

1st EUOS/SLAS Joint Challenge: Compound Solubility

Develop new methods to predict compound solubility based on chemical structure.

100 teams - 3 months ago

Challenge organizers:

Robert Harmel, Andrea Zaliani, Wenyu Wang#, Julio Martin,

Christian Parker, Jing Tang#

#Network Pharmacology for Precision Medicine (NetPhar),

Faculty of Medicine, University of Helsinki

Date: 2023/03/23

EU-OPENSCREEN

European Research Infrastructure Consortium (ERIC)

Non-profit organization for chemical biology and early drug discovery

EU-wide integration of high-capacity screening platforms

 ECBL (European Chemical Biology Library): 100k commercial compounds from EU-OS partners

Solubility	University of Santiago de Compostela (USC)
Interference with bioluminescence reporters	Polish Academy of Sciences, Institute of Bioorganic Chemistry (IBCH PAS)
ROS (Reactive Oxygen Species)	Polish Academy of Sciences, Institute of Bioorganic Chemistry (IBCH PAS)
Cell viability	Institute for Molecular Medicine Finland (FIMM)
Antibacterial & antifungal assays	Fundación MEDINA (MEDI) Helmholtz-Centre for Infection Research (HZI)
Absorbance / autofluorescence	EU-OPENSCREEN laboratory
Cell painting	Ongoing assay validation at four sites

EU-OPENSCREEN

ECBD (European chemical biology database): a collaborative data sharing environment

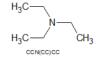
- FAIR data principles
- Optional embargo period up to 36 months
- Annotations + links to other databases (e.g. ChEMBL)

https://ecbd.eu/

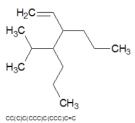
Challenge motivation

- Impossible to probe million of compounds experimentally
- Chemical properties impact compound behavior in the environment.
- Computational predictions accelerate the research
- 1st Kaggle challenge: with **S**ociety of **L**ab **A**utomation & **S**creening
- Solubility: an essential feature of all biologically active compounds




Challenge data

- Experimentally measured aqueous solubility of 100k small molecules
- 70K Training / 15K Public leaderboard /
 15K Final evaluation
- Structure based predictors generated by participants (SMILE / InChIKey)
- Labels are solubility classes:


High (93%), Medium (4%) or Low (3%)

eos	smiles	inchi	inchikey	formula [‡]	mw [‡]
EOS102046	NS(N)(=O)=O	InChI=1S/H4N2O2S	NVBFHJWHLNUMCV	H4N2O2S	96.111
EOS100468	O=P(O)(O)CP(=O)(InChI=1S/CH6O6P2	MBKDYNNUVRNNR	CH6O6P2	176.001
EOS100593	CI.N=C(N)NN	InChI=1S/CH6N4.Cl	UBDZFAGVPPMTIT	CH7CIN4	110.548
EOS102045	NC(N)=S	InChI=1S/CH4N2S/c	UMGDCJDMYOKAJ	CH4N2S	76.124
EOS102399	O=C([O-])O.[Na+]	InChI=1S/CH2O3.Na	UIIMBOGNXHQVGW	CHNaO3	84.006
EOS13582	Cc1ccc2oc(=O)n(S(InChI=1S/C9H9NO4	HAJTYZHIIIDXHX-U	C9H9NO4S	227.241
EOS36981	CCN1C(=O)c2ccccc	InChI=1S/C9H9NO3	DQKSIWDBRCCINU	C9H9NO3S	211.242
EOS102672	CCOc1cc(C#N)ccc1O	InChI=1S/C9H9NO2	NBUPJWDUINJHFZ	C9H9NO2	163.176

Evaluation metric

- Accuracy is not an informative metric:
 - > 0.9 for a prediction based on class distribution of training data
- Kappa for imbalanced classification
- Quadratic weighted kappa for ordinal labels

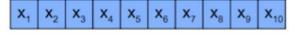
$$Cohen's \, Kappa = 1 - \frac{Error}{Baseline \, error}$$

$$Weighted \, Kappa = 1 - \frac{Weighted \, error}{Weighted \, baseline \, error}$$

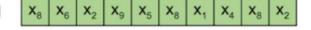
	$n_{i,j}$	Мо 0	del Pre 1	dicted 2
Ground Truth	0	4	0	1
	1	2	1	0
	2	0	1	1

	Weig 0	1	2
0	0	1	4
1	1	0	1
2	4	1	0

Kaggle default evaluation


Team name	prediction accuracy	
а		0.9
b		8.0
С		0.7
d		0.6

- Only one value per team
- No uncertainty estimation
- No significant test
- Hard to make persuasive conclusion for teams with close performance


Bootstrap sampling based evaluation

$$K_m = rac{\sum_{n=1}^{1000} Kappa_{n,m} \leq Kappa_{n,ref}}{\sum_{n=1}^{1000} Kappa_{n,m} \geq Kappa_{n,ref}}$$

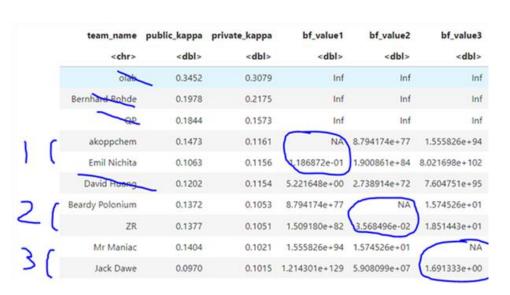
Original Dataset

Bootstrap 1

Bootstrap 2

Bootstrap 3

$X_6 X_5 X_4 X_6$	X ₂ X ₄	X ₂ X ₆	X ₉ X ₂
-------------------	-------------------------------	-------------------------------	-------------------------------

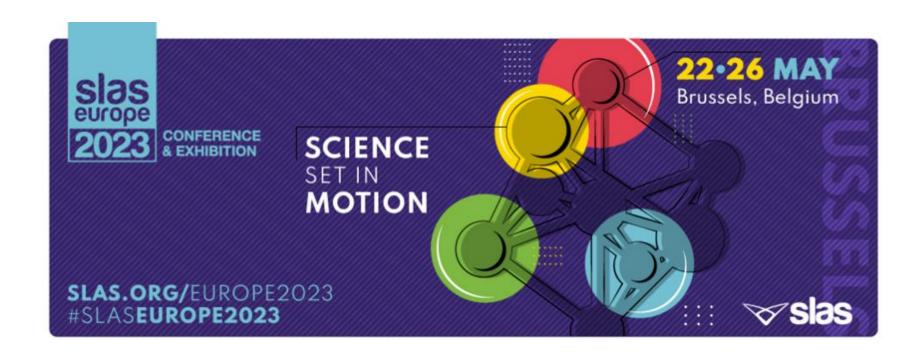

Team name	resample id	ACC	mean	sd	Significance (Bayes factor)
а	1	0.95			
a	2	0.92			
a	3	0.69	0.85	0.14	Reference
b	1	0.73			
b	2	0.98			
b	3	0.82	0.84	0.13	0.33
С	1	0.76			
С	2	0.52			
С	3	0.35	0.54	0.21	12.86

Winner selection

- Rank: private leaderboard kappa
- Statistically tied teams: BF value < 5
- Solution has to be shared
- Interpretable (model transferable to future EUOS data):
 - Do not use EOS ID
 - Model accuracy stable upon shuffling the test set

Winner selection

- Rank: private leaderboard kappa
- Statistically tied teams: BF value < 5
- Solution has to be shared
- Interpretable (model transferable to future EUOS data):
 - Do not use EOS ID
 - Model accuracy stable upon shuffling the test set


Confirmed winning team

Top1. a.koppchem (Led by Prof. Igor Tetko)

Top2. Beardy Polonium

Top3. Mr Maniac

Upcoming session in SLAS EUROPE 2023

