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Who am |?

* Data scientist / cheminformatician at s [ESENI
AstraZeneca ;;;;% s

e Based in UK, part of the Molecular Al Team EECHE .
(mostly based in Sweden)

==

Career path:

* Industrial CASE Masters/PhD with Uni. Cambridge &
AstraZeneca, UK

* Re-joined AZ in 2019

* Interests: molecule prop. prediction & comp. methods to
improve hit discovery/productivity of drug design



Molecular Al
(MAI) group

* Molecular Al group (~20 people)
* General focus: Application of Al to the drug design process

* Broad range of backgrounds, e.g.
chemists/biologists/pharmacologists/comp. sci.
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Where MAI impact the DMTA cycle




Multi-task learning (MTL) &
Federated Learning (FL)




S. Ruder, An Overview of Multi-Task Learning in Deep

W h at |S m u |t|_ta S k ‘ e a r n | n g ( I\/l L) ? Neural Networks (2017) arXiv:1706.05098v1
”“ >

* a.) Single-task (ST): one model trained to predict one task
* one model optimised until performance no longer increases

* b.) Multi-task (MT/MTL): training one model to predict foslcd foskc? faskes
multiple tasks
* one model optimising more than one loss function at once
* enables representations to be shared between trained tasks
* training signals of related tasks shared between all tasks

Model 1

* MTL uses the knowledge learnt during training one task to Task 1 Ta::)Z Task 3
reduce the loss of other tasks included in training

“Even if you are only optimizing one loss as is the typical case, chances are there is
an auxiliary task that will help you improve upon your main task” [Caruana, 1998]



Real world examples

* The Karate Kid (1984)

* Mr Miyagi teaches the karate kid seemingly unrelated
tasks such as sanding the floor and waxing a car

* in hindsight, these turn out to equip him with invaluable
skills relevant for karate

* Predicting ping-pong ball return (right):
* requires distance, spin, and trajectory of the ping-pong

e each is unique - predicting spin is fundamentally distinct
from location - but improving the reasoning of both will

help better prediction of e.g. trajectory

Predicting ping-pong ball return

Spin
FJ

Three Single Task Models

Distance Trajectory

One Multi-Task Model

Distance Trajectory

Spin

I

N

N



S. Ruder, An Overview of Multi-Task Learning in Deep

W h y d O e S I\/I L WO r k ? Neural Networks (2017) arXiv:1706.05098v1

* Implicit data augmentation ®
* Missing data/sparsity mitigated by augmentation "E‘
®

* Augmented tasks have different noise patterns
* ST models risk overfitting vs. MTL which averages noise patterns

* Attention focusing \ .’ :
 Model attention focused to relevant features "R’
* Related tasks give extra evidence for feature [ir]relevance

Eavesdropping
* Some tasks are difficult to learn (complex interactions with features)

@

* Some features could impede learning certain tasks
* Learn relevant features for difficult tasks via easier tasks

Representation bias
* Biases models to prefer representations many tasks prefer

* Existing well-performing configurations are likely to perform well for novel tasks

Regularization ‘,
* Acts as a regulariser introducing an inductive bias - reduces Rademacher complexity



Why MTL for molecule property prediction?

* Data being modelled is heavily biased!!]
* Due to the amount, degree of diversity and distribution of data points
* ST-models often incapable of arriving at realistic probability estimates across the many tasks

* Behaviour/characteristics of biological/assay task space
* Protein activity profiles often co-correlated
* Protein family, homologous/orthologous protein, common off-targets
* Biological properties linked with ADME, PK/PD, physiochemical properties
* e.g. lysosomotropism linked with lipophilicity
* e.g. thermodynamic solubility and kinetic water solubility

* Overlap between primary/orthogonal/artefact assays & screening cascades
* Overlap of experimental machinery/protocols/procedures

* Behaviour/characteristics of chemical space
* Overlap of compound decks/screening libraries

[1] Lewis H.Mervin et al, Uncertainty

* Information transfer from standardised compound sets quantification in drug design (2021), Drug

Discovery Today



Application toward Federated
Learning (FL)



What is Federated @Waze

HOW DOES WAZE WORK

OUTSMARTING TRAFFIC, TOGETHER

Learning (FL)?

Inform
other users

lhe app
analyzes
this info

Share info
(traffic jams)

Collaboratively learn
a shared prediction
model

Avoid traffic
issues

13




What Is privacy
preserving FL?

Two examples of federated
architectures shown

(not exhaustive)

Node-
centric

Some level
of security

Server-
centric
Even higher

levels of
security

Step 1

Step 2

Step 3

Lwaze

s

Lwaze

node node
-a -n

Lwaze

ey

Server transmits an
initial model to
nodes

Nodes retrain the
model locally

Central server
aggregates models
into a global model

Step 1

Step 2

Step 3
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server

node node node
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Model-
M a
node node
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Nodes transmit
training data to the
server

Server trains the
model centrally

Server transmits
node-specific
versions of
the model




M=LLODD

show the benefits
of multi-task
modelling across

pharma partners
at the largest
achievable scale

MACHINE LEARNING LEDGER
ORCHESTRATION FOR DRUG DISCOVERY

MELLODDY aims to optimise
efficiency in drug discovery

10 pharmaceutical Solution
companies providers
The world’s largest collection ”
of small molecules with known biochemical 0
or cellular activity :
i
]
]
v v v
10 million 1 billion assay =
annotated small biological @
molecules v activity labels
Multiple Platform
high-complexity b
phenotypes 5
at high throughput .
]
]
\ 4
OO
\ =
D o e PR
N ey
Predictive Machine No exposure Decentralised

Learning models of proprietary data
enhancement information

of data and

federated modeils is
paramount



Heyndrickx et al, MELLODDY: cross pharma federated learning at

° o] unprecedented scale unlocks benefits in QSAR without compromising
D ata a u g m e ntat I O n t h ro u g h a u XI | I a ry ta S ks proprietary information (2022) 10.26434/chemrxiv-2022-ntd3r

Regression Setup

» Auxiliary data: Classification tasks
» Hybrid model approach

REG Model HYBRID Model

REG tasks

REG tasks CLS tasks

Private
head VS.
Shared
trunk
32K
/T\
Structural descriptors Structural descriptors

Tasks of intention
Activity label predictions
Participate in training
Are validated/tested

Auxiliary tasks
Informative labels

| Participate in training

Not validated/tested

Classification Setup

» Auxiliary data: HTS data
» Data volume increase by 10-100x

CLS Model CLSAUX Model

CLS tasks

Private
head VS
Shared
trunk
32K
T

Structural descriptors Structural descriptors



Increasing data volume boosts performance, with saturation

Relative improvement (%)

Regression

Single-partner

Compared
wo/ ahx. w/ alux.
\ )

|
Multi-partner

¢ Classification

_2 | | |
wo/ aux. w/ aux. wo/ aux. w/ aux.
\ ) l )
| |
Single-partner Multi-partner

Increasing data volume

Heyndrickx et al, MELLODDY: cross pharma federated learning at unprecedented scale unlocks
benefits in QSAR without compromising proprietary information (2022) 10.26434/chemrxiv-2022-ntd3r



Increasing data volume boosts performance, with saturation

Regression -7 ' Classification
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Heyndrickx et al, MELLODDY: cross pharma federated learning at unprecedented scale unlocks
benefits in QSAR without compromising proprietary information (2022) 10.26434/chemrxiv-2022-ntd3r



*(not exhaustive)

Some questions* raised from MELLODDY

* How to assess performance increase? L
* Applicability domain — evaluate on unlabeled space?

* How to assess improvement of uncertainty quantification? :?
dh

* How to get value from models? I‘

XX

* How to do MT learning in the future?




Future outlook for MTL & FL



Multi-task learning: future outlook

* Research to explore best practice/ how to benefit from side
information & auxiliary tasks

multi-task learning of the
User data Side information |:> commonalities/correlations of
compound activity in related side
- Side info Side info mformatlc.)n.tasks benefits main
Main task predictions
Compounds XC50 task 1 task n
P PXC50 pXC50
e .
c1 4.8 3.4 4.3 f:;i:g;s
|:> pusin o Hyperparmeter
2 5.2 5.5 6.5 _Leing side
info & multi-
task Iearnlng




How to perform MTL in the future?

Q: What type of side information should be used?

* Fingerprints
* High throughput screening (HTS) fingerprints
* Cell Painting
 Morphology features
* Pseudolabels

&

2)

. _ (not exhaustive)
* [Predicted] properties, e.g.:

* Physchem L_.___li

* QSAR models [+MELLODDY] I‘ii‘i‘l
* Physics-based methods?

* Protein space side information?
* Sequence/graph/voxel/homology metadata
e 3D/Structural descriptors %f’



How to represent MTL side information?

* Pre-processing
* Scaling (max/min) o-e
. . . . i
Variance filtering PP -4
* (Recursive) Feature selection
* Pseudolabels

* Binary vs. continuous tasks as side information
 MLDY conclusions: 1010
* Regression benefitted from binary classification tasks 1010
 Classification benefitted from binary auto-thresholding HTS screens

* Should be a hyper-parameter choice:
* which tasks benefit a primary task of interest?



How to identify which tasks should be learnt
together?

* Intractable to search all task combinations for MTL
e Task sets may change throughout a model lifetime anyway

* Draw inspiration from Meta-learning, e.g.:

* Learn representation minimizing loss for the weights after 1+ steps of training
vs. the current set of weights

* Optimizes for the future, not the present

* Task Affinity Groupings (TAG):
* Updates model parameters with respect to 1 task
* Evaluate the change on the other tasks

* Undoes the update
* Process repeated for all tasks to gather information how every task interacts



Task Affinity Groupings (TAG)!

e Network selection
algorithm analyses
task interaction data

* Groups tasks together
that maximize inter-
task affinity

* Qutlines which tasks
are beneficial /

Train all tasks antagonistic

https://ai.googleblog.com/2021/10/deciding-which-tasks-should-train.html

[1] Efficiently Identifying Task Groupings in Multi-Task Learning (NeurlPS 2021),
Christopher Fifty, Ehsan Amid, Zhe Zhao, Tianhe Yu, Rohan Anil, Chelsea Finn



How can we get better estimates
of uncertainty?




Why consider uncertainty estimation in drug design?

Predictions without uncertainty are difficult to interpret & not always actionable

Estimation recognised as a principal shortcoming of current approaches

Better communication of uncertainty to aid the adoption of ML

Key for autonomous decision making & integrating ML with chemistry automation
to create an autonomous DMTA cycle

 Locating regions of chemical space with high uncertainty helps to prioritise
experiments to expand future applicability domains (e.g., by active learning)

27



Factors to consider...

DATA SET ERROR — INPUT SPACE
» EXPERIMENTAL/ |+ QUERKES
QUERY
ANNOTATION ERROR OFTEN FAR FROM
| TRAINING DATA

CHEMICAL & MACHINE OUTPUT
BIOLOGICAL LEARNING [ o CTIONS
DATABASES 'V'ODE'-

/ i}
ALGORITHMIC OUTPUT

* PROBABILITY ESTIMATES ARE
NOT UNCERTAINTY ESTIMATES

ML CHARACTERISTICS
* ALEATORIC & EPISTEMIC

gl * POPULAR PERFORMANCE
* MODELS ARE OFTEN
POORLY CALIBRATED METRICS DO NOT EVAULATE

UNCERTAINTY QUANTIFICATION

Drug Discovery Today

Lewis H.Mervin et al, Uncertainty quantification in drug design (2021), Drug Discovery Today
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Various methods to model

* Empirical

uncertainty

Methods Applications
* Frequentist / Bayesian — e
achlevable accuracy
e Ensemble-based E-%m,ﬂ,ﬁ

Drug Discovery Today ( Virtual screening )
Volume 26, Issue 2, February 2021, Pages 474-489 Slmlladtoy-bned Compound
S Library
(<] °° oo\‘. ¢ v 4
| pKi = 6.0 roperty
e Reliable ? | \¥.Uncertainty /
eynote e
Uncertainty quantification in drug design Ensemble-based Actis ernieg

Lewis H. Mervin 1 & =, Simon Johansson 2,3 Elizaveta Semenova 4, Kathryn A. Giblin > Ola Engkvist 2

e /
& 1":_ w/

Trawang oo sdnet A Sabrwrde B

Lewis H.Mervin et al, Uncertainty quantification in drug

design (2021), Drug Discovery Today Jie Yu, Uncertainty quantification: Can we trust artificial intelligence in

29 drug discovery? (2022) iScience



Uncertainty estimation has historically focused on behavioural
characteristics of base estimators, not the underlying (biological)

data

DATA SET ERROR
* EXPERIMENTAL/
ANNOTATION ERROR

CHEMICAL &
BIOLOGICAL
DATABASES

LEARNING

INPUT SPACE

* QUERIES
OFTEN FAR FROM

TRAINING DATA

MACHINE

OUTPUT
PREDICTIONS

i)

MODEL

ML CHARACTERISTICS
* ALEATORIC & EPISTEMIC
UNCERTAINTY
* MODELS ARE OFTEN
POORLY CALIBRATED

ALGORITHMIC OUTPUT
* PROBABILITY ESTIMATES ARE
NOT UNCERTAINTY ESTIMATES
* POPULAR PERFORMANCE
METRICS DO NOT EVAULATE

Lewis H.Mervin et al, Uncertainty quantification in drug design (2021), Drug Discovery Today

UNCERTAINTY QUANTIFICATION

Drug Discovery Today

Aleatoric uncertainty cannot be
reduced, only identified and quantified
Epistemic uncertainty can be reduced
through more comprehensive study
UQ intends to work towards reducing
epistemic uncertainties to aleatoric
uncertainties where possible

* Max achievable accuracy/confidence of models = quality of experimental data

30

* i.e when models approximate experimental error



Standard Deviation

Experimental error of literature bioactivity data depends on
consistency of experimental setup

4 ¢ ' '
' i ;
} '
$
3
2
1
0.37 0.37 0.36 0.33 027 02
O | — I | I e
Inter- Inter- Confidence Intra- Confidence Intra- Intra- Intra- Intra-
Assay ID Assay Type Score >=5 IC50 Type  Score >= 8 Kd Type EC50 Type Ki Type Assay ID

(N=53,270) (N=27,122) (N=110,164) (N=47,449) (N=86,761) (N=2,645) (N=4,412) (N=14,321) (N=16,207)

Aggregation Method

e Oveall SD = 0.22-0.41 range depending bioactivity aggregation & different grouping schemes
e Smallest SD = intra- [when experimental results from same experiment (replicates)]

Mervin, LH et al. Probabilistic Random Forest improves bioactivity predictions close to the classification

31
threshold by taking into account experimental uncertainty. J Cheminform 13, 62 (2021)



We should account for the uncertainty at label assignment

« A common approach to predict molecular properties is to use binary classifiers

» Biochemical experiments have associated reproducibility limits due to experimental
error and classification threshold is usually arbitrary

* |t is important to account for the uncertainty of activity label assignment at the decision
boundary

o | Default Proposed
o Classification ° Classification
Threshold Threshold
° °
O could be set to
° o .
the experimental
o o 0 Area of ungertainty uncertainty
O Active
® Inactive
e Uncertain

32 Mervin, LH et al. Probabilistic Random Forest improves bioactivity predictions close to the classification

threshold by taking into account experimental uncertainty. J Cheminform 13, 62 (2021)



How to convert activity labels into probabilities (with cumulative

distribution function)

a.) define classification threshold & SD

PThreshold

1 T
Ay(é') — 1 +e f(pActnnty

Classification
Threshold

pChEMBL value
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SD: 0.6 P
SD: 0.7
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Threshold 5

33 B.) apply CDF given input comp activity and the THR & SD c.) represents p(activity) on continuous scale

somewhere
between
classification &
regression



Looku table for the bloactlwty probab ilities

1

[ 1[1]1]1[1]
ENENES
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e.g., Acompound with a
pChEMBL=5.1 (8uM)
would be assigned a new
Ay of ~0.63 for an activity
threshold of 5.0 and a
user-defined 0 =0.3

=>63% chance to belong to
the active class compared
to classic RF classifier
which assumes that it is
100% active.



Features

Training a Probabilistic Random Forest (PRF)

 PRF: modification to the long-established Random Forest (RF) algorithm and takes
into account uncertainties in features and/or labels

_ _ Compound pXC>0 Activity label

5 ct 4.8
: > RF c? 5.2
X>a?
I X
/ \ L x
e S e e i A g . Probability to be active
PRF _ C Compounds pXC30 at a given threshold
: —
N (e.g. 5)
ST
X>a®? H o 1
Ps = 0.3% APs=0.7 X PRF ¢ 4.8 flzi
-’ s a
~"/ \\ c 5.2 0.64
— — cn 4.6 0.15

* RF uses discrete variables for the activity label (threshold applied to bioactivity data)

* PRF treats labels as probability distribution functions (rather than deterministic
35 quantities)



PRF outperforms RF near the decision boundary
 PRF > RF when there
IS a degree of
l uncertainty in the data

(i.e., ¢ >=0.2)

Probability
Error
o
(@]
o

APRF vs RF

* PRF has largest
benefit over RF toward
the midpoint of the
probability scale

-4—3—+—~

Benefit of PRF

* This is because the RF
weights the marginal
cases equivalent in
distinguishing between
activity classes

APRF vs RF
Probability
Error

Probability Probability
36



Summary

* Overview of MAI & DMTA cycle provided

* Molecule property prediction forms a key part of the de novo design
platform in-house

e Future work will evaluate how to benefit from MELLODDY models &
how to do MTL going forward

 Various uncertainty quantification methods available, most focus on
behavioural characteristics of base estimators

* We should consider uncertainty in experimental data - CDF/PRF can
do this
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