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What can ideas from causality do for ML?

* Real-world ML needs to deal with:
 Biased data (fairness, selection bias, generalization)
« Heterogeneous data, small samples, missing/corrupted data, not iid

* Actionable insights (decisions cannot be made on correlations)



What can ideas from causality do for ML?

 Causal inference can help with some of these questions:
* Systematic data fusion and reuse with biased data, heterogenous, not iid data

* A systematic way to extract actionable insights
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Transfer learning and causal inference

e Causal inference:

 How can | predict what happens when
the distribution changes after an
intervention?

e Perfect intervention: do-calculus
[Pearl, 2009]

e X Is Independent of its parents

e Soft intervention on X:

* Change of P(X| parents)



Transfer learning and causal inference

Very general - can model also
changes in distribution that are not
from “real” interventions
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Transfer learning and causal inference
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changes in distribution that are not
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Abstract

We consider the problem of function estimation
in the case where an underlying causal model can
be inferred. This has implications for popular
scenarios such as covariate shift, concept drift,
transfer learning and semi-supervised learning.
We argue that causal knowledge may facilitate
some approaches for a given problem, and rule
out others. In particular, we formulate a hypoth-
esis for when semi-supervised learning can help,
and corroborate it with empirical results.

for causal inference in the machine learning community.

An example illustrating the difference between the statisti-
cal and the causal point of view is the correlation between
the frequency of storks and the human birth rate (Matthews,
2000). We may be able to train a good predictor of the
birth rate which uses the frequency of storks (along with
other features) as an input. However, if politicians asked
us whether one could boost the birth rate by increasing the
number of storks, we would have to tell them that this kind
of intervention 1s not covered by the standard 1.1.d. assump-
tion of statistical learning. In practice, however, interven-
tions can be relevant, distributions may shift over time, and
we might want to combine data recorded under different
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Causality allows us to reason systematically
about distribution shifts, e.g. through graphs
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A description of domain adaptation tasks:

e Supervised multi-source domain adaptation

o o
_op

X1

1200
1201
1195
2000
2190
2000
1200
1201

1195
1340

X2

1000
800
200
600
450
200
1000
800

200
900

) &

1500
1500
1499
3000
3000
2999
1500
1500

1499
1498

-0.1

?
?

-0.21
-0.16
-0.16
-0.17
-0.14

-0.07
-0.14

} Target domain

Source domains

 Estimate f nY = f(X1, X2, X3, X4) from source domains and few labels in

target domain



A description of domain adaptation tasks:

 Unsupervised multi-source domain adaptation

No labels in target
X1 X2 X3

1200 1000 1500 9 2

1201 800 1500 8 2 .
1195 200 1499 7 2 Target dOmam
2000 600 3000 7 -0.21

‘/& 2190 450 3000 8 -0.16
2000 200 2099 8 -0.16
SOUFCG domains
1200 1000 1500 9 -0.17

\/& 1201 800 1500 10 -0.14
1195 200 1499 10 -0.07
1340 900 1498 -0.14

e Estimate f nY = f(X1, X2, X3, X4) from source domains and by exploiting
the knowledge of the change from the unlabelled data in target



A description of domain adaptation tasks:

« Domain generalisation: required to work under any intervention

X1 X2
? ?
? ?
? ?
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2000 200
1200 1000
1195 200
1340 900
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10
10
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-0.21
-0.16

-0.16
-0.17
-0.14

-0.07
-0.14

No data In

target

Target domain

Source domains

e Estimate f nY = f(X1, X2, X3, X4) from source domains, no idea about

what happens in the target



Domain adaptation from a graphical perspective
[Zhang et al. 2013]
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Domain adaptation from a graphical perspective
[Zhang et al. 2013]
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 Add a variable D to represent the domain

* Consider the data as coming from a single distribution P(X,Y, D)



Domain adaptation from a graphical perspective
[Zhang et al. 2013]

D X1 X2 Y
/° n

Normal 0.1
Normal 0.2
 We can represent P(X,Y, D) with a
(possibly unknown) causal graph

Normal 1.1
Normal 0.1
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 Add a variable D to represent the domain

* Consider the data as coming from a single distribution P(X,Y, D)



Domain adaptation from a graphical perspective
[Zhang et al. 2013]

D X1 X2 Y
Normal 0.1
Normal 0.2
Normal 1.1

Normal 0.1
Gene A IR
Gene A BN
Gene A 4

Gene A W~

W DD W DD W DN WD
VN OV Y Yy O =+ O O

We can still use d-separations/
conditional independences to

 Add a variable D to represent the domain . .
reason about invariances

* Consider the data as coming from a single distribution P(X,Y, D)



Bayesian networks: d-separation [Pearl 2009}

* (Given a causal graph, d-separation is a graphical criterion that (under
standard conditions®) allows us to read conditional independences

* Causal Markov assumption: X 1l ;Y |Z — X 1 Y|Z /
Causal faithfulness assumption: X L Y|Z — X 1 ,Y|Z |



Graph terminology: collider on a path

A path between node i and node j is a sequence of distinct nodes

(7, ...,7]) such that each two consecutive nodes are adjacent
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A path between node i and node j is a sequence of distinct nodes
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» A collider konapath 7z = (i,...,J) is a non-endpoint node (k # i, ) s.t.
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Graph terminology: collider on a path

A path between node i and node j is a sequence of distinct nodes

(7, ...,7]) such that each two consecutive nodes are adjacent

» A collider konapath 7z = (i,...,J) is a non-endpoint node (k # i, ) s.t.

the path 7 contains — k <« , the other nodes are non-colliders
-0-©

q: j non-collider (chain)

collider



d-separation: blocked paths

« A path between i and jis blocked by A C V at least one condition holds:
» There is a non-collider on the path that is in A, or
» There is a collider k on the path, but k € A and Desc(k) N A = &

e Otherwise it is active

i Descendants of k (i.e. nodes
‘that can be reached from k |

by following directed edge) |




d-separation: blocked paths - example 1

« A path between i and jis blocked by A C V at least one condition holds:
» There is a non-collider on the path that is in A, or
e There is a collider k on the path, but kK € A and Desc(k) N A = @&

e Otherwise it is active
o 2@

non-collider

d,__o‘/ f 3 € A, the path is blocked,

otherwise it Is active




d-separation: blocked paths - example 2

« A path between i and jis blocked by A C V at least one condition holds:
» There is a non-collider on the path that is in A, or
e There is a collider k on the path, but k € A and Desc(k) N A = @&

e Otherwise it is active

00O

collider non-collider

“/ f 1 € A, the path is blocked
OR

If 3 & A and 2 & A, the path is blocked



d-separation: definition

» Nodesiand jis d-separated by A C V if all paths between i, j are blocked
» We denote d-separationas: 1., j| A

* Otherwise we say they are d-connected

- We denote d-connectionas i AL, j| A

e Under standard assumptions: X Il , V|72 <= X 1L V|Z

 Demo: http://www.dagitty.net/learn/dsep/index.htmil



~ Structural causal model - domain/environment variable

€1, €5, €3, €y ~ N(0,1)
X, =10+ ¢

Y =3X, + ¢y

X, =—-2Y+¢

X; =2Y +0.1e;

€1, €5, €3, €y ~ N(0,1)
X, =10+ ¢

Y =3X, + ¢y

X, =1

X; =2Y+0.1€;

€1, €9, €3, €y ~ N (0,1)

X1=1O+€1



Structural causal model - domain/environment variable

€1, €5, €3, €y ~ N(0,1)

X1=1O+€1
Y:3X1+€Y D — O
X, =2Y+0.1
) T-16 €1, €5, €3, €y ~ N (0,1)
Xl — 10"‘61
€1, €5, €3, €y ~ N(0,1) Y = 3X, +
Y =3X, + ey = _2Y+e,if D=0 Q : +@)
?iinm =11 D=1
3= I 10Y + ¢y if D=2 @
€1, €y, €3, €y ~ N(0,1) X3 =2Y + 0.163
Y=3X1+€Y



€1, €5, €3, €y ~ N(0,1)
X, =10+ ¢

Y =3X, + ¢y
Xs=—2Y+¢

X; =2Y+0.1¢;

€1, €5, €3, €y ~ N(0,1)
X, =10+ ¢

Y =3X, + ¢y

X, =1

X; =2Y+0.1€;

€1, €9, €3, €y ~ N (0,1)

X1=1O+€1

- Domain adaptation example

Source
domains

Target domain

@



Domain adaptation example - X1

40.0
37.5 -
35.0 -
32.5 -

™ 30.0 -
27.5 A
25.0 -

22.5 1

d x1 y X2 x3
0 8.973763 26.130494 -51.648475 52.330948
0 10.428340 31.894998 -64.373356 63.802704
0 8.911484 25.166962 -52.313502 50.279162
0 9.841798 29.783299 -60.419296 59.539914
0 8.969118 27660573 -55.075839 55.327185
x3 o ®
48 a e
® 56 ;". ®
& 4 . o 14 .’ ®
e 72 ?%‘ﬁfa&.ﬂ;} o
r &«*}o 2
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7 8 9 10 1 12 13
x1

X1 Y
d x1 y x2 x3
1 9.941015 28.696601 1 57475345
1 8.762380 25.715927 1 51.275390
1 9.636201 28.407387 1 56.884332
1 10.875069 31.370200 1 62.686789
1 10.023968 31.253540 1 62.388444
40.0' x3
375 - 40
438
3501 o 56
o ©4
32.5 - o 72
>300"
27.5 1
25.0 1
22.5 1
20.0 A
7 8 10 1 12
x1

35 -

25 -

20 -

NN NN

X1
9.671277
9.613139

10.718335
9.002388
9.289340

y
26.556214
27120226
29.5689532
26.629254
29.030355

X2
265.034283
270.746784
295.318526
264.942583
289.747562

x3
53.338139
54.340341
59.291053
53.340389
58.098312

x3

BNERES

10 11




Domain adaptation example - X1

(_\l l)(,\) S INVar [ At

X1 Y >

Y 0 = df_0["y"].values.reshape(-1, 1)
Y 2 = df_2["y"].values.reshape(-1, 1)
X1_0 = df_0["x1"].values.reshape(-1, 1)
X1_2 = df_2["x1"].values.reshape(-1, 1)

model = LinearRegression().fit(X1_0o, Y_0)
est_Y_ 2 = model.predict(X1_2)
print("Mean squared error predicting Y in environment 2 based on model learnt in environment @ from X1", mean_squared_error(Y_2,est_Y_2))

Mean squared error predicting Y in environment 2 based on model learnt in environment @ from X1 ©0.9336539410357941
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20.0 A
7 8 9 10 11 12 13 7 8 9 10 11 12 13 7 8 9 10 11 12 13

x1 x1 x1



Domain adaptation example - X2

Source domains Target domain

k=l
40 A & ‘.
;
4
35 - .
[
b
s
= 30 A =
G
(o) * (=)
25 ~
" d
: ' °
50 - g o e 1
. o 2

-100 0 100 200 300 400
x2

sns.scatterplot(data = df, x="x2", y="y", hue="d")

X2_0 = df_0["x2"].values.reshape(-1, 1)

X2_2 = df_2["x2"].values.reshape(-1, 1)

model = LinearRegression().fit(X2_@, Y_0)

est Y 2 = model.predict(X2_2)

print("Mean squared error predicting Y in environment 2 based on model learnt in environment @ from X2'", mean_squared_error(Y_2,est_Y_2))

Mean squared error predicting Y in environment 2 based on model learnt in environment @ from X2 30518.374428658524



~ Separating features intuition - X1
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Separating features intuition - X2
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Separating features intuition - X2
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Which variables d-separate Y from D now?

2000 600 3000 -0.21

2190 450 3000 -0.16

@ Y »@ 2000 200 2999 -0.16
1200 1000 1500 -0.17

@ 1201 3800 1500 -0.14

1195 200 1499 -0.07
1340 900 1498 -0.14

N N N
N N )
N Y N
N N Y

' Intervention on every variable except Y =
‘ _domain generalisation |




Common misconceptions: 1. An invariant feature
need not be causal

Y 1L D| X,

4'0_'°_’° Y AL D|X,, X,

* Y|X1,X2 is invariant = invariant features are not necessarily parents of Y



Common misconceptions: 1. An invariant feature
need not be causal

Y 1L D| X,

4°_>°_>e Y1 D|X,,X,

* Y|X1,X2 is invariant = invariant features are not necessarily parents of Y

Invariant feature across “many different datasets” is not enough in general to find |
| ___causal parents, need more assumptions |



Common misconceptions: 1. An invariant feature
need not be causal

Y 1L D| X,
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* Y|X1,X2 is invariant = invariant features are not necessarily parents of Y

e |nvariant Causal Prediction [Peters et al. 2016] under causal sufficiency:
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Common misconceptions: 1. An invariant feature
need not be causal

Y 1L D| X,

”0—’0*@ Y 1L D|X,,X,

* Y|X1,X2 is invariant = invariant features are not necessarily parents of Y

e |nvariant Causal Prediction [Peters et al. 2016] under causal sufficiency:
St= () SCPay) (X, X5 N X} = {X;}

Y1LDI|S




Common misconception 2: Parents are not
enough under latent confounding

Y 1L D|X,

-Q-0-0 o

Y 1L D|X,,X,

e Y|X1 is invariant, Y|X2 is not
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Common misconception 2: Parents are not
enough under latent confounding

Y 1L D|X,

-Q-0-0 o

Y 1L D|X,,X,

e Y|X1 is invariant, Y|X2 is not

 Conclusion: causality (e.g. using the causal parents, learning the
complete causal graph) is neither necessary or sufficient” for transfer



Desiderata for a causality inspired domain
adaptation method

X, Y and changes can be represented by an unknown causal graph
* Allow for latent confounders

* Avoid parametric assumptions, allow for heterogeneous effects across domains
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Avoid parametric assumptions, allow for heterogeneous effects across domains

Instead of modeling changes between each domain, distinguish the change
between the mixture of sources and the target



Desiderata for a causality inspired domain
adaptation method

X, Y and changes can be represented by an unknown causal graph
Allow for latent confounders
Avoid parametric assumptions, allow for heterogeneous effects across domains

Instead of modeling changes between each domain, distinguish the change
between the mixture of sources and the target

Avoid common assumption that if Y| T(X) is invariant across multiple source
domains, then Y|T(X) is invariant also in the target domain

* This also (implicitly) assumed by methods based on the idea that
iInvariance => causality



Causal domain adaptation problem
[Magliacane et al. 2018}

 Unsupervised multi-source domain adaptation

Normal
Normal
Normal
Normal




Causal domain adaptationss |
Multiple context variable

[Magliacane et al. 201¢€ C1,C2...
 Unsupervised multi-source domain adaptation

Normal
Normal
Normal
Normal




Causal domain adaptation problem
[Magliacane et a 8]

* We interpret the change in the target domain as a soft intervention

 We assume Y cannot be intervened upon directly - P(Y) can still change

Normal
Normal
Normal
Normal




Causal domain adaptation problem
[Magliacane et al. 2018}

Now the graph is unknown!




Joint Causal Inference [Mooij et al. 2020}

* \We represent jointly different distributions as an unknown single causal graph

* Instead of a single domain variable, we add several context variables so we can
disentangle changes in distribution across the datasets

* |f we know nothing about the changes in the datasets, we use indicator variables

X1 X2 Y

0 0.1 2 0
0 0 0.2 3 0
0 0 1.1 2 1
0 0 0.1 3 0
1 0 3.1 2 1
1 0 3.2 3 1
1 0 4 1 1
1 0 3.2 3 0
0 1 0.2 1 ?
0 1 0.3 1 ?
0 1 0.3 2 ?
0 0.4 1 ?



Joint Causal Inference [Mooij et al. 2020}

 \We can learn an equivalence class of the unknown single causal graph
using conditional independence tests on systematically pooled data

e \We treat context variables as normal variables that we know are uncaused

Q
2,
N
e
N

C, 1L Y|X, Y
X, LX,|Y
X, X,|Y,GC,

- - - 0O O O O O O
- O O W WD 2
O 4 O - A a4 a4 O O R

0
0
0
L
L
L
0
0
0



Causal domain adaptation: separating features

o Separating features: sets of features that d-separate Y from the context
variable C1 representing the target domain

N\
0-0-0

e {X1}is a separating feature set, {X1, X2} could lead to arbitrary large error




What if the causal graph is unknown?

* |dea: we could test the conditional independence in the data
YU C|X,? YICl|X,?



What if the causal graph is unknown?

* |dea: we could test the conditional independence in the data

YLeTx? YLedx,

 Problem: Y is always missing when C1=1, so we cannot test these
X2 Y

C1
0
0
0
L
L
L
0
0
0
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What if the causal graph is unknown?

* |dea: we could test the conditional independence in the data

YLeTx? YLedx,

 Problem: Y is always missing when C1=1, so we cannot test these
X2 Y

Q
Q
N

Invariant Models for Causal Transfer Learning
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Idea: Separating features in sources are also separating in target

YJ.I_ CZ‘XI — YJ.I_ Cl‘Xl
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Separating features in sources are also separating
In target - counterexample
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What if the causal graph is unknown?

* |dea: we could test the conditional independence in the data

YLeTx? YLedx,

 Problem: Y is always missing when C1=1, so we cannot test these

C1 ) Y

0

X X, 4 X,

0 X, 4L C,

1

1 X, 4 X5|C,
;

0

0

0

- - - O O O O O O
— O O W W ihDDN - =
O -4+ O ™~V VvV v =+ O O

 |ldea: Can we use all other in/dependences?



Assumptions [Magliacane et al. 2018]

* \We assume that there exists an acyclic causal graph that fits all the data
(Joint Causal Inference)

* We assume Y cannot be intervened upon directly



Assumptions [Magliacane et al. 2018]

* We assume that there exists an acyclic causal graph that fits all the data
(Joint Causal Inference)

* We assume Y cannot be intervened upon directly

* We assume no extra dependences involving Y in target domain C1=1
ADBCV\[Y.C;} YU A|B,C;=0 = YIA|BC, =1
ALD|BY,C,=0 = AL D|B,Y,C =1

* Note that this does not assume anything about the separating set test :

M‘z



Inferring separating sets without enumerating all
possible causal graphs

Provably separating

Y 1L C,|X,

Provably not separating
< Y UL C X,

Not identifiable

Yy Cz‘Xl,Cl=O
XzJ.I_Cz‘Y,C1=O

All testable conditional ‘ Theorem brover-
iIndependences from data R P

Logic encoding of d-separation

[Hyttinen et al. 2014]




A simple causal feature selection algorithm

Source domains data List of combinations of features ordered
by source domain loss in predicting Y

SRR | (X1, C2), {X1, X2, C2}, {X1, X2}, ..))

selection
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A simple causal feature selection algorithm

Source domains data List of combinations of features ordered
by source domain loss in predicting Y
Standard feature . |
<election - | =({X1, C2}, {X1, X2, C2}, {X1, X2}, ...)

Q
Q
N

All testable conditional
independences from data Theorem prover

X, 1L X,|X,
Y1 C2|X1,C1 =O
X2J.LC2|Y,C1=O

- - 4 O O O O O O
©O O O = 4 4 O O O
- O O W LW NN =22
) W) ) = 4 4 a4 O O -<

Logic encoding of d-separation
[Hyttinen et al. 2014]



A simple causal feature selection algorithm

Source domains data List of combinations of features ordered
by source domain loss in predicting Y

Standard feature Y L=({X1, C2}, {X1, X2, C2}, {X1, X2}, ...)

selection

Provably not separating

Y ILC,|S

Q
Q
N

All testable conditional
independences from data Theorem prover

X, 1L X,|X,
Y1 C2|X1,C1 =O
X2J.LC2|Y,C1=O

)
Lo
AR
p R v
e ?
.
s

Not identifiable

- - 4 O O O O O O
©O O O = 4 4 O O O
- O O W LW NN =22
) W) ) = 4 4 a4 O O -<

Logic encoding of d-separation
[Hyttinen et al. 2014]



A simple causal feature selection algorithm

Source domains data List of combinations of features ordered
by source domain loss in predicting Y
Standard feat
SR | (X1, C2}, (X1, X2, C2}, {X1, X2}, ...

- (X1, X2, 2
All data (including target) =

Provably not separating
cC1 C2 X2 Y Y IL C,|S
0 0 1 0 All testable conditional ~
0 0 1 0 independences from data Theorem prover [|& i ? Not identifiable
0 0 2 1 - n
0 1 2 1 PR -

5 3 1 Y1 Gl|X,C, =0
o 1 3 1 X, 1L G|Y,C, =0
1 0 0 2
1 0 0 2
1 0 1 2

Logic encoding of d-separation
[Hyttinen et al. 2014]



A simple causal feature selection algorithm

Source domains data List of combinations of features ordered

by source domain loss in predicting Y

Standard feature Y L=({X1, C2}, {X1, X2, C2}, {X1, X2}, ...)

selection

i

- = 4 O O O O O O

Q
N

©C O O = = 2 O O O

- O O W W NN =L =

\ 4

0 All testable conditional

0 independences from data Theorem prover

1 X, I X;|X, L A
YU GI|X,,C,=0 v Provably separating L

1 2141, €1 - X . Learn 7(S

> on source

3 domains

Logic encoding of d-separation

[Hyttinen et al. 2014]



A simple causal feature selection algorithm

Source domains data List of combinations of features ordered
by source domain loss in predicting Y

Standard feature Y L=({X1, C2}, {X1, X2, C2}, {X1, X2}, ...)

selection
W Select new set S

lterate until empty

All testable conditional y s
independences from data Theorem prover ’
X, AL X51X, |

Provably not separating

Y ILC,|S

Q
Q
N

Y
0 0 1 0
0 0 1 0 ? Not identifiable
0 0) 2 1 m
0 L 2 1 A
0 1 3 1 YU GI|X,C,=0 Provably separating Learn f(S)
0o 1 3 1 X, L G|Y,C; =0 yic|s s
e 0o o on source
- o domains
1 0 1 ?

Logic encoding of d-separation

[Hyttinen et al. 2014]




A simple causal feature selection algorithm

C1 c2 X1 X2 Y

02 0 2
03 0 2
03 1 2

Learn f(S)

on source

domains



Desiderata for a causality inspired domain
adaptation method

X, Y and changes can be represented by an unknown causal graph——————————

Allow for latent confounders
Avoid parametric assumptions, allow for heterogeneous effects across domains

Instead of modeling changes between each domain, distinguish the change
between the mixture of sources and the target

Avoid common assumption that if Y| T(X) is invariant across multiple source
domains, then Y|T(X) is invariant also in the target domain

Only search for invariant features with respect to current target task



Desiderata for a causality inspired domain
adaptation method

X, Y and changes can be represented by an unknown causal graph
Allow for latent confounders
Avoid parametric assumptions, allow for heterogeneous effects across domains

Instead of modeling changes between each domain, distinguish the change
between the mixture of sources and the target

Avoid common assumption that if Y| T(X) is invariant across multiple source
domains, then Y|T(X) is invariant also in the target domain

[No need to find]

Only search for invariant features with respect to current target task | causal graph or
i equivalence

~ class



Limitations and future work

Potentially too conservative: Separating sets may exist that are not provably
separating

 Extension: can we use active learning/intervention design to decide
most informative interventions?

Scalability: using (error-correcting) logic-based encoding with all Cl tests as
input scales to tens of vars (including context variables)

* Extension: use approximate algorithms, combine with low dim
representations

Can we apply this to multi-task RL (e.g. in factored MDPs)?



A sheak peak In applications of causality-inspired ML.:

An Approach to Data-Driven Domain
Adaptation =

0, Oy 03 65 Os
Data set 1 ' | * !

Data set 2 @ 6'@ @ @
Jata set n @ @ @

® Only relevant features needed to predict ¥

m;

® Augmented graph learned by CD-NOD
® Independently changing modules 6;

® Special case: invariant modules
® Domain adaption: inference on this graphical model
® Infer the posterior of Y in target domain

® Nonparametric methods to model conditional distributions

Zhang, Gong, Stojanov, Huang, Liu, and Glymour, "Domain Adaptation As a Problem of Inference on Graphical
Models,” NeurlPS 2020. (Huang et al., ICML’ | 9 for time series data)

https://www.youtube.com/watch?v= MVi6XzOdD0&ab channel=0OnlineCausallnferenceSeminar https://arxiv.org/abs/1903.01672



https://www.youtube.com/watch?v=_MVi6XzOdD0&ab_channel=OnlineCausalInferenceSeminar

AdaRL: What, Where, and How to Adapt in Transfer RL

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang

 We have n source domains with random trajectories

 |earn a factored MDP (symbolic inputs) or POMDP (images) with latent change
factors that are constant in each domain, but vary across domains over sources

e |dentify the minimal dimensions of the state and change factors that are
necessary and sufficient for policy optimisation

https://arxiv.org/abs/2107.02729



AdaRL: What, Where, and How to Adapt in Transfer RL

Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang

 Learn a policy over all source domains, parametrised in the minimal change factors

* Inthe target domain learn the value of the change factor and apply this policy

https://arxiv.org/abs/2107.02729



Biwei Huang, Fan Feng, Chaochao Lu, Sara Magliacane, Kun Zhang

Source domains Target domain

Domain-specific parameters |

Domain 1

Domain W

Domain n

Identify compact
domain-

generalisable
representations

Estimate

domain-specific
parameters
Orarget

(6"
Optimal parametrised policy

7*(Grarger)

timeslice t Optimal target policy

timeslice t-1

Model estimation

https://arxiv.org/abs/2107.02729

| target domain |

AdaRL: What, Where, and How to Adapt in Transfer RL
ICLR 2022

. Simplifying |
lassumption: no |

new edges Iin




FansRL: Factored Adaptation for Non-Stationary Reinforcement Learning
Fan Feng, Biwei Huang, Kun Zhang, Sara Magliacane NeurlPS 2022

 The latent change factors are not constant anymore and they model non-
stationarity
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Change factors follow a Markov process:  Non-stationary environments (wind changes) ~ on-Stationary rewards (target changes)

- Discrete/abrupt changes
- Continuous/smooth changes

https://arxiv.org/abs/2203.16582



Conclusions

* D-separation [Pearl 1988] is a principled way to reason about invariances and
distribution shift

 Not a new observation, known since [Schoelkopf et al 2012, Zhang et al. 2013]



Conclusions

e This is true even with:
 Unknown causal graph
 Missing data/Cl (so unknown MEC)

 D-separation logic encodings [Hyttinen et al 2014] allow us to reason about d-
separations even with missing data, even without reconstructing MEC



Thanks! Questions?

(joint work with Thijs van Ommen, Tom Claassen, Stephan Bongers, Philip Versteeg, Joris Mooij,

Biwei Huang, Fan Feng, Chaochao Lu and Kun Zhang)



Assumptions [Magliacane et al. 2018]

* \We assume that there exists an acyclic causal graph that fits all the data
(Joint Causal Inference)

* We assume Y cannot be intervened upon directly



Assumptions [Magliacane et al. 2018]

* We assume no extra dependences involving Y In target domain C1=1

A,D,B C V\{Y,C,}

A LDIB(T, 61 =)= 4L DBOG = D)



Assumptions [Magliacane et al. 2018}

 We assume no extra dependences involving Y in target domain C1="1
ADBCV\{Y,C;) YU A|B,C,=0 = YU A|BC =1
ALD|BY,C,=0 = AL D|B,Y,C =1

There can be extra

iIndependences in the target




Assumptions [Magliacane et al. 2018]

 We assume no extra dependences involving Y in target domain C1="1
ADBCV\{Y,C;) YU A|B,C,=0 = YU A|BC =1
ALD|BY,C,=0 = AL D|B,Y,C =1

Some Cls are still missing:

YILAIB AlD|B,Y




Assumptions [Magliacane et al. 2018]

 We assume no extra dependences involving Y in target domain C1=1
(Y)L A|B, C1 =0)=> YILA|B,C =1
AJJ_D\B YCI—O —> AL D|B,Y,C, =1

A,D,B C V\{Y,C,}

* Note that this does not assume anything about the separating set test :

M‘z



d-separation: complete example

* Nodes i and | is d-separated by A if all paths between them are blocked
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If 3 € A, the path is blocked




d-separation: complete example

* Nodes i and | is d-separated by A Iif all paths between them are blocked

- OO

non-collider

If 3 € A, the path is blocked

-©0-0-0O

collider non-collider

If ] € A, the path is blocked, OR
If 3 & A and 2 & A, the path is blocked



d-separation: complete example

* Nodes i and | is d-separated by A Iif all paths between them are blocked

- OO

non-collider

If 3 € A, the path is blocked

A={123)

-©0-0-0O

collider non-collider

24 ,4|{1,3} f 1 € A, the path is blocked



A simple example

X2




A simple example
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A simple example

C1
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A simple example
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A simple example

Q
N

N
Y I G,|C =0 C1

Y J.I_ C2 ‘Xl’ Cl — O l x/' ‘\‘
» 4
0-0 O

Xz_ﬂ_ Cz‘Y,Cl :O
Perform allowed CI tests All possible compatible graphs

- - - O O O O O O
.Q.Q.Q_L_L_L_Loo-<

0
0
0
L
L
L
0
0
0

 \We can prove untestable separating test without reconstructing the graph:

Y1 C|X, True in all possible compatible graphs



