
The intersection of Optical Chemical
Structure Recognition (OCSR) and

object detection
Martijn Oldenhof

25th of October 2022– AIDD school - Leuven

The intersection
of Optical
Chemical
Structure
Recognition
(OCSR) and
object detection

• Part I:
• Introduction and Motivation: ChemGrapher
• (Weakly Supervised) Object Detection
• Updating Object Detection Models with

Probabilistic Programming

• Part II:
• Experiments in W&B

CHEMGRAPHER: OPTICAL GRAPH
RECOGNITION OF CHEMICAL

COMPOUNDS BY DEEP LEARNING
Oldenhof et al., 2020, Journal of Chemical Information and Modelling.

Data mining chemical
compounds in
literature

• Thousands of scientific publications
describe new chemical compounds.

• Details mostly only described using
an image which is less suited to
query accurately.

• Rich source of data but largely
unexploited.

• Need for a tool to convert image to
graph.

ChemGrapher

ChemGrapher
• Proposed Method:
• Segmentation in segments of atoms,

bonds and charges
• Classification of segments taken into

account segment, original image and
area of interest.

• Resulting predictions to build Graph:

Training labels for
ChemGrapher

• Chemical Compounds can be represented
with a string representation: SMILES

• RDkit : Open-Source Cheminformatics
Software

• RDkit can take as input SMILES and output
an image of chemical compound

• Fork of RDkit:
https://github.com/biolearning-
stadius/rdkit

• To create pixel-wise labels for RDkit
generated images.

https://github.com/biolearning-stadius/rdkit

ChemGrapher vs OSRA[2]

• The dataset (UoB) of 5740 images and molfiles
of chemical structures developed by the
University of Birmingham, United Kingdom, and
published alongside MolRec [1].

• ChemGrapher vanilla performance trained on
RDkit generated images only

• ChemGrapher retrained including 40 images
from UoB dataset labelled manually.

[1] M. Sadawi, N.; Sexton, A.; Sorge, V. Chemical Structure Recognition: A Rule Based Approach.Proc. SPIE2012,8297, 32–.
[2] Filippov, I. V.; Nicklaus, M. C. Optical Structure Recognition Software To RecoverChemical Information: OSRA, An Open Source Solution.J. Chem. Inf.
Model.2009,49, 740–743.

Main
drawback of
ChemGrapher

• ChemGrapher needs pixel level annotated
images as training data
• End user is only interested in predicted graph

(not pixel level annotations of images)
• Images are usually not pixel level annotated
• How to use (graph – not pixel level) labelled

images to train ChemGrapher? For example
you only have the SMILES of compound on
Image.

Interesting related work: Object detection
• End user is interested in predicted

bounding boxes (instance level
annotations of images)
• Pixel level annotations are also

not widely available.
• How to train object detection with

weak supervision?

Source: https://en.wikipedia.org/wiki/Object_detection

Motivation of object detection approach

Source: Hormazabal, Rodrigo, et al. "CEDe: A collection of expert-curated datasets with atom-level entity annotations
for Optical Chemical Structure Recognition.” (accepted for NeurIPS 2022)

Motivation of object detection approach

Source: Hormazabal, Rodrigo, et al. "CEDe: A collection of expert-curated datasets with atom-level entity annotations
for Optical Chemical Structure Recognition.” (accepted for NeurIPS 2022)

Updating Object Detection Models
with Probabilistic Programming [1]

• Training object detection models requires
instance level (bbox) annotated images
• Instance level annotations are often not
available however knowledge built from existing
image level annotated domains should be
intuitively transferrable.
• ProbKT: should be able to fine-tune pretrained
object detection models with ‘arbitrary’
supervision by probabilistic reasoning.

[1] Oldenhof, Martijn, et al. "Updating Object Detection Models with Probabilistic Programming.”
presented at ICML 2022 Workshop – UpML

Proposed Method: ProbKT

How does the probabilistic
reasoning work?
• In general probabilistic logical reasoning uses knowledge

representation relying on probabilities that allow encoding
uncertainty in knowledge.

• Knowledge can be encoded using probabilistic facts and logical
rules. For example:
• A probabilistic fact is: “Alice and Bob will each pass their

exam with probability 0.5”
• A logical rule: “if both Alice and Bob pass their exam, they

will host a party”

Probabilistic Programming and Inference

Inference by computing the
probability of a particular
statement or query

For example query probability
of:
“Alice and Bob will host a
party"

• The query is executed by
summing over all probabilities of
occurrence of the different
possible worlds w compatible
qith the query q. So the
probability of a query q in a
program :

• Where stands for the
realization of w according rules F
so that q is true.

Probabilistic Programming and Inference

• Probable worlds so that q () is true according rules F:
• Alice passes exam AND Bob passes exam Party
• Alice not passes exam AND Bob not passes exam No Party
• Alice passes exam AND Bob not passes exam No Party
• Alice not passes exam AND Bob passes exam No Party

• So,

• Only 1 possible world where q (.) is true : 0.5*0.5 = 0.25

Rules F?

Rules F?

Rules F?

Rules F?

Proposed Method: ProbKT

Iterative Relabeling

• To further improve the performance, we propose an iterative
relabeling strategy that consists in multiple steps : fine-tuning,
re-labeling and re -training. A similar has also been proposed by
Zhong et al. [1]

[1] Yuanyi Zhong, Jianfeng Wang, Jian Peng, and Lei Zhang. Boosting weakly supervised object detection with progressive knowledge transfer. In
European conference on computer vision, pages 615–631. Springer, 2020

Experiments
Weakly supervised knowledge transfer with class counts

• Query q = number of objects from each class in the image
• 2 datasets : CLEVR-mini and Molecules dataset

Experiments
Weakly supervised knowledge transfer with class counts

• Baseline models
• Resnet50-CAM (Xue et al [1])
• WSOD-transfer (Zhong et al [2])

[1] Yao Xue, Nilanjan Ray, Judith Hugh, and Gilbert Bigras. Cell counting by regression using
convolutional neural network. In European Conference on Computer Vision, pages 274–290.
Springer, 2016.
[2] Yuanyi Zhong, Jianfeng Wang, Jian Peng, and Lei Zhang. Boosting weakly supervised object
detection with progressive knowledge transfer. In European conference on computer vision,
pages 615–631. Springer, 2020.

Results 1/3

Experiments
Other types of weak supervision

• Ranges of Class Counts
• For example:

1 cylinder, > 1 spheres

• Sum of digits
• For example:

8

Results 2/3

Results 3/3

Conclusions for Part I

• Training object detection usually requires large amounts of richly
annotated images.
• We proposed a novel approach to train object detection models by

leveraging richly annotated datasets from other domains and
allowing arbitrary types of weak supervision on the target domain.
• We empirically demonstrated that ProbKT outperforms existing

methods in a wide range of cases.
• ProbKT allows to consider a wide range of supervisory signals in the

target domain.

The intersection
of Optical
Chemical
Structure
Recognition
(OCSR) and
object detection

• Part I:
• Introduction and Motivation: ChemGrapher
• (Weakly Supervised) Object Detection
• Updating Object Detection Models with

Probabilistic Programming

• Part II:
• Experiments in W&B

Weights & Biases

• Experiment Tracking: Visualize experiments in real time
• Hyperparameter Tuning: Optimize models quickly
• Data and Model Versioning: Version datasets and models
• Model Management: Manage the model lifecycle from training to

production
• Data Visualization: Visualize predictions across model versions
• Collaborative Reports: Describe and share findings
• Integrations: PyTorch, Keras, Hugging Face, and more
• Private-Hosting: Private cloud and local hosting of the W&B app

Weights & Biases

• How did I use W&B?
• Organize experiments:

• Store results/models
• Visualize quickly
• Repeat experiments easily

• Scale experiments to different servers/clusters

Weights & Biases

1. Set up wandb:
• Sign up for an account on https://wandb.ai/site
• Install wandb Python library
• Login to your wandb account using wandb commands locally. You will need an

API key you can find here: https//wandb.ai/authorize (on all machines that
will run experiments)

https://wandb.ai/site

Weights & Biases

2. Start a new run
• In general:

import wandb

wandb.init(project="my-awesome-project")
• Our use case:

create wandb_config.py:
import wandb
wandb.init(anonymous="allow", reinit=False)
ENTITY=wandb.run.entity

import in other scripts:
from robust_detection import wandb_config

Weights & Biases

3. Track Metrics
• In general:

• Use wandb.log() to track metrics
• For example:

wandb.log({'accuracy': train_acc, 'loss': train_loss})

• Our Use Case:
• Using PyTorch Lightning:

wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)

Weights & Biases

Weights & Biases

4. Model Checkpointing
• Easy in Pytorch Lightning

log model only if `val_accuracy` increases
wandb_logger = WandbLogger(log_model="all")
checkpoint_callback = ModelCheckpoint(monitor="val_accuracy", mode="max")
trainer = Trainer(logger=wandb_logger, callbacks=[checkpoint_callback])

#save hyperparameters
class RCNN(pl.LightningModule):

def __init__(self, len_dataloader, hidden_layer, num_classes,
score_thresh,model_type = "mask_rcnn", pre_trained = True, backbone_run_name = None,
agg_case=False, **kwargs):

super().__init__()
self.save_hyperparameters()
…

Weights & Biases

5. Sweeps:
• In General:

A Weights & Biases Sweep combines a strategy for exploring hyperparameter values with the code that evaluates them.
The strategy can be as simple as trying every option or as complex as Bayesian Optimization and Hyperband.

• Our Use Case:
parameter_name:

values:
- 8
- 6
- 7
- 5
- 3
- 0
- 9

Sweeps in W&B - example

Launch Agents W&B

TODO List

agent1 agent2 agent n-1 agent n

Follow-up

Post process Sweeps
api = wandb.Api()
sweep = api.sweep(f"/{ENTITY}/object_detection/"+sweep_id)
sweep_runs = sweep.runs

best_runs = []
fold = args.fold

runs_fold = [r for r in sweep_runs if (r.config.get("fold")==fold)]
runs_fold_sorted = sorted(runs_fold,key = lambda run: run.summary.get("restored_val_acc"), reverse = False)
best_run = runs_fold_sorted[0]
model_cls = RCNN
data_cls = Objects_RCNN

run_name = best_run.id
run = api.run(f"{ENTITY}/object_detection/{run_name}")

fname = [f.name for f in run.files() if "ckpt" in f.name][0]
run.file(fname).download(replace = True, root = ".")
model = model_cls.load_from_checkpoint(fname)

Conclusions for Part II

• W&B
• Helps to track experiments
• Visualize
• Scale easily
• Post process and Rerun
• …

