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What Can You Do With Simple Tools?

• No neural networks
• No complex ML algorithms
• But a few cool applications



Materials Informatics is Rapidly Growing

Senderowitz and Tropsha, JCIM 2018, 58, 1313-1314 

Terminology is important!



The Rise and Rise of Material Informatics

> 40000 compounds

> 160000 compounds



Material Genome Initiative (NIST)
The Materials Genome 
Initiative is a federal multi-
agency initiative for 
discovering, manufacturing, 
and deploying advanced 
materials twice as fast and at 
a fraction of the cost 
compared to traditional 
methods. The initiative 
creates policy, resources, and 
infrastructure to support U.S. 
institutions in the adoption 
of methods for accelerating 
materials development.



AFLOW (https://aflowlib.org/)

Materials space is HUGE ~1030-50 candidates

Too Much Information or Too Little Information?



Drowning in Information but Starving for 
Knowledge (John Naisbitt)

Tremendous opportunities for materials-informatics

Important lessons to be taught from chemoinformatics



Structure-Property Predictions

• Accurate experimental data (e.g., 
activities, dependent variables)

• Descriptors (independent variables)
v Structure-derived , process-derived 

(measured; calculated)

• A mathematical model
v e.g., quantitative, qualitative, linear, 

non-linear
• Model validation

v Models developed on a training set 
and tested on an independent test set

v Models should be simple and 
interpretable 



The Compounds

• Chemoinformatics
v Structures typically well-defined
v Potential exceptions: Polymers and mixtures 

(but constituting building blocks/components 
are known)

v True even for combinatorial chemistry

• Materials informatics
v Structures sometimes well-

defined
v Not true for combinatorial 

material synthesis

Yosipof et al., Mol Inform. 2016, 35, 568-579



The Data
• Chemoinformatics

v Primarily concerned with pharmacokinetics / pharmacodynamic 
related activities

v Diversity comes from the targets / ligands
v Medium / large / very large data sets  

• Materials informatics
v Diversity comes from activities and the nature of the materials
v Solubility of materials
v Biological activities
v Young’s modulus
v Thermal conductivity
v Atomization energies

v Glass transition temperatures
v Half decomposition temperature
v Melting point of ionic liquids
v Viscosity
v Photovoltaic properties

v Tiny / small / medium / large / very large data sets



The Descriptors

• Chemoinformatics
v Typically nD (n = 1,5) “classical” descriptors
v Limited usage of QM-derived descriptors  

• Materials informatics
v Typically nD (n = 1,5) “classical” descriptors
v Heavy reliance on QM descriptors
v Usage of experimental conditions as descriptors
v Heavy reliance on measured descriptors (for undefined structures)



Focus on Spectra (Raw data, Images)



The Algorithms
• Chemoinformatics and materials informatics

v Unsupervised methods 
Ø Data reduction techniques (e.g., PCA)
Ø Clustering

v Supervised methods
Ø Classification models (e.g., Random Forests)
Ø Quantitative models (e.g., MLR, SVM, kNN, neural networks, DL) 

Validation

• Chemoinformatics
v “OECD” principles available and frequently followed

• Materials informatics
v Insufficient external validation
v Inappropriate control for chance correlation



Prediction of Impact Sensitivity for Energetic Materials

Fayet et al., Process Safety Progress (Vol.31, No.3)

• Prediction of impact sensitivity of nitro compounds
• 161 compounds, specific and global models MLR, “OECD” validation

• Good models for nitramine and  
nitroaliphatic but not for nitroaromatic 
compounds

Nitramines Nitroaliphatic Nitroaromatic

Global



Mathieu, J. Phys. Chem. A 2013, 117, 2253−2259

• Prediction of impact sensitivity of nitro compounds from “physical 
principles”

• Sensitivity Index (SI)
v Number of atoms
v Dissociation energy of the weakest X-NO2 bond
v Energy released upon the decomposition of 1 mole of compound

Prediction of Impact Sensitivity for Energetic Materials



Material Cartography

Isayev et al., Chem. Mater. 2015, 27, 735−743

• Purpose
– Displaying material space (AFLOWLIB)
– Similarity-based Identification of 

specific materials
– QMSPR models

• Descriptors
– Band structure fingerprints
– SiRMS (fragment-like)
– QM 

• Methods
– Clustering, RF, PLS

Super-Conductivity Critical Temperature



60 Seconds on Solar Cells
1. Generation of the charge carriers (electrons and holes) due to the 

absorption of photons
2. Separation of the photo-generated charge carriers in a junction 

via n-type (high electron conductivity) and p-type (high hole 
conductivity) semi-conductors 

3. collection of the photo-generated charge carriers at the termini 
of the junction 

• Key Parameters
v Open circuit voltage (VOC)
v Short circuit current (JSC)
v Internal quantum efficiency (IQE)
v Fill factor (FF)
v Power Conversion Efficiency (PCE)

in

OCSC

P
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Efficiencies of Solar Cells

Solar cell efficiency is the ratio of the electrical output of a 
solar cell to the incident energy in the form of sunlight



Statistical Modeling of Solar Cells

• Goals
v Identify factors responsible for PV properties
v Build predictive model for PV properties
v Experimental design

=f



Dye Sensitized Solar Cells (Grätzel Cells)
• Illumination à photon absorbed by dye
• Photo-excited electrons from sensitized dye 

transferred to TiO2

• Dye regenerated by electrolyte
• Electrolyte reduced by counter electrode



The Importance of the Dye

Binyamin and Senderowitz, NPJ computational Materials, 8, 142 (2022)

• Metal-based dyes (Ruthenium)
v Rare and expensive metals
v Complex synthesis
v Low molar extinction coefficients 

(How strongly a compound absorbs light at a 
particular wave-length)

• Photon Harvesting
• Electron Injection
• Overall cell performances



The Importance of the Dye
• Metal-free dyes

v Inexpensive
v Easy synthesis
v High molar extinction coefficients
v Tunable photovoltaic and electrochemical properties

v The main disadvantage: lower PCE (power conversion efficiency)



The Dye Sensitized Solar Cells Database

Venkatraman et al., J Cheminform. 2018, 10(1):18

Scaffold Number of entries

Triphenylamine 621 (42.44%)

Phenothiazine 270 (18.46%)

Carbazole 182 (12.44%)

Indoline 115 (7.86%)

Coumarin 53 (3.62%)

Diphenylamine 33 (2.26%)

Bodipy 16 (1.09%)

Imidazole 14 (0.96%)

Cyanine 14 (0.96%)

• Over 4000 entries of 
experimentally tested DSSCs

• Preprocessing:
v Only metal-free dyes
v No duplicates
v Exclude cases with co-sensitizers 

& co-adsorbents
v Uniform testing conditions

• Resulting database: ~1400 
entries



The Dye Sensitized Solar Cells Database 

 

Scaffold Structure 'Actives' set 'Decoys' Set 

Carbzole 

 

Carbazole dyes subset 

(165 compounds) 

ZINC carbzole library 

(5916 compounds) 

Indoline 

 

Indoline dyes subset 

(115 compounds) 

ZINC indoline library 

(19620 compounds) 

Phenothiazine 

 

Phenothiazine dyes subset 

(254 compounds) 

ZINC phenothiazine library 

(392 compounds) 

Triphenylamine 

 

Triphenylamine dyes subset 

(520 compounds) 

ZINC triphenyamine library 

(488 compounds) 



Photovoltaphores: Pharmacophores for Dyes
A pharmacophore can be considered as the highest common 
denominator of a group of molecules exhibiting a specific “activity”

Conformational Search
• Up to 200 conformers

Clustering
• RDF similarity
• Pharmacophore alignment score

Model generation
• Scaffold specific
• Scaffold agnostic (most 

active/inactive dyes)



Photovoltaphores from Active Dyes

   
 

 
  

 



Photovoltaphores from Inactive Dyes

 

 

 

 



Model Validation
• Model tested using small-scale VS campaign

v Active compounds from DSSCDB
v Inactive compounds from ZINC (similar scaffolds)

v Models validated using ROC curve and numerical metrics



Virtual Screening
ZINC (13.8M compounds)

Screening against photovoltaphores from 
active dyes

Ranking compounds

Screening against photovoltaphores from 
inactive dyes

Subjecting 35 highest ranking compounds 
to DFT and TD-DFT calculations



Virtual Hits
• HOMO/LUMO

v DFT
v B3LYP
v 6-31G(d,p)

• UV-vis absorption spectrum
v TD-DFT
v CAM-B3LYP
v 6-31G(d,p)

TSC6
(ZINC000150482673)

ASC5
(ZINC000014358980)



Virtual Hits
• Luminescent, absorbs in UV-

vis and NIR regions, high 
molar extinction coefficient

• HOMO remote from semi-
conductor’s conduction 
band and below the energy 
level of the redox electrolyte

• LUMO close to 
semiconductor’s surface, 
and higher than the 
semiconductor conduction 
band potential

• Hydrophobic periphery in 
order to enhance the cell’s 
stability



Virtual Hits
E	[eV]

-2.770 -2.859

-6.743 -6.763

a)

b) c)

• Carboxyl group on phenyl à
cyanoacrylic acid

• Succinimide unit à
pyrroledione moiety 



Solar Cells Based on Metal Oxides (MO)
• Material

v Abundant
v Environmentally safe
v Optimizeable 
v Low cost

• Fabrication
v Cheap fabrication methods

• Operation
v Long term operation (stability)

But Cells Not Efficient Enough
New Metal Oxides (MO) Required



Combinatorial Material Science
• ~60 “useful” elements leading to

v ~30K inorganic compounds
v 3600 binary compounds (ABOX); mostly known
v 216K ternary compounds (ABCOX) many of which unknown

High Tc superconductors



Combinatorial Material Synthesis



Analysis



Visualizing the Solar Space

TiO2||Cu-O TiO2||Cu2O TiO2||Co3O4||MoO3 TiO2||Co3O4 TiO2||CuO-NiO-In2O3

# Cells 169 338 169 338 338
V OC [mV] 31-380 6.6-354 24-620 172-443 111-509

J SC [µA cm-2] 73-290 13.9-406 25-Oct 5.5-11 Jul-54

P max [µW cm-2] 0.02-1.02 0-1.26 0.0018-0.11 0.016-0.042 0.015-0.11
FF [%] 23-63 0.16-40 23-41 32-53 26-41
R s

 [Ohm cm2] 18-23x103 9-0.5x106 5x103-0.6x106 8x103-0.5x106 5x103-0.6x106

R sh [Ohm cm2] 103-1.9x106 5x103-0.6x106 0.7x106-3.3x106 2.8x106-12x106 0.15x106-2.6x106

IQE [%] 0.57-1.16 0.1-2.67 0.05-0.3 0.06-0.32 0.02-0.47

Kaspi et al., JCIM 2018 , 58, 2428-2439

~1350 cells from 5 libraries



Visualizing the Solar Space



Visualizing the Solar Space

Diffusion Map

Kernel PCA

Isomap

PCA



Principle Component Analysis (PCA)

TiO2/Cu-O

PC1 PC2 
d_TiO2  TEMP 
d_Fe2O3  BGP_Fe2O3 
[Fe2O3] / ([TiO2] + [Fe2O3])   
max_J    
 

TiO2/Fe2O3
(treated at different temperatures)



Machine Learning: kNN and GFA

Yosipof et al., Molecular Informatics, 2015, 34, 367--79

Jsc Voc IQE



Virtual Cell

• Expanded range of layers thickness
• Predict and plot activities
• Large parts of the “thickness space” are 

outside the applicability domain of the 
models

• Difficulties in producing cells with good 
VOC, JSC and IQE values 



Forensic Informatics
shoeprints faked coins ammunition

gunshot residues glass fragments DNA



Glass Fragments
Every year, the Israeli Police Force reports on dozens of crimes that involved 
glass fragment as evidence which did not realize their forensic potential



Case from Israeli Police



PIXE as a Tool for Evidence Characterization

50 µm



Case from the Israeli Police: Assocoation

Perfect Match!!!!
However, association requires a set of 

reference structures 



Increasing Complexity: Classification



Increasing Complexity

Kaspi et al., Talanta 2021, 234, 122608



Machine Learning
Dataset
• 48 glass fragments
• 96 measurements
• 13 car models
• 10 car manufacturers

Data curation
• Missing values
• Correlations
• Constants
• Outlier removal

Train/test split
• Source-based
• Random (multiple times)

Model derivation
• Random Forest
• kNN

Model validation
• Precision
• Recall 
• F1-score



Results

 Random Train | Test (%) Train – Surface 
Test – Bulk (%) 

Train – Bulk 
Test – Surface (%) 

 RF kNN RF kNN RF kNN 
Recall 0.76 ± 0.07 0.74 ± 0.07 0.86 0.83 0.87 0.77 
Precision 0.80 ± 0.09 0.77 ± 0.10 0.88 0.86 0.82 0.75 
F1 - Score 0.73 ± 0.07 0.71 ± 0.08 0.84 0.82 0.84 0.75 

 



Increasing Diversity
Uniting results from three different laboratories

Kaspi et al., Forensic Science International 333(1–3):111216



Further Increasing Diversity
Uniting results obtained with different analytical 

techniques from different laboratories

Kaspi et al., JCIM submitted for publications

PIXE (RBI+BINA) PIGE +INAA LA-ICP-MS EDS

PIXE (RBI+BINA)
P: 0.87 ± 0.04
R: 0.90 ± 0.03
F1: 0.87 ± 0.05

P: 0.78 ± 0.05
R: 0.81 ± 0.04
F1: 0.77 ± 0.05

P: 0.92 ± 0.02
R: 0.93 ± 0.02
F1: 0.92 ± 0.03

P: 0.81 ± 0.04
R: 0.84 ± 0.03
F1: 0.81 ± 0.05

PIGE + INAA
P: 0.92 ± 0.06
R: 0.87 ± 0.10
F1: 0.89 ± 0.08

P: 0.86 ± 0.06
R: 0.83 ± 0.09
F1: 0.83 ± 0.07

P: 0.49 ± 0.06
R: 0.50 ± 0.09
F1: 0.46 ± 0.07

LA-ICP-MS
P: 0.79 ± 0.09
R: 0.76 ± 0.12
F1: 0.76 ± 0.10

P: 0.88 ± 0.06
R: 0.89 ± 0.06
F1: 0.86 ± 0.07

EDS
P: 0.51 ± 0.09
R: 0.52 ± 0.11
F1: 0.48 ± 0.10



Conclusions

• Statistical modeling is useful in the field of materials sciences
v Insight
v Experimental design

• Examples discussed
v Solar cells
v Forensics
v Many others 

• Challenges
v Well curated large datasets
v New descriptors for non well-defined compositions 

Collaborating with experimentalists is 
indispensable
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