predictive uncertainty estimation 
using deep ensembles. Advances in neural information processing systems, 30.

– Malinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks. Advances in neural 
information processing systems, 31.

Literature map: 
https://app.litmaps.com/shared/map/9e9fa355-5c04-4ef8-b133-570c1b2dfc8a

https://nips.cc/virtual/2020/protected/tutorial_0f190e6e164eafe66f011073b4486975.html
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0. Notation
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0. Likelihood, Prior, Posterior, Evidence

● Maximum likelihood: find the most likely parameters given data

● However, for complex models this leads to overfitting. Therefore, 
some      should be more likely than others

– Prior distribution over parameters:

– Bayes formula 

– Important note! Usually: 

● Maximum A Posteriori: (last term does not depend on params)
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0. Maximum A Posteriori (MAP) approach
for Deep Nets: a usual case

● Usually, the aim is to find the most likely parameters given data 

● For example, softmax & cross-entropy at output and L2 
regularization lead to

● Note:                      should represent uncertainty about the label. 
However, we can make only a single prediction with the parameters 

● Still a point estimate! No full Bayesian treatment! We want a full 
distribution over parameters!
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0. A Bayesian approach: a distribution 
of parameters is wanted; supervised!

● Bayesian setting:

● Posterior:

● Prior:

● Likelihood:

● Evidence:

– Usually intractable; especially for DNNs

– If all other distributions are Gaussian: tractable. “Gaussian 
process”
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0. Example: Gaussian data, Gaussian 
prior

● Data:                                         Pior:

● Parameter posterior

● Completing squares in exponent and assuming normalized 
distributions, we see that this is again a Gaussian
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0. Difference between frequentist and 
Bayesian approach: marginalization

● Full predictive distribution / distribution of outputs:

● Defines probability for class label given input and dataset

● Marginalization over parameters 

● “Bayesian model averaging (BMA)”
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0. Full predictive distribution

● Linear regression 
example

● Intuitively:

– Uncertainty 
close to data 
points is small

– High uncertainty 
elsewhere

● However:
high-dimensional 
spaces
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1. Introductory example:
Intuition

● Assume you train a QSAR model                      that should predict 
binary activity (“active” vs “inactive”).

● It provides for a particular molecule:

● Is the model uncertain about it’s prediction?

● Correct answer: we don’t know!

– A) It could be the perfect model, but the assay is random (for this 
molecule or in general) 
the prediction is correct: everytime one measures the molecule it is 
50% active and 50% inactive; →aleatoric uncertainty

– B) The model is garbage and the molecule is indeed inactive (or: 
active); uncertainty about the parameters →epistemic uncertainty
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1. Weirdness of uncertainy 

● Levels of uncertainty representations

● Note: the softmax output of a neural network “pretends” to 
have no epistemic uncertainty and to just provide aleatoric 
uncertainty 

Eyke Hüllermeier: "Uncertainty Quantification in Machine Learning: From Aleatoric to 
Epistemic I"; https://www.youtube.com/watch?v=vvUUmk9qfuA
Malinin, A., & Gales, M. (2018). Predictive uncertainty estimation via prior networks. 
Advances in neural information processing systems, 31.

https://www.youtube.com/watch?v=vvUUmk9qfuA
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1. Weirdness of uncertainy 
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Advances in neural information processing systems, 31.
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1. Weirdness of uncertainy 
Definition of uncertainty

● Total uncertainty often defined as entropy of the predictive 
distribution (e.g. Gal, 2016; Hüllermeier, 2021): 

● The aleatoric uncertainty is given by

● Epistemic uncertainty obtained as difference
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2. Neural network generalization

● How is model class performance (~inductive bias) 
distributed over the range of all possible datasets (support)
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2. A probabilistic perspective of 
generalization
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3. A selection of Bayesian DL 
approaches

● 1. Weight uncertainty in DNNs (variational approach)

● 2. Infinite Width Bayesian Deep Networks are Gaussian 
Processes

● 3. Monte-Carlo Dropout

● 4. Deep Ensembles

● 5. Hessian-based approach
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3.1 Variational approach:
Weight Uncertainty in DNNs

● Approximate predictive distribution

● Approach: “Bayes-By-Backprop”
Weight uncertainty in neural networks (Blundell et al., 2015). 

● Variational approach, learning finds the parameters     of a 
parameterized distribution of the weights 

● New new set of parameters     that we did not have before.

– parameters determine the distribution of weights, 

– e.g. mean and standard deviation of Gaussian

Blundell, C., Cornebise, J., Kavukcuoglu, K., & Wierstra, D. (2015, June). Weight uncertainty in neural 
network. In International Conference on Machine Learning (pp. 1613-1622). PMLR.
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3.1 Weight Uncertainty in DNNs

● Gaussian approximation of the parameter posterior

● Minimization of KL divergence with true posterior
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3.1 Weight Uncertainty in DNNs

● Objective function (ELBO):

– Similar to objective in VAEs

– Involves sampling from posterior estimates

– How to approach this with gradient descent? We cannot 
backpropagate to a sampling procedure
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3.1  Weight Uncertainty in DNNs:
Reparametrization trick

● We assume that weights are determined by some function that 
has both a deterministic and a random part:  

–   :  noise

–   : parameters of probability distribution

– Similar to reparametrization trick in VAEs

– E.g. mean and variance of Gaussian plus standard noise
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3.1  Weight Uncertainty in DNNs:
Reparametrization trick

● Backpropagation to parameters of probability distribution

● We used Leibnitz integral rule to switch integration and 
differentiation

● We use: 
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3.1  Weight Uncertainty in DNNs:
Reparametrization trick

● With
we approximate the objective function by

● Where           is a parameter vector randomly drawn from the 
estimated posterior distribution   
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3.1  Weight Uncertainty in DNNs:
Algorithm

These are 
the usual gradients 

from backprop
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3.2 Infinite Width Bayesian Deep 
Networks are Gaussian Processes 

● We revisit linear regression:

● Now we assume a Gaussian prior over the parameters 

● We stack representations and labels of different samples

● Then we calculate mean and covariance to define
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3.2 Gaussian processes

● A Gaussian process is defined as probability distribution over 
functions 

● such that the set of values of         evaluated at a set 
is jointly a Gaussian distribution. 

● Gaussian distribution is fully determined by its first two 
moments, mean and covariance 

● The mean vector must be assumed to be zero 0, such that the 
specification is mostly determined by the covariance 

● Covariance is determined by the kernel function and thus the 
pairwise similarity of data points in some space
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3.2 Connection of neural networks and 
Gaussian processes

● Discovered by Neal (1994) in his PhD thesis as pessimistic 
result

● Two-layer network with weights

● Pre-activations have identical means and second moments

● Activations in hidden layer have some mean     and variance

● Distributions of outputs: 
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3.2 Connection of neural networks and 
Gaussian processes

● We can use the Central Limit Theorem to show that outputs 
are Gaussian distributed

● The joint distribution of two data points then is

● Gaussian for multiple data points, thus a Gaussian process 
whose covariance depends on kernel between data points

● Covariance between two different output units is zero

● Connection is often used for Deep Learning theory

– Also for Neural Tangent Kernels
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3.3 Monte-Carlo (MC) Dropout
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3.3 MC Dropout

● Similar derivation to Weight Uncertainty in DNNs

● Use of the equivalence to Gaussian processes

● Consider a two-layer network

● Intractable posterior; approximation with 

– Weights assumed to come from mixture

– Applying Dropout is like drawing from this posterior estimates

– Objective is again ELBO approximated with sampling
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3.3 MC Dropout
● Two-layer network (one hidden layer):

● Gaussian prior on weights

● Full predictive distribution

● Minimizing KL-divergence and connection to ELBO (see VAEs)

● With variational distribution; mixture of Gaussians
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3.3 MC Dropout

● KL divergence between variational and prior

● Hence: weight matrices sampled from

● Objective: 

where                                               are Monte Carlo samples

Same loss as used when training with dropout! (and reg.)
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3.4 Deep Ensembles

● Main idea: approximate expectation with averages

● Train several DNNs with different random seeds, obtain 
parameters          and take average

● Averages can be weighted differently

● Appears as simple technique, but performs well in practice

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017, December). Simple and scalable predictive uncertainty 
estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural Information 
Processing Systems (pp. 6405-6416).
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3.4 Deep Ensembles

Lakshminarayanan, B., Pritzel, A., & Blundell, C. (2017, December). Simple and scalable predictive uncertainty 
estimation using deep ensembles. In Proceedings of the 31st International Conference on Neural Information 
Processing Systems (pp. 6405-6416).
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4. Bayesian DL methods compared

Filos, A., Farquhar, S., Gomez, A. N., 
Rudner, T. G., Kenton, Z., Smith, L., ... & 
Gal, Y. (2019). A systematic comparison 
of Bayesian deep learning robustness in 
diabetic retinopathy tasks. arXiv preprint 
arXiv:1912.10481.
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4. Applications of Bayesian DL
in drug discovery

● Plenty of work on 
uncertainty estimation, 
calibration, etc. 

● Bayesian DL in DD:
several publications

Cortes-Ciriano, I., & Bender, A. (2019). Reliable prediction errors for deep neural 
networks using test-time dropout. Journal of chemical information and modeling, 
59(7), 3330-3339

Fotis, C., Meimetis, N., Sardis, A., & Alexopoulos, L. G. (2021). DeepSIBA: 
chemical structure-based inference of biological alterations using deep learning. 
Molecular Omics, 17(1), 108-120.

Zhang, Y. (2019). Bayesian semi-supervised learning 
for uncertainty-calibrated prediction of molecular 
properties and active learning. Chemical science, 
10(35), 8154-8163.
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4. Applications of Bayesian DL
in drug discovery

Lamb, G., & Paige, B. (2020). Bayesian graph neural networks for 
molecular property prediction. arXiv preprint arXiv:2012.02089.

Renz, P., Hochreiter, S., & Klambauer, G. (2019). Uncertainty 
Estimation Methods to Support Decision-Making in Early Phases of 
Drug Discovery. In Workshop on Safety and Robustness in 
Decision-making at 33rd Conference on Neural Information 
Processing Systems (NeurIPS 2019), Vancouver, Canada.



Summary
● We have investigated Bayesian Deep Learning 

approaches

● Discussed main difference to frequentist approaches

● Can capture uncertainty about parameters

● Usually approximation of parameter posterior

● Variational approach, Monte-Carlo Dropout, Deep 
Ensembles
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5. Hessian-based approach

● Regression task: Gaussian noise on labels

● Gaussian prior on weights

● Dataset     of data points and labels; posterior and log post.:

The last function is optimized with the usual gradient descent 
techniques and we obtain parameters: 



42

5. Hessian-based approach

● Having found            , we can make a local Gaussian 
approximation by evaluation the matrix of second derivatives of 
the negative log posterior:  

where      is the usual Hessian of the loss function of the neural 
network. Can be approximated in various ways for small 
networks (see later lecture)

● Gaussian approximation of posterior

● Predictive distribution (still intractable, sampling from approx)

Intractable because
distribution on 

weights is 
inside the neural net
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5. Hessian-based approach

● If we would have a linear model instead of             , this 
integral would be analytically tractable. 

● Let us approximate the neural net around            with a Taylor 
approximation up to first degree

where

● Linear Gaussian model with Gaussian distribution of weights 
and prior whose mean is linear function of weights

General results on marginal Gaussian provide:
 


