MULTIVALENCY NATURE'S ADJUSTABLE TOOL FOR CHANGING PROTEIN BINDING STRENGTH BRUNCSICS BENCE BRUNCSICS@GMAIL.COM

OVERVIEW

- Protein binding
- Multivalency
- Model framework overview
 - Figuring out the model
 - Figuring out effective concentration
 - Applications

UNIVERSITY OF MINNESOTA Driven to Discover[™]

BINDING STRENGTH

- KD-dissociation constant
 - 1nM, 1mM
- Daily dose
 - Will it be a good pill
- Multivalency can increase it significantly

BINDING KINETICS I

BINDING KINETICS II

- In steady state: $k_{on}[R][L] = k_{off}[RL]$
- The speed of transition:

 $\begin{aligned} v_{association} &= k_{on}[R][L] \\ v_{dissociation} &= k_{off}[RL] \end{aligned}$

• In differential equation form:

$$\frac{d[R]}{dt} = -k_{on}[R][L] + k_{off}[RL]$$
$$\frac{d[RL]}{dt} = +k_{on}[R][L] - k_{off}[RL]$$

MULTIVALENCY

- Multivalent molecules
 - Bivalent
 - Trivalent
 - Higher valencies
- Complexity
 - Conformations states
 - Kinetics
 - Composition homo, hetero
 - Biological functions

LENT EXAN ΞE ВL

Monovalent :

Multiple:

Multivalent:

association $R_{1,1}L_1L_1$ dissociation association $R_{1,1}L_{1,1}$

dissociation

dissociation

 $R_{\emptyset} + L_1$

association $R_{1,\emptyset}L_1 + L_1$ dissociationassociation $R_{1,\varnothing}L_{1,1}$

dissociation

 $R_{\varnothing,\varnothing} + L_{1,1}$

FIGURING OUT ALL THE STATES

R, L,

IDENTIFYING STATES AND TRANSITIONS

- Increasing complexity
- Notation of states:

BINDING KINETICS II

- In steady state: $k_{on}[R][L] = k_{off}[RL]$
- The speed of transition:

 $\begin{aligned} v_{association} &= k_{on}[R][L] \\ v_{dissociation} &= k_{off}[RL] \end{aligned}$

• In differential equation form:

$$\frac{d[R]}{dt} = -k_{on}[R][L] + k_{off}[RL]$$
$$\frac{d[RL]}{dt} = +k_{on}[R][L] - k_{off}[RL]$$

ODES (OPTIONAL)

- Write an ode based on text
- You have n=10000 tasks
- Each task have 10% chance each hour to finish
- When will 95% of the tasks finish
- $\frac{dn}{dt} = -0.9n$
- Due to overheating each hour your computation is 1% slower

•
$$\frac{dh}{dt} = 0.01$$
, $\frac{dn}{dt} = -(0.9 + h)n$

- Calculate n(t) = 500
 - Math
 - Numerical

EXAMPLE

$$\frac{d[R_{\varnothing\varnothing}]}{dt} = -2k_{on}^{1-2}[R_{\varnothing\varnothing}][L_{11}] + k_{off}^{1-2}[R_{1\varnothing}L_{11}]$$

$$\frac{d[R_{1\varnothing}L_{11}]}{dt} = +2k_{on}^{1-2}[R_{\varnothing\varnothing}][L_{11}] - k_{off}^{1-2}[R_{1\varnothing}L_{11}] - k_{on}^{2-3}[R_{1\omega}] + 2k_{off}^{2-3}[R_{11}L_{11}]$$

$$\frac{d[R_{11}L_{11}]}{dt} = +k_{on}^{2-3}[R_{1\varnothing}] - 2k_{off}^{2-3}[R_{11}L_{11}]$$

 $\begin{vmatrix} \frac{d[R_{\varnothing \varnothing}]}{dt} \\ \frac{d[R_{1} \varnothing L_{11}]}{dt} \\ \frac{d[R_{11} L_{11}]}{dt} \end{vmatrix} = \begin{vmatrix} -2k_{on}^{1-2}[L_{11}] & +k_{off}^{1-2} \\ +2k_{on}^{1-2}[L_{11}] & -k_{off}^{1-2} - k_{on}^{2-3} & +2k_{off}^{2-3} \\ +k_{on}^{2-3} & -2k_{off}^{2-3} \end{vmatrix} \begin{vmatrix} [R_{\emptyset \varnothing}] \\ [R_{10} L_{11}] \\ [R_{11} L_{11}] \end{vmatrix}$

 $\frac{d\boldsymbol{x}(t)}{dt} = \boldsymbol{A}(t)\boldsymbol{x}(t)$

State 1 -
$$R_{go}$$

 $Koff^{12}$
 $Koff^{12}$

EFFECTIVE CONCENTRATION

INTEGRALS

- PDF probability density function
- Integral of a PDF
- Integral the product of two PDF
- Bonus: relation between integration and derivation

EFFECTIVE VALUES

for i in [1:1000]

- x = rnorm(mean=10, sd=2)
- y = rnorm(mean=7, sd=2)
- If x-y < 0.01
 - counter +=1

for i in [1:1000]

- x = rnorm(mean=10, sd=2)
- for i in [1:eff]
 - z = runif(0,20)
 - If x-y < 0.01
 - counter +=1

EFFECTIVE CONCENTRATION

- Effective Concentration: $P(binding | RL) = P(binding | R, L_{C_{eff}})$
- Binding or collision probability: $\int f_L(x) f_R(x) dx$
- Linker end-to-end PDF

MVSIM

- Ligand and receptor parameters
 - Topology
 - Monovalent rate constants
- Ligand concentration
 - Three ligand, multiple steps
- Output
 - SPR or concentration curves
 - Microstates
 - Network representation

MICROSTATES OF A COMPLEX SYSTEM

- Solved by ODE15s solver
- Can predict avidity, specificity
- Explanation for uncanonical behaviors
- Applicable to a wide range of multivalent interaction
- Support for protein engineering

APPLICATION EXAMPLE – ANTIBODY DESIGN

- Bispecific antibodies
- Surface antigen concentration
- Specific targeting
- AbLec (under development)

APPLICATION EXAMPLE – MOLECULAR SWITCHES

- Molecular switch
- Ultrasensitive reaction
- Multispecificity
- Importance of genetic switches

SARS-COV-2 S PROTEIN RBD AND ACE2 INTERACTION

Multivalent Parameterization of SARS-CoV-2 and ACE2

Modeling the Efficacy of a Bivalent Neutralizing Therapeutic

MVsim-Guided Design of SARS-CoV-2 Spike Protein Inhibitors

MVsim generates multiphasic S protein binding response dynamics present in SPR experiment

An MVsim fitting routine extracts rate constants of RBD switching from multiphasic SPR data

THANK YOU FOR YOUR ATTENTION!

ODES – LETS MAKE SOMETHING SIMPLE COMPLICATED

Distance s		

$$\int \sqrt{(-g x + c1)^2 + c2} \, dx = \frac{(g x - c1) \sqrt{(c1 - g x)^2 + c2} - c2 \log \left(\sqrt{(c1 - g x)^2 + c2} + c1 - g x\right)}{2 g} + \text{constant}$$

FRAMEWORK

- 1. Identifying unique configurations
 - Reduction by symmetry or similarity
- 2. Identifying transitions
- 3. Describing the transitions
 - Approximating the speed of transitions
- 4. Calculating time-dependent concentrations

