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Finland for AI
Finland provides a favorable operating environment for the creation, development and 
utilization of AI technologies: 

● Helsinki is among the top 50 global AI talent hubs, despite some heavy competition 
(Harvard Business Review 2021) 

● Finland hosts LUMI, the fastest supercomputer in Europe and #3 in the world 
● Finland #3 in Data Science (Coursera’s Global Skills Report 2022) 
● Finland is the 5th cited country in the EU (OECD.AI 2022; Nordic Innovation 2022) 
● Finland #4 (Government AI Readiness Index 2021) 
● AI adoption rate #3 in the EU (European Commission 2022)
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What is FCAI? 

● Academy of Finland Flagship for 
2019–26 

● Built on the long track record of 
pioneering machine learning 
research and multidisciplinary 
collaboration 

● Top-level research and wide impact 
together with industry and 
public sector 

● 70 professors and their groups, 
volume 250 M€ 

550 new 
recruitments 

(61% 
international) 

Research 
ranked #1 in 

Europe*

Key role in 
the European 
AI ecosystem 

100+ PhDs 
800 MScs 

470 industry 
&  public 

sector 
members 

In four years of operation

*) Combination of artificial intelligence, machine learning, 
human-computer-interaction, 2019–21

FCAI: Finland’s AI hub
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Finland in the European ecosystem 
● Pioneer in AI and machine 

learning, world-class 
fundamental research since 
1960’s  

● Hosting one of the first ELLIS 
nodes 

● Leading EU’s European 
Network of AI Excellence 
Centres — ELISE, which 
builds and executes a 
European Strategic Research 
Agenda in AI



Contents

1. Motivation: Virtual laboratories 
2. How to engage with the domain expert 
3. Simplified setting: knowledge elicitation 
4. But: Scientist is not just a data source 
5. General setting: AI-assisted decisions, design, modelling 
6. What is still needed?

6



Virtual Laboratories: Transforming research with AI

Arto Klami
1,3

, Theodoros Damoulas
2,4

, Ola Engkvist
5,6

, Patrick Rinke
1,7

, Samuel Kaski
1,2,8,9

1
Finnish Center for Artificial Intelligence FCAI,

2
Alan Turing Institute,

3
Dept. of Computer Science, University of Helsinki,

4
Depts. of Computer Science and Statistics, University of Warwick,

5
Molecular AI, Discovery Sciences, R&D, AstraZeneca,

6
Dept. of Computer Science and Engineering, Chalmers University of Technology,

7
Dept. of Applied Physics, Aalto University,

8
Dept. of Computer Science, Aalto University,

9
Dept. of Computer Science, University of Manchester

Abstract—New scientific knowledge is needed more
urgently than ever, to address global challenges
such as climate change, sustainability, health and
societal well-being. Could artificial intelligence
(AI) accelerate the scientific process to meet global
challenges in time? AI is already revolutionizing
individual scientific disciplines, but we argue here
that it could be more holistic and encompassing.
We introduce the concept of virtual laboratories as
a new perspective on scientific knowledge genera-
tion and a means to incentivize new AI research and
development. Despite the often perceived domain-
specific research practices and inherent tacit knowl-
edge, we argue that many elements of the research
process generalize across scientific domains, and
that it is possible to build a common software layer
that serves di↵erent domains and provides AI as-
sistance. We outline how virtual laboratories will
make it easier for AI researchers to contribute to a
broad range of scientific domains, and highlight the
mutual benefits virtual laboratories o↵er to both AI
and domain scientists.

1 Introduction

Merriam-Webster defines a laboratory as “a place equipped
for experimental study in a science or for testing and anal-
ysis” or more broadly as “a place providing opportunity
for experimentation, observation, or practice in a field of
study” 1. The definition refers to a physical environment
that exists for the purpose of making new discoveries.
While laboratory tasks are now frequently carried out on
computers, or on more and more automated synthesis and
measurement devices, the laboratory itself remains surpris-
ingly similar to its 19th century form. In our increasingly
digital world, we think it is time for a paradigm shift to
virtual laboratories (VLs).

1https://www.merriam-webster.com/dictionary/laboratory (28
May 2022)

v2: vertical box, include 
heading on the rightFig. 1: AI methods enable generalizing across field-specific virtual labo-

ratories, each using a mixture of field-specific and general methods.

The starting point for a virtual laboratory are the com-
putational methods and tools that are already an integral
part of modern scientific practices. These include compu-
tational simulations, digital twins of various instruments,
robotic measurement devices, and methods for experimen-
tal design, data analysis and statistical estimation. In most
scientific disciplines, physical laboratories already heavily
use these computational tools, and research combines com-
putation and real-world experiments. The new digital tech-
nologies already provide scale-advantages and improve re-
producability and reliability.

In this perspective, we argue, however, that the current
tools are not yet su�cient for building virtual laboratories,
and two aspects need to be addressed. First, the current
toolkit needs to be updated. The tools of today are typ-
ically field-specific, each designed to address specific nar-
rowly defined tasks, and deployment decisions are still pri-
marily made by researchers almost as if the measurements
were still carried out by laboratory scientists. Instead, the
tools could be designed to better serve the scientific re-
search process itself, and to o↵er better assistance, which
becomes necessary with increasing workflow, tool and re-
search complexity.

The second step required for reaching the full potential of
virtual laboratories is to consider what can be done di↵er-
ently now that the computational backbone exists in di↵er-
ent disciplines. Could we develop new types of tools (Fig.1)
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How can we help with the global challenges?

By becoming domain scientists? Good choice for some 

Alternative: Improve the research process

First part: Joint work with Arto Klami, Chris McGreavy, Carlos Sevilla Salcedo et al.



Research is still 
iterative refinement 
of hypotheses
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Fig. 5: Drug design is based on iterative cycles of Design-Make-Test-
Analyze (DMTA). Within each round, several iterative cycles can be per-
formed in a virtual laboratory (bottom cycle).

work for virtual laboratories, Deagen et al. recently pro-
posed materials–information twin tetrahedra (MITT) [35].
The term “digital twin” is here used as an analogy between
concepts in materials and information science and does not
refer to a component of a virtual laboratory. With MITT
they advocate a holistic, data-driven approach to mate-
rials science, which we believe could be further extended
across scientific domains. In a similar vain, Suzuki et al. re-
cently promoted a knowledge transfer from AI applications
in pharmaceutical science to materials science through a
generalized automated machine learning framework [36].

4.2 Drug design

Applying AI to drug design has become very popular in the
last five years triggered by the innovations in AI [37]. Com-
mon application areas are molecular de novo generation,
synthetic route predictions, and molecular property pre-
dictions. In drug design a starting molecule with typically
poor properties is iteratively optimized until a molecule
with properties suitable to start clinical trials is identified.
The iterative cycle is usually called the Design-Make-Test-
Analyze (DMTA) cycle (Fig. 5) [38].

The virtual drug design laboratory will consist of digital
twins for the di↵erent components in the DMTA cycle. Sev-
eral of the necessary digital twins are under development.
Digital twins are developed for the design part through
deep learning based molecular generation, for the make part
through designing synthetic routes by deep learning, and
for the test part through developing digital twins for the
assays that are used to test the molecules.

An outstanding important research task is to find out
how implicit knowledge residing with the scientist can be
modelled through human-in-the-loop modelling, so that it
can be included in the digital twin of the analysis step.
It is important to keep in mind that the virtual labora-
tory is an approximation of a real drug design laboratory.
Virtual molecules are optimised in the virtual laboratory
and then actually synthesized and tested in a real labora-

tory in an iterative manner. An optimal laboratory would
combine a virtual laboratory with a fully automated real
laboratory. There are several e↵orts on-going to create au-
tonomous automation systems for synthesizing and opti-
mizing molecules [39]. Thus for drug design, virtual and
real laboratories needs to exist in close collaboration, where
as good compounds as possible are proposed by the virtual
laboratory, the molecules are then synthesized as e�ciently
as possible in the laboratory, and the resulting data is fed
back to the virtual laboratory.

4.3 Data-Centric Engineering

Engineering has recently witnessed a proliferation in data-
centric techniques and digital twin development. While
the concept and need for virtual laboratories to augment
these e↵orts is in its infancy, we showcase two examples of
recent engineering DTs developed at the Alan Turing Insti-
tute with academic and industrial partners, demonstrating
how the VL concept extends beyond scientific research in
natural sciences to design tasks in engineering.

The first one is the world’s first 3-D printed steel bridge
(MX3D bridge) depicted in Fig. 6 and currently situated in
Amsterdam, Netherlands. The various sensor networks on
the bridge, such as cameras, accelerometers and load cells,
stream live data to its digital twin at the Turing Institute
in the UK. The underlying DT model has been developed
based on the StatFEM methodology that was recently in-
troduced [9] to formally synthesize observational data and
numerical models of its structure.

The second example, from the CROP project3, is a dig-
ital twin of an underground farm in a tunnel situated in
Clapham, London, UK. This is a hydroponics system with
2 aisles running in parallel in 23 zones and 2 meters long.
Various environmental measurements and camera footage
are live-streamed from sensor networks to monitor crop
health, forecast yield and future conditions, and optimize
all levels of operation including location of crops and envi-
ronmental conditions. The underlying DT model here uti-
lizes particle filtering for model calibration [40] and data
synthesis.

5 Conclusion

We introduced the virtual laboratory concept to amalga-
mate scientific research and R&D in industry with AI tech-
nology and AI assistance. We highlighted the benefits of
VLs for both research laboratories and AI researchers, and
outlined key requirements of a common software layer and
various research directions to proceed towards VLs. In our
opinion, VLs are a community e↵ort. To get the move-
ment started, we are currently preparing for formation of
an open initiative that brings AI researchers and scientists
of other domains together to raise awareness for the VL
concept and to work together towards realizing VLs.

3
https://github.com/alan-turing-institute/CROP
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3
https://github.com/alan-turing-institute/CROP

6

Research and design: Design-make-test-analyze loop



Virtual laboratories with field-specific tools



Scale advantage: AI tools across fields



Future: AI-assisted virtual laboratories

Klami et al, TechRxiv, 2022
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Virtual Laboratory

Rather than developing AI solutions for R&D of one field, 
we create them for the R&D process itself 

A Virtual Laboratory 
• Combines digital twins of instruments and processes 

with models of the researcher's intentions and 
capabilities 

• Enables AI-assistance for supporting the researcher 
• Klami et al. Virtual Laboratories: Transforming research 

with AI. https://doi.org/10.36227/techrxiv.20412540.v1 

• First labs under way: material science, drug design, 
sustainble mobility 

• Software: https://github.com/AaltoPML/VAI-Lab 

• Open community - welcome to join

https://doi.org/10.36227/techrxiv.20412540.v1
https://github.com/AaltoPML/VAI-Lab


Why?

For VL hosts 

• No need to create everything 
from scratch 

• AI solutions for unimaginable 
problems, all advances easy to 
take in use 

• Faster research cycle

For AI researchers 

• Enables AI research with and 
without collaboration with VL 
hosts 

• High-profile demonstrations 

• Focus on your favorite part but 
benefit from what others have 
done

10% effort for ten times the 
impact



AI-assisted Virtual 
Laboratories (VAI Labs)

Chris McGreavy, Carlos Sevilla 
Salcedo, Samuel Kaski, Arto Klami



Material Stability using Bayesian Optimisation

Aim: Find crystal composition to maximise durability of solar panel 
material using rapid age-testing

Manufactured crystals Composition Space Age Testing w/image capture  
(5 days, 85°C, 85%, 0.15Sun)

Sun, S., Tiihonen, A., Oviedo, F., Liu, Z., Thapa, J., Zhao, Y., Hartono, N.T.P., Goyal, A., Heumueller, T., Batali, C. and Encinas, A., 2021. A data fusion approach to optimize compositional stability of halide perovskites. Matter, 4(4), pp.1305-1322.



Material Stability using Bayesian Optimisation

Search space: 3 material components (as % of overall composition)

Method:

Uniformly 
sample  

search space

Generate ground 
truth model of 

stability  
(using GPR)

Bayesian Optimisation to search for  
optimally stable composition  

 
(using ground truth model)

Sun, S., Tiihonen, A., Oviedo, F., Liu, Z., Thapa, J., Zhao, Y., Hartono, N.T.P., Goyal, A., Heumueller, T., Batali, C. and Encinas, A., 2021. A data fusion approach to optimize compositional stability of halide perovskites. Matter, 4(4), pp.1305-1322.



Material design - Use case
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Get involved!

Our aim is to build a community to adopt and develop this 
framework.

Find more information on the project at: 

https://aaltopml.github.io/VAI-Lab/

Contact via email:  carlos.sevillasalcedo@aalto.fi

https://aaltopml.github.io/VAI-Lab/
mailto:carlos.sevillasalcedo@aalto.fi
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"Sidekick" intelligence: AI to help users achieve their goals 
even when desired outcomes are tacit, uncertain or evolving


	 	 
In short, needs to simultaneously model problem and expert


New types of AI assistants 

Approach - or dream 



Drug design example

 

AI tool

User model

Drug

designer



AI problem: Formulate an agent capable of learning to assist 
another agent

Fig: Sebastiaan De Peuter
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Zero-Shot Assistance in Novel Decision Problems

Anonymous Authors1

Abstract
There has long been significant interests in creat-
ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.

1. Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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agentassistant

Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted

Setup:

For AI: essentially a delayed-reward decision problem; 
for starters: in a simple game setting
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Simplified setting: Knowledge elicitation

000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Zero-Shot Assistance in Novel Decision Problems

Anonymous Authors1

Abstract
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ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.

1. Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.
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Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted
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30

Predictors x Outputs y

Precision medicine: Molecular measurements 
and other data

Efficacy of 
treatments

Problem: too little data for estimating the predictor 
(“small n, large p”)

Sundin et al., Bioinformatics 2018



Case: Predict cholesterol levels

Predictors Outputs

Larger 
cohort, 
N=24925

Smaller 
cohort, 
N=3918

HDL, LDL, TC, TG

Simulated expert

Sundin et al., Bioinformatics 2018



Case: Predict cholesterol levels
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threshold in the meta-analysis (Kettunen et al., 2016)) as relevant (for

each target separately) and those with larger than 0.9 (arbitrary; sensi-

tivity to this is investigated in the result) as irrelevant. Directional feed-

back was generated for all relevant SNPs by taking the sign of the

regression coefficient in the meta-analysis results. This resulted in 13,

46, 39, and 11 SNPs being considered relevant and 1010, 859 620 and

628 SNPs not relevant for HCL-C, LDL-C, TC and TG, respectively.

The rest of the SNPs was considered to be of unknown relevance.

The hyperparameters of the prediction model were set as

ar ¼ 4; br ¼ 4; aq ¼ 2; bq ¼ 98; l ¼ "3:25; x2 ¼ 1
2, and ap ¼ 19;

bp ¼ 1 to reflect relatively vague information on the residual vari-

ance (roughly higher than 0.5), a preference for sparse models and

small effect sizes that one expects in SNP-based regression, and the

a priori quality of the expert knowledge as 19 correct feedbacks out

of 20. A sensitivity analysis with regard to the sparsity and effect

size parameters is given in the Supplementary Material.

For predictive performance evaluation, the data were divided

randomly into a training set of 1000 and a test set of 2918 individu-

als. The proposed methods are compared against two baselines: con-

stant prediction with the training data mean and elastic net. Elastic

net is a state-of-the-art method that includes ridge and lasso regres-

sion as special cases [Elastic net is implemented using the glmnet

R-package (Friedman et al., 2010) with nested cross-validation for

choosing the regularization parameters.]. The concordance index

(C-index; the probability of predicting the correct order for a pair of

samples; higher is better) (Costello et al., 2014; Harrell, 2015) and

the mean squared error (MSE; lower is better), computed on the test

set, are used as the performance measures. Bayesian bootstrap

(Rubin, 1981) over the predictions is used to evaluate the uncer-

tainty in pairwise model comparisons: in particular, we compute

the probability that model M1 is better than model M2 as follows Pr

ðM1 is better than M2Þ ¼ 1
B

PB
b¼1 IðM1 is better than M2 in bootstrap

sample bÞ, where I(C)¼1 if condition C holds and 0 otherwise

(Vehtari and Lampinen, 2002).

3.1.2 Simulated sequential elicitation user experiment

We simulated sequential expert knowledge elicitation by iteratively

querying (metabolite, feature) pairs for feedback, and answering the

queries using the generated feedback. At each iteration, the models

were updated and the next query chosen, based on the feedback eli-

cited up to that iteration, and the training data which does not

change. We compared the elicitation methods described in Section

2.2.1. The queries for the targeted sequential experimental design

approach were generated by running each test sample as a target in-

dividual separately. The queries were selected without replacement

from the 12 428 possible queries (4 metabolites%3, 107 SNPs).

3.1.3 Results

Expert knowledge can improve genomics-based prediction accuracy.

Table 1 shows the prediction performance averaged over the four

target metabolites (see Supplementary Material for target-wise per-

formance measures; same conclusions hold for those as given here

for the averaged case). As a side result, the sparse linear model with-

out feedback (SnS no fb) improves over both baselines (data mean

and elastic net), with bootstrapped model comparison probabilities

for both MSE and C-index greater than 0.99 in favor of it. Next, we

established whether the simulated feedback improves the model.

Giving all of the feedback (SnS all fb) improves the performance

(Table 1), with bootstrapped model comparison probabilities

greater than 0.99 in favor of it against all other models.

Although the results show that the predictive models with feed-

back are confidently better, the absolute improvements in MSE are

small. Yet, the amount of explanatory power in GWAS is usually

small and especially when learning from small datasets. The meta-

analysis results, with a much larger dataset, explained 4–11% of the

variance among the four metabolites studied here (note that this is

also not predictive power but computed in the same dataset as the

association study). Computing the proportion of variance explained

(PVE) by the cross-validated predictions, PVE ¼ 1" MSE
MSEdatamean

, the

improvement is 1.4 percentage points, corresponding to almost dou-

bling (1:8%) the predictive PVE from no feedback to all feedback

model (Table 1).

Feedback with the direction of the putative effect is more effect-

ive than general relevance feedback. We then examined the effect of

the directional feedback compared to using relevance feedback only.

Using only the relevance feedback (SnS rel. fb) improves over the no

feedback model, but the performance is decreased compared to

using both relevance and directional feedback (SnS all fb). We fur-

ther ran a sensitivity analysis with respect to the amount of not rele-

vant feedback: removing all not relevant feedback had a small

deteriorating effect in this dataset, resulting in MSE of 0.986 and

PVE of 0.031.

Sequential knowledge elicitation reduces the number of queries

required from the expert. The sequential knowledge elicitation per-

formance was then studied. Figure 3 shows the MSE as a function of

the number of queried feedbacks for random, experimental design,

and targeted experimental design sequential methods. The random

method finds hardly any useful queries in 1000 steps. Both

Table 1. Performance in metabolite concentration prediction

Data mean Elastic net SnS no fb SnS all fb SnS rel. fb

C-index 0.500 0.519 0.540 0.558 0.556

MSE 1.017 1.010 0.999 0.984 0.988

PVE 0.000 0.007 0.018 0.032 0.028

Note: Values are averages over the four target metabolites. Best result on

each row has been boldfaced. SnS¼ spike and slab sparse linear model;

fb¼ feedback; Rel. fb¼Only relevance feedback; MSE¼mean squared error;

PVE¼proportion of variance explained.
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Fig. 3. Sequential experimental design performance in metabolite concentra-

tion prediction comparing random querying, information gain-based sequential

experimental design and its targeted version. First 1000 iterations of feedback

are shown and the result with all feedbacks is included for reference. For the

targeted sequential experimental design, each individual in the test set was the

target separately and the predictions in the resulting feedback sequence were

used for that individual. The curve is a mean over all these sequences
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Collaborative Decision Making with AICollaborative decision making with AI

AI-assisted decision-making, design and modelling
AI-Assisted Design

Toughest but common problem: learn to help a new partner in a
new design task

AI-assisted design

Figure 2. To help designers, AI should appreciate the explorative and evolving character of their thinking.
Designers generate solutions not only to solve a problem but also to learn about it, including its objectives
and constraints. Within a design process a designer can be seen as mentally planning over a design space
based on a utility function (shown as contours). The utility function evolves as design progresses. The AI
should cooperate in this creative process, for example by proposing high-quality solutions, and complement the
designer’s problem-solving. To do so it needs to know the designer’s utility function. We propose to create AI
assistants (shown in blue) that can infer this utility from observations, and then use it to assist a designer.

the fullest extent, and serves to reduce frustration
due to a lack of control.

In this paper we propose AI-assisted design,
a general-purpose framework for cooperative as-
sistants in design problems. Cooperative design
assistance has been proposed for specific design
problems [3], but no general framework currently
exists. The framework is designed to support a
wide range of interactions between assistant and
designer, though our focus here will be on design
change recommendations. Cooperation requires
socially intelligent assistants that understand and
can communicate with designers [5]. AI-assisted
design incorporates the most important aspects
of cooperation: understanding and accounting for
designers’ goals, reasoning, and capabilities. It
uses a generative user model, a model of how
goals result in the behavior we observe from
designers, to infer a designer’s goal from their
behavior and to plan how to best assist the
designer.

AI THAT PLANS LIKE DESIGNERS DO
Rethinking cooperative AI for design needs

to start from the way design is conceptualized.
Design is usually thought of as an optimization
problem, where an ideal point must be identified
within a parameter space [6]. In our view it is
better to formalize it as a decision process, where
designs are states and design changes are actions.

The goal is encoded as a utility function which
the decision process seeks to maximize. In the
day trip example, every visit added to the trip is
a decision that is part of the decision process that
leads to a final trip.

This approach is well-justified. Designers are
decision makers: they reason about the changes
they can make to a design and choose one
(Figure 2). Say we were planning a trip and
needed to choose between visiting the Louvre
Museum or the Eiffel Tower. We would consider
both options and any potential future changes – if
we add the Eiffel Tower it will be easy to visit the
Quai Branly Museum next as it is close by – and
choose what we like most. Integrating a human
decision maker into an optimization process is
difficult because humans do not think or work like
optimizers do. However, if design is formalized
as a decision process, there is a clear opportunity
to create cooperation around the design decisions
that have to be made.

Within this paper we will assume that a gen-
eral parameterized design space is given, and will
focus solely on the decision making aspect of de-
sign. In established design domains, standardized
parameterizations of the design space often exist.
In the trip planning example a design can simply
be represented as a set of POIs. We conceptualize
the result of putting the design into practice as
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Likelihood-Free Inference

AI-assistant for summary statistics selection in approximate
Bayesian computation.

Bharti et al., Approximate Bayesian Computation with Domain Expert in the Loop, ICML 2022.

Drug Design

Active learning of feedback for a reinforcement learning engine
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learning to interact with the user. We present two case studies for this: In the first use-case, 26 

the parameters of an MPO are learned, and in the second use-case a non-parametric 27 

component of the scoring function to capture human domain knowledge is developed. The 28 

results show the effectiveness of the methods in two simulated example cases with an oracle, 29 

achieving significant improvement in less than 200 feedback queries, for the goals of a high 30 

QED score and identifying potent molecules for the DRD2 receptor, respectively. We further 31 

demonstrate the performance gains with a medicinal chemist interacting with the system. 32 
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1 Introduction 37 

The use of artificial intelligence (AI) in drug discovery has increased rapidly in recent years, 38 

providing AI-aided design tools for drug design projects. The strengths of AI lie in finding 39 

patterns from vast amount of data from heterogeneous sources, at its best augmenting humans' 40 

abilities in challenging tasks such as molecular optimization. Advances in de novo molecular 41 

design tools enable automation of the design step in in silico design-make-test-analyze (DMTA) 42 

cycles of drug design [1], [2].  They transform the task of a chemist from designing a molecule to 43 

designing a scoring function that is used to evaluate the generated molecules, and which 44 

essentially expresses the chemist’s goal in a drug design project. Even though designing the 45 

scoring function may be an easier task for a human than coming up with new molecules, that is 46 

Sundin et al., Human-in-the-loop assisted de novo molecular design, ChemRxiv 2022.

Impact: Virtual LaboratoriesVirtual Laboratories: Transforming research with AI

by thinking across laboratories, and in particular, could we
benefit from advances in AI methodology? If the tools were
not developed independently in each field but would instead
pool the creativity, ingenuity and resources from a variety
of fields, progress would be faster and VLs could become
a reality sooner. Such generalization and acceleration is
precisely the promise AI-based tools o↵er.

In this paper we present a vision for AI-assisted virtual
laboratories: Digitalization of research and development
will move from isolated digital twins to AI-assisted support
of the scientific innovation process. In the future, new inno-
vations are made in virtual laboratories, where researchers
seamlessly operate with physical and virtual measurements
in close collaboration with AI, accelerating the pace and
improving the quality of research. The virtual laboratories
are supported by a common software library.

Virtual laboratories provide a conceptual frame of refer-
ence, and in this paper we outline practical directions for
the transition from real to virtual laboratories. This paper
is a call for both AI researchers and domain scientists to
join forces. Section 2 introduces the main concept of virtual
laboratory and outlines the high-level goals and challenges.
In Section 3 we present the main actions we think should
be taken by di↵erent parties. Lastly, we motivate the pro-
posed developments by reviewing the state of emergent VLs
in three di↵erent fields in Section 4, outlining for instance
how drug design is already largely done in a virtual realm
but using field-specific tools.

2 Virtual Laboratory Concept

2.1 Virtual Laboratory

Following our laboratory definition in the introduction, a
virtual laboratory (VL) is the in silico equivalent of a phys-
ical laboratory. A VL exists primarily in a virtual space, or
at least mediates the interaction of stakeholders with the
VL remotely through a digital user interface. In practical
terms, a VL is a collection of interconnected digital twins
and a digital user interface (see Fig. 2). In our opinion, AI
assistance is a critical element of VLs that facilitates nav-
igation of the complex VL environment and enhances the
research process.

Digital twins are faithful computational representations
of real-world entities or processes [1, 2, 3]. We here consider
a wider definition of digital twins than usual and distin-
guish between three types: a) assets, b) processes and c) hu-
man interactions. In a), physical assets is an umbrella term
for scientific instruments, measuring devices and equipment
that manufacture goods, fabricate materials and synthesise
substances. In b), computational models and simulators
aim to capture physical or chemical processes. In c), we re-
fer to user models of human behaviour and human-machine
interactions. Combined, these three types of digital twins
transfer real-world data into the virtual realm, where it is
processed by simulators and AI methods.

As implied by the word virtual, one purpose of VLs is

Virtual lab version 6.0

components digital twins user interface

data

simulators

AI methods user models

processes

instruments

AI assistants

virtual laboratory concept

apps

GUI

virtual laboratory usage

stakeholders

design

experiment

analyse 

operation cycle

GUI

Fig. 2: Top: Elements of a virtual laboratory; bottom: Stakeholders from
academia, industry, government and the public interact with the virtual
laboratory. Assisted by AI assistants, they design, perform and analyze
virtual experiments. The word “experiment” is used as a placeholder here
for di↵erent functions and features of the virtual laboratory.

to transfer the experimentation and discovery process from
the real into the virtual realm. In this virtual mode, users
interact with the digital twins instead of their real-world
manifestations to derive new knowledge, educate them-
selves or to receive assistance in complex decision making.
This usually o↵ers significant time and resource savings
compared to directly operating in a physical laboratory.
The digital twins interact with the real-world, when neces-
sary, to stay up-to-date and react to changing conditions.
In the real mode, the VL has a direct physical outcome,
e.g., a material or drug. The VL facilitates, accelerates or
even enables the design and development of the physical
outcome.

2.2 Elements of Digital Twins

Although each digital twin serves a specific purpose, several
aspects are common to digital twins that have already been
realized: a) live coupling between the physical asset and its
digital twin via multiple streaming data sources originat-
ing from live sensing of the physical process, b) access to

2
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This paper addresses a common challenge with computational cognitive models: identifying
parameter values that are both theoretically plausible and generate predictions that match well
with empirical data. While computational models can offer deep explanations of cognition, they
are computationally complex and often out of reach of traditional parameter fitting methods. Weak
methodology may lead to premature rejection of valid models or to acceptance of models that
might otherwise be falsified. Mathematically robust fitting methods are, therefore, essential to the
progress of computational modeling in cognitive science. In this article, we investigate the capa-
bility and role of modern fitting methods—including Bayesian optimization and approximate
Bayesian computation—and contrast them to some more commonly used methods: grid search
and Nelder–Mead optimization. Our investigation consists of a reanalysis of the fitting of two pre-
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and a computational rationality model of visual search. The results contrast the efficiency and
informativeness of the methods. A key advantage of the Bayesian methods is the ability to esti-
mate the uncertainty of fitted parameter values. We conclude that approximate Bayesian computa-
tion is (a) efficient, (b) informative, and (c) offers a path to reproducible results.
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What if the expert does not know?
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how much the particular human knows?  
We can give guarantees that it is, for optimization, 

formulated as multi-fidelity Bayesian optimization robust 
towards adding unreliable information sources 
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Abstract

Bayesian optimization (BO) is a powerful frame-
work for optimizing black-box, expensive-to-
evaluate functions. Over the past decade, many al-
gorithms have been proposed to integrate cheaper,
lower-fidelity approximations of the objective
function into the optimization process, with the
goal of converging towards the global optimum at
a reduced cost. This task is generally referred to
as multi-fidelity Bayesian optimization (MFBO).
However, MFBO algorithms can lead to higher
optimization costs than their vanilla BO counter-
parts, especially when the low-fidelity sources
are poor approximations of the objective func-
tion, therefore defeating their purpose. To address
this issue, we propose rMFBO (robust MFBO),
a methodology to make any GP-based MFBO
scheme robust to the addition of unreliable infor-
mation sources. rMFBO comes with a theoretical
guarantee that its performance can be bound to its
vanilla BO analog, with high controllable prob-
ability. We demonstrate the effectiveness of the
proposed methodology on a number of numerical
benchmarks, outperforming earlier MFBO meth-
ods on unreliable sources. We expect rMFBO
to be particularly useful to reliably include hu-
man experts with varying knowledge within BO
processes.

1 INTRODUCTION

Bayesian optimization (BO) has become a popular frame-
work for global optimization of black-box functions, es-
pecially when they are expensive to evaluate (Jones et al.,
1998; Brochu et al., 2010). Such functions have neither
known functional form nor derivatives, and conventional

Proceedings of the 26th International Conference on Artificial Intel-
ligence and Statistics (AISTATS) 2023, Valencia, Spain. PMLR:
Volume 206. Copyright 2023 by the author(s).

optimization techniques such as gradient descent cannot be
directly employed. BO rests upon two key elements. First,
it constructs a probabilistic surrogate model of the objec-
tive function with built-in uncertainty estimates, typically a
Gaussian process (GP), based on evaluations of the function.
The obtained surrogate is then used to select the next point to
evaluate by maximizing of a so-called acquisition function,
which quantifies the expected utility of evaluating a specific
point with the purpose of optimizing the black-box function.
Many off-the-shelf acquisition functions achieve this task
while balancing exploration and exploitation. Iterating these
two steps produces a sequence of designs whose aim is to
converge to the global optimum using a limited number of
function queries. BO has proven effective for a variety of
problems, including hyperparameter optimization (Snoek
et al., 2012), materials science (Zhang et al., 2020), and
drug discovery (Gómez-Bombarelli et al., 2018; Korovina
et al., 2020).

In many scenarios, lower-fidelity approximations of the
objective function are available at a cheaper query cost.
This occurs for instance when the evaluation of the objective
function involves a numerical scheme, where computational
cost and accuracy can be traded off. Another example is
the knowledge of domain experts. Indeed, practitioners
may have implicit knowledge of the objective function, for
instance, they may be able to point out good candidate
regions on the location of the global optimum (Hvarfner
et al., 2022). Such knowledge may naturally be considered
as a low-fidelity version of the true objective function.

The problem of integrating these auxiliary information
sources (ISs) to reduce the cost of BO has been tackled
in the literature under the name multi-fidelity Bayesian op-
timization (MFBO) (Huang et al., 2006; Kandasamy et al.,
2016; Zhang et al., 2017; Sen et al., 2018; Song et al., 2019;
Takeno et al., 2020; Li et al., 2020; Moss et al., 2021) when
the different sources can be ranked by their degree of fidelity;
when this is not possible, the problem has been studied as
multi-task BO (Swersky et al., 2013), non-hierarchical multi-
fidelity BO (Lam et al., 2015), or multi-information source
BO (Poloczek et al., 2017). However, as we will empiri-
cally demonstrate, state-of-the-art MFBO algorithms can
fail when the auxiliary ISs are poor approximations of the
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Collaborative Decision Making with AICollaborative decision making with AI

AI-assisted decision-making, design and modelling
AI-Assisted Design

Toughest but common problem: learn to help a new partner in a
new design task

AI-assisted design

Figure 2. To help designers, AI should appreciate the explorative and evolving character of their thinking.
Designers generate solutions not only to solve a problem but also to learn about it, including its objectives
and constraints. Within a design process a designer can be seen as mentally planning over a design space
based on a utility function (shown as contours). The utility function evolves as design progresses. The AI
should cooperate in this creative process, for example by proposing high-quality solutions, and complement the
designer’s problem-solving. To do so it needs to know the designer’s utility function. We propose to create AI
assistants (shown in blue) that can infer this utility from observations, and then use it to assist a designer.

the fullest extent, and serves to reduce frustration
due to a lack of control.

In this paper we propose AI-assisted design,
a general-purpose framework for cooperative as-
sistants in design problems. Cooperative design
assistance has been proposed for specific design
problems [3], but no general framework currently
exists. The framework is designed to support a
wide range of interactions between assistant and
designer, though our focus here will be on design
change recommendations. Cooperation requires
socially intelligent assistants that understand and
can communicate with designers [5]. AI-assisted
design incorporates the most important aspects
of cooperation: understanding and accounting for
designers’ goals, reasoning, and capabilities. It
uses a generative user model, a model of how
goals result in the behavior we observe from
designers, to infer a designer’s goal from their
behavior and to plan how to best assist the
designer.

AI THAT PLANS LIKE DESIGNERS DO
Rethinking cooperative AI for design needs

to start from the way design is conceptualized.
Design is usually thought of as an optimization
problem, where an ideal point must be identified
within a parameter space [6]. In our view it is
better to formalize it as a decision process, where
designs are states and design changes are actions.

The goal is encoded as a utility function which
the decision process seeks to maximize. In the
day trip example, every visit added to the trip is
a decision that is part of the decision process that
leads to a final trip.

This approach is well-justified. Designers are
decision makers: they reason about the changes
they can make to a design and choose one
(Figure 2). Say we were planning a trip and
needed to choose between visiting the Louvre
Museum or the Eiffel Tower. We would consider
both options and any potential future changes – if
we add the Eiffel Tower it will be easy to visit the
Quai Branly Museum next as it is close by – and
choose what we like most. Integrating a human
decision maker into an optimization process is
difficult because humans do not think or work like
optimizers do. However, if design is formalized
as a decision process, there is a clear opportunity
to create cooperation around the design decisions
that have to be made.

Within this paper we will assume that a gen-
eral parameterized design space is given, and will
focus solely on the decision making aspect of de-
sign. In established design domains, standardized
parameterizations of the design space often exist.
In the trip planning example a design can simply
be represented as a set of POIs. We conceptualize
the result of putting the design into practice as
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Likelihood-Free Inference

AI-assistant for summary statistics selection in approximate
Bayesian computation.

Bharti et al., Approximate Bayesian Computation with Domain Expert in the Loop, ICML 2022.

Drug Design

Active learning of feedback for a reinforcement learning engine
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learning to interact with the user. We present two case studies for this: In the first use-case, 26 

the parameters of an MPO are learned, and in the second use-case a non-parametric 27 

component of the scoring function to capture human domain knowledge is developed. The 28 

results show the effectiveness of the methods in two simulated example cases with an oracle, 29 

achieving significant improvement in less than 200 feedback queries, for the goals of a high 30 

QED score and identifying potent molecules for the DRD2 receptor, respectively. We further 31 

demonstrate the performance gains with a medicinal chemist interacting with the system. 32 
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1 Introduction 37 

The use of artificial intelligence (AI) in drug discovery has increased rapidly in recent years, 38 

providing AI-aided design tools for drug design projects. The strengths of AI lie in finding 39 

patterns from vast amount of data from heterogeneous sources, at its best augmenting humans' 40 

abilities in challenging tasks such as molecular optimization. Advances in de novo molecular 41 

design tools enable automation of the design step in in silico design-make-test-analyze (DMTA) 42 

cycles of drug design [1], [2].  They transform the task of a chemist from designing a molecule to 43 

designing a scoring function that is used to evaluate the generated molecules, and which 44 

essentially expresses the chemist’s goal in a drug design project. Even though designing the 45 

scoring function may be an easier task for a human than coming up with new molecules, that is 46 

Sundin et al., Human-in-the-loop assisted de novo molecular design, ChemRxiv 2022.

Impact: Virtual LaboratoriesVirtual Laboratories: Transforming research with AI

by thinking across laboratories, and in particular, could we
benefit from advances in AI methodology? If the tools were
not developed independently in each field but would instead
pool the creativity, ingenuity and resources from a variety
of fields, progress would be faster and VLs could become
a reality sooner. Such generalization and acceleration is
precisely the promise AI-based tools o↵er.

In this paper we present a vision for AI-assisted virtual
laboratories: Digitalization of research and development
will move from isolated digital twins to AI-assisted support
of the scientific innovation process. In the future, new inno-
vations are made in virtual laboratories, where researchers
seamlessly operate with physical and virtual measurements
in close collaboration with AI, accelerating the pace and
improving the quality of research. The virtual laboratories
are supported by a common software library.

Virtual laboratories provide a conceptual frame of refer-
ence, and in this paper we outline practical directions for
the transition from real to virtual laboratories. This paper
is a call for both AI researchers and domain scientists to
join forces. Section 2 introduces the main concept of virtual
laboratory and outlines the high-level goals and challenges.
In Section 3 we present the main actions we think should
be taken by di↵erent parties. Lastly, we motivate the pro-
posed developments by reviewing the state of emergent VLs
in three di↵erent fields in Section 4, outlining for instance
how drug design is already largely done in a virtual realm
but using field-specific tools.

2 Virtual Laboratory Concept

2.1 Virtual Laboratory

Following our laboratory definition in the introduction, a
virtual laboratory (VL) is the in silico equivalent of a phys-
ical laboratory. A VL exists primarily in a virtual space, or
at least mediates the interaction of stakeholders with the
VL remotely through a digital user interface. In practical
terms, a VL is a collection of interconnected digital twins
and a digital user interface (see Fig. 2). In our opinion, AI
assistance is a critical element of VLs that facilitates nav-
igation of the complex VL environment and enhances the
research process.

Digital twins are faithful computational representations
of real-world entities or processes [1, 2, 3]. We here consider
a wider definition of digital twins than usual and distin-
guish between three types: a) assets, b) processes and c) hu-
man interactions. In a), physical assets is an umbrella term
for scientific instruments, measuring devices and equipment
that manufacture goods, fabricate materials and synthesise
substances. In b), computational models and simulators
aim to capture physical or chemical processes. In c), we re-
fer to user models of human behaviour and human-machine
interactions. Combined, these three types of digital twins
transfer real-world data into the virtual realm, where it is
processed by simulators and AI methods.

As implied by the word virtual, one purpose of VLs is

Virtual lab version 6.0

components digital twins user interface

data

simulators

AI methods user models

processes

instruments

AI assistants

virtual laboratory concept

apps

GUI

virtual laboratory usage

stakeholders

design

experiment

analyse 

operation cycle

GUI

Fig. 2: Top: Elements of a virtual laboratory; bottom: Stakeholders from
academia, industry, government and the public interact with the virtual
laboratory. Assisted by AI assistants, they design, perform and analyze
virtual experiments. The word “experiment” is used as a placeholder here
for di↵erent functions and features of the virtual laboratory.

to transfer the experimentation and discovery process from
the real into the virtual realm. In this virtual mode, users
interact with the digital twins instead of their real-world
manifestations to derive new knowledge, educate them-
selves or to receive assistance in complex decision making.
This usually o↵ers significant time and resource savings
compared to directly operating in a physical laboratory.
The digital twins interact with the real-world, when neces-
sary, to stay up-to-date and react to changing conditions.
In the real mode, the VL has a direct physical outcome,
e.g., a material or drug. The VL facilitates, accelerates or
even enables the design and development of the physical
outcome.

2.2 Elements of Digital Twins

Although each digital twin serves a specific purpose, several
aspects are common to digital twins that have already been
realized: a) live coupling between the physical asset and its
digital twin via multiple streaming data sources originat-
ing from live sensing of the physical process, b) access to

2
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Modelling Methods

Bayesian inference and probabilistic modelling
tools, including amortization

Probabilistic modelling and Bayesian inference
For Bayesian Deep Learning

For privacy-preserving modelling

For simulator-based inference For applications: health, drug design, neuroscience, materials

Hegde et al., Deep learning with differential Gaussian process flows, AISTATS

2019.

User Modelling

We need to combine prior knowledge from cog-
nitive science with learning from data

AI tool

User model
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Figure 1. Jälkö et al., Privacy-Preserving Data Sharing, Patterns 2021.
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Useful formulation: Computational Rationality
Assumption: humans act rationally (+noise) given their 

constraints and limitations

Some of the constraints we get from cognitive science, 
some from the task definition. The rest needs to be 
learned from data.

Brute-force solution: Simulator-based inference with RL in 
the inner loop
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Zero-Shot Assistance in Novel Decision Problems

Anonymous Authors1

Abstract
There has long been significant interests in creat-
ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.

1. Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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agentassistant

Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted

Decision-making 
- a: which treatment 
- a’: suggestion + predicted effectiveness 

Design 
- a: design change 
- a’: suggestion + predicted properties of 

design 

Utility/reward becomes only known further 
down the line



Zero-shot assistance

How to help an agent solve a sequential delayed-reward decision 
making task, when we know nothing about the reward function?

- agent cannot specify or communicate the reward 
- agent has not solved it before, so no previous behavior to learn from



AI-assisted design

Designer designs
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AI
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Figure 2. To help designers, AI should appreciate the explorative and evolving character of their thinking.
Designers generate solutions not only to solve a problem but also to learn about it, including its objectives
and constraints. Within a design process a designer can be seen as mentally planning over a design space
based on a utility function (shown as contours). The utility function evolves as design progresses. The AI
should cooperate in this creative process, for example by proposing high-quality solutions, and complement the
designer’s problem-solving. To do so it needs to know the designer’s utility function. We propose to create AI
assistants (shown in blue) that can infer this utility from observations, and then use it to assist a designer.

the fullest extent, and serves to reduce frustration
due to a lack of control.

In this paper we propose AI-assisted design,
a general-purpose framework for cooperative as-
sistants in design problems. Cooperative design
assistance has been proposed for specific design
problems [3], but no general framework currently
exists. The framework is designed to support a
wide range of interactions between assistant and
designer, though our focus here will be on design
change recommendations. Cooperation requires
socially intelligent assistants that understand and
can communicate with designers [5]. AI-assisted
design incorporates the most important aspects
of cooperation: understanding and accounting for
designers’ goals, reasoning, and capabilities. It
uses a generative user model, a model of how
goals result in the behavior we observe from
designers, to infer a designer’s goal from their
behavior and to plan how to best assist the
designer.

AI THAT PLANS LIKE DESIGNERS DO
Rethinking cooperative AI for design needs

to start from the way design is conceptualized.
Design is usually thought of as an optimization
problem, where an ideal point must be identified
within a parameter space [6]. In our view it is
better to formalize it as a decision process, where
designs are states and design changes are actions.

The goal is encoded as a utility function which
the decision process seeks to maximize. In the
day trip example, every visit added to the trip is
a decision that is part of the decision process that
leads to a final trip.

This approach is well-justified. Designers are
decision makers: they reason about the changes
they can make to a design and choose one
(Figure 2). Say we were planning a trip and
needed to choose between visiting the Louvre
Museum or the Eiffel Tower. We would consider
both options and any potential future changes – if
we add the Eiffel Tower it will be easy to visit the
Quai Branly Museum next as it is close by – and
choose what we like most. Integrating a human
decision maker into an optimization process is
difficult because humans do not think or work like
optimizers do. However, if design is formalized
as a decision process, there is a clear opportunity
to create cooperation around the design decisions
that have to be made.

Within this paper we will assume that a gen-
eral parameterized design space is given, and will
focus solely on the decision making aspect of de-
sign. In established design domains, standardized
parameterizations of the design space often exist.
In the trip planning example a design can simply
be represented as a set of POIs. We conceptualize
the result of putting the design into practice as
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Figure 2: (a) Mean objective value achieved by agents supported by the methods considered as a function of different numbers
of interactions for the day trip design problem. This plot only shows agent interactions. Changes in objective value achieved by
the assistant are added to the last agent action that preceded them. The Shading shows the standard error around the mean. (b)

Cumulative discounted reward achieved by agents supported by the methods considered as a function of the number of agent
interactions for the inventory management problem.

method cumulative reward

AIAD 185.5 ± 8.5
AIAD + automation 175.0± 8.3

unassisted agent 123.7± 11.7
IRL + automation 165.6± 9.0
partial automation 163.1± 8.7

oracle + automation 187.6± 7.6

Table 1: Mean cumulative discounted reward (± standard
error) achieved by agents supported by the methods consid-
ered on the inventory management problem over a complete
episode. Bold indicates that the method is significantly bet-
ter than the baselines. For IRL we show the best achieved
result, which switched to automation after 10 interactions.

We can see that if we are not trying to minimize agent effort
and only aim to maximize cumulative discounted reward,
AIAD significantly outperforms all other methods. In fact,
AIAD comes very close to automation based on the true re-
ward function (oracle + automation). Looking at cumula-
tive discounted reward as a function of the number of agent
interactions (figure 2b) the picture is different. For low levels
of agent effort it is best to automate based on the prior, i.e.
without interacting with the agent at all (this is represented
by IRL + automation at 0 interactions). From 19 interac-
tions onward AIAD + automation significantly outperforms
all the other methods, until 50 interactions where standard
AIAD significantly outperforms it.

To verify that an assistant that infers and accounts for an
optimism/pessimism bias is more helpful than one that does
not we compare AIAD to three ablations which assume a
certain bias. The first assumes that all agents are optimistic,
the second that all agents are pessimistic and the last that
no agents are biased. We find that agents assisted by AIAD
achieve significantly higher cumulative reward if AIAD in-
fers this bias. More detail can be found in the appendices.

Conclusion

In this paper we have considered zero-shot assistance: the
problem of assisting an agent in a decision problem when

no prior knowledge of the agent’s reward function or bi-
ases is available. To this end we have introduced AI-Advised
Decision-making (AIAD), in which an assistant helps an
agent primarily by giving advice. We also introduced a ver-
sion of AIAD which allowed the agent to automate, at the
cost of losing some of the safety guarantees of AIAD. We
have introduced a decision-theoretic formalization of the as-
sistant’s problem of advising such an agent, and have pro-
posed a planning algorithm for determining the assistant’s
policy. An important novelty in this formalization is that
it accounts for individual agent biases, something which
we showed experimentally improves the quality of the as-
sistant’s advice. Through our experiments we have also
shown that assistance through advice, potentially combined
with some automation, yields better results than assistance
through automation alone.

Limitations Although our work does not require the ex-
plicit definition of a reward function, we do require the defi-
nition of a space of reward functions, which may still be dif-
ficult to provide. This difficulty is, however, inherent to any
reward learning approach. Though our framework supports
advice of any type, our experiments only covered action rec-
ommendations. Other types of advice could be designed to
push an agent’s reasoning in a general direction rather than
toward a single action, or could include additional informa-
tion (such as visualizations) designed to convince the agent
of the quality of an action recommendation. We leave this
to future work. Our experiments did not cover the effects of
misspecification in the agent model itself, only in the reward
function. For complex agent like humans, it is unlikely that
we would be able to create a perfect agent model.

Broader impact We believe that assistance through ad-
vice is a highly promising solution for the value alignment
problem (Everitt and Hutter 2018). Advice can reduce the
negative effects of value misalignment in the assistant and
ensures agent (human) control. Further, advice forces the as-
sistant to be understandable, as it must convince the agent
to follow its advice. One potential safety risk that remains
is that the assistant may leverage its highly accurate agent
model to find ways to deceive the agent or exploit its biases.

Perspectives

Add to daytrip

Louvre Museum
admission
visit time

€ 15.00
1h 30min

Trip summary
trip cost
trip length

€ 55.00
7h 25min

AI's tip: add Ei�el Tower
additional trip cost
additional trip length

€ 26.10
1h 15min

Figure 1. Design problems often involve complex and
tacit goals. To design a pleasant day trip, a designer
must plan a round trip over a set of available points of
interest (POIs). This figure shows an example user
interface for this problem. A trip is constructed by
selecting POIs (solid circle) and adding or removing
them from the trip. We use our proposed AI-assisted
design framework to implement an assistant that
helps the designer by recommending to add (dashed
circle) or remove a POI. Extra information related to
the recommendation is shown in the top left.

mization algorithm. However, this would require
that we specify our idea of an ideal day trip as
an objective function to a computer, which we
would quickly find to be challenging. Knowing
what we want is difficult before we explore what
is available. How many museums are we willing
to visit in a day? Would more museums be okay
if we planned some shopping in between? Or
should we break up the museum visits with some
sightseeing and do the shopping at the end of the
day?

This day trip planning problem captures a
defining characteristic of problem-solving in de-
sign: it may not be clear from the outset what
the options or the objectives are, rather these
are learned by exploration and trial and error.
The problem is under-specified. Designers across
fields engage in iteratively constructing solution
candidates and develop their design goals during
this process. Design goals that were initially tacit,
evolve and concretize as designers work [4]. Any
method that aims to support designers should
appreciate this.

Currently most design tools separate the issue

of communicating goals from the issue of solving
the design problem. First determining the goal
and then solving for it allows one to create solvers
that work independently from the designer. This
follows a general preference for developing sys-
tems that work autonomously, even if in practice
they do not [5]. This approach therefore relies
crucially on having good goal communication;
bad communication will lead to the solver solving
for the wrong goal. For a designer it is difficult
to get the goal right because it usually needs
to be communicated separately from working
with the design. This approach simply does not
adequately appreciate the explorative process by
which designers refine their goals.

Unfortunately, few adequate AI methods ex-
ist that can support designers in communicating
their goals. The most well-studied approaches are
inverse reinforcement learning (IRL) and elicita-
tion methods (see box). IRL learns goals from
demonstrations but is prone to error if the cog-
nitive bounds that determine what a human can
demonstrate are not modeled correctly. Elicitation
methods elicit a goal by asking questions about
it. However, it can take hundreds of questions to
elicit a non-trivial goal.

Cooperative design assistance
There is an urgent need for developing AI

methods designed to cooperate with designers.
Such methods can be thought of as assistants that
communicate with a designer about the design
goal while at the same time supporting them
in working toward that goal. Intuitively, these
assistants plan changes to the design, just like
designers do but faster, based on what they think
the designer wants and convey the results back to
the designer.

The designer remains the primary actor in the
design process but is empowered in their decision
making by the assistant. This allows the designer
to work more effectively, making their behavior
more indicative of the goal they are working
toward. Keeping the designer in the loop also re-
duces our reliance on goal communication, as any
error in the communicated goal can be corrected
immediately. As an active participant the designer
is free to explore and try things out in order to
refine their goals. Further, cooperation can use
the designer’s creative abilities and expertise to

2 Computer
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Zero-Shot Assistance in Novel Decision Problems

Anonymous Authors1

Abstract
There has long been significant interests in creat-
ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.

1. Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted
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There has long been significant interests in creat-
ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.

1. Introduction
In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.
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Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted
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ing assistants that can assist agents, often humans,
in sequential decision problems. In this paper we
consider assistance in situations where the deci-
sion problem is novel to both the agent and assis-
tant, and where the agent knows the reward func-
tion but is not able to describe it explicitly. We in-
troduce an assistant that assists an agent by giving
advice, and is conscious of reward-independent
factors that determine the agent’s decision mak-
ing process and adapts to them. The assistant’s
policy is obtained by planning over a decision-
theoretic formalization of assistance. We show
that when controlling for agent effort, assistance
through advice yields higher cumulative reward
for the agent than an assistant that automates the
agent’s decisions after eliciting the agent’s reward
function.
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In this paper we consider the problem of assisting agents
in tackling sequential decision problems which they have
never encountered before. Human decision makers routinely
make decisions in problems that are new to them. Take for
example decision making in design CITE , where one looksdesign optimization?

to find or construct the best possible design within a space
of designs that are feasible. Every design problem is new:
each time an architecture builds a house it is for different
clients, and each time a structural engineer designs a truss it
is for a different building. Thus, we can think of design as
a single-episode decision problem: it involves a sequence
of decisions, each changing or elaborating a design in some
way. Once a satisfactory design has been found the episode
terminates. The decisions are driven by a goal, encoded as
a reward function, known to the decision maker. Usually
this goal is complex and tacit, thus we will assume that it is
impossible for the agent to describe it explicitly.

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

a'
a

s
ENV

agentassistant

Figure 1. In zero-shot assistance an assistant helps an agent solve a
problem without initially knowing the agent’s reward function. We
propose an assistant which helps the agent by advising it. Only the
agent operates directly in the environment. In every time step the
assistant gives new advice a0, appropriate for the current state s,
based on its inference of the agent’s reward function. When acting
the agent incorporates the advice into its own decision making.
The assistant observes both the action a taken by the agent and
the new state of the environment, and uses this to infer the agent’s
reward function.

We seek to create assistants1 which can assist agents in
solving these decision problems. The goal for the assistant
is to increase the quality of the agent’s decisions, measured
by cumulative reward, relative to the agent’s effort. As
the assistant does know anything about the agent’s reward
function before the start of the episode we call this zero-
shot assistance, in reference to zero-shot cooperation CITE.
This is because though the agent knows the reward function,
it has never solved this problem before – ruling out inferring
the reward function from prior observations – and is not able
to provide an explicit description of the reward function.
Thus, the assistant is forced to infer the reward function
during the episode.

We will introduce an assistant here which assists by giving
advice. The agent remains responsible for taking actions in
the environment. Figure 1 shows the interaction between
agent and assistant. The advice is based on a reward function
that is inferred from the agent’s behaviour in response to
advice. In this paper we will focus on advice of the type
”have you considered doing a”, where a is an action. We
see two fundamental advantages to an assistant that advises.
First, taking into account advice takes negligible effort, yet
can greatly improve the agent’s decisions. Second, the agent

1Though the assistant is an agent, to avoid confusion we will
always refer to it as assistant and will only use agent to refer to
the agent being assisted
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