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Yes, there
is a tumor

Is the model sure 
about that? 𝑃 𝐵 𝐴 =

𝑃 𝐴 𝐵 𝑃(𝐵)
𝑃(𝐴)



Bayesian inference



Bayesian inference

• Bayes’ rule:

𝑃 𝐴 𝐵 =
𝑃 𝐴 𝑃(𝐵|𝐴)

𝑃(𝐵)
=

𝑃 𝐴 𝑃(𝐵|𝐴)
∫𝑃 𝐴 𝑃(𝐵|𝐴) 𝑑𝐴



Bayesian inference

• 𝑃 𝜃 𝑑𝑎𝑡𝑎 = ! " !($%&%|")
!($%&%)

= ! " !($%&%|")
∫ ! " !($%&%|")$"

• Prior: 𝑃 𝜃 ;
• Likelihood of 𝑑𝑎𝑡𝑎 given 𝜃: 𝑃(𝑑𝑎𝑡𝑎|𝜃);
• Posterior: 𝑃 𝜃 𝑑𝑎𝑡𝑎 .



Introduction to BNNs



Bayesian deep learning



Bayesian deep learning: definition

• Deep neural network: 𝑓 𝑥; 𝜃 ;
• Likelihood: 

𝑝 𝒟 𝜃 = ∏' 𝑝(𝑦'|𝑓 𝑥'; 𝜃 ), with 𝒟 = { 𝑥', 𝑦' }'()*

• Standard neural network:
• Maximize likelihood:

𝜃∗ = argmax
,

∑' log 𝑝(𝑦'|𝑓 𝑥'; 𝜃 )

• Prediction on 𝑥∗:
𝑝(𝑦∗|𝑓 𝑥∗; 𝜃∗ )

Blundell, Charles, et al. "Weight uncertainty in neural network." ICML, 2015.



Bayesian deep learning: definition

• Deep neural network: 𝑓 𝑥; 𝜃 ;
• Likelihood: 

𝑝 𝒟 𝜃 = ∏' 𝑝(𝑦'|𝑓 𝑥'; 𝜃 ), with 𝒟 = { 𝑥', 𝑦' }'()*

• Bayesian neural network:
• Bayesian inference: 

𝑝 𝜃 𝒟 =
𝑝 𝜃 𝑝(𝒟|𝜃)

∫ 𝑝 𝜃 𝑝(𝒟|𝜃) 𝑑𝜃
• Prediction on 𝑥∗ (Bayesian model averaging):

𝑝 𝑦∗ 𝑥∗, 𝒟 = ∫𝑝(𝑦∗|𝑓 𝑥∗; 𝜃 )𝑝 𝜃 𝒟 𝑑𝜃

Intractable!

Intractable!

Blundell, Charles, et al. "Weight uncertainty in neural network." ICML, 2015.



Bayesian deep learning: application

• Incorporate prior knowledge
• Overcoming catastrophic forgetting in transfer/continual learning.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Bayesian deep learning: application

• Incorporate prior knowledge
• Improve out-of-distribution generalization.

Sun, Shengyang, et al. "Functional variational Bayesian neural networks." ICLR, 2019.



Bayesian deep learning: application

• Provide predictive uncertainty

Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurIPS, 2017.



Approximation in BNNs



Approximate inference in BNNs

• True posterior 𝑝 𝜃 𝒟 = * " *(𝒟|")
∫ * " *(𝒟|")$"

:

• Approximate 𝑝 𝜃 𝒟 with 𝑞-(𝜃):
• Choose 𝑞!(𝜃) from a simple distribution family, e.g., mean-field Gaussian;
• 𝑞!(𝜃) is parametrized by variational parameters 𝜑, e.g., mean and std in Gaussian; 
• Minimize the dissimilarity between 𝑞!(𝜃) and 𝑝 𝜃 𝒟 .

• Predictive distribution 𝑝 𝑦∗ 𝑥∗, 𝒟 = ∫𝑝(𝑦∗|𝑓 𝑥∗; 𝜃 )𝑝 𝜃 𝒟 𝑑𝜃:
• Monte Carlo approximation:

𝑝 𝑦∗ 𝑥∗, 𝒟 ≈ ∫𝑝(𝑦∗|𝑓 𝑥∗; 𝜃 )𝑞-(𝜃) 𝑑𝜃

≈ )
.
∑/(). 𝑝 𝑦∗ 𝑓 𝑥∗; 𝜃/ , 𝜃/~𝑞-(𝜃)



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Inference as optimization

KL[𝑞!(𝜃)|𝑝 𝜃 𝒟 ]

𝑝 𝜃 𝒟

𝑞!(𝜃) 𝜑∗

𝜑#$#%

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." JASA, 2017.



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Kullback-Leibler Divergence

KL 𝑞1 𝜃 𝑝 𝜃 𝒟 = 𝔼2! " [log
𝑞1 𝜃
𝑝(𝜃|𝒟)

]

• Measures how similar are 𝑞-(𝜃) and 𝑝 𝜃 𝒟 ;
• KL 𝑞- 𝜃 𝑝 𝜃 𝒟 ≥ 0;
• KL 𝑞- 𝜃 𝑝 𝜃 𝒟 = 0 when 𝑞- 𝜃 = 𝑝 𝜃 𝒟 ;
• KL 𝑞- 𝜃 𝑝 𝜃 𝒟 ≠ KL 𝑝 𝜃 𝒟 𝑞- 𝜃 .



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Derive the Evidence Lower BOund (ELBO) from KL Divergence

KL 𝑞- 𝜃 𝑝 𝜃 𝒟 = 𝔼:! , log
𝑞- 𝜃
𝑝 𝜃 𝒟

=𝔼:! , log :! , ; 𝒟
; , ; 𝒟 𝜃 = log 𝑝 𝒟 + 𝔼:! , log :! ,

; , ; 𝒟 𝜃

= log 𝑝 𝒟 − 𝔼:! , log
𝑝 𝜃 𝑝 𝒟 𝜃
𝑞- 𝜃

Model 
Evidence ELBO

always ≥ 0

log 𝑝 𝒟

ELBO

KL 𝑞! 𝜃 𝑝 𝜃 𝒟



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Minimize KL 𝑞1 𝜃 𝑝 𝜃 𝒟 is equivalent to maximize ELBO.
• KL 𝑞- 𝜃 𝑝 𝜃 𝒟 is intractable but ELBO is tractable.

• Rewrite the ELBO (𝐿(𝜑)):

𝐿 𝜑 = 𝔼:! , log
𝑝 𝜃 𝑝 𝒟 𝜃
𝑞- 𝜃

= 𝔼:! , log 𝑝 𝒟 𝜃 − KL[𝑞- 𝜃 |𝑝 𝜃 ]

log 𝑝 𝒟

ELBO

KL 𝑞! 𝜃 𝑝 𝜃 𝒟



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Minimize KL 𝑞1 𝜃 𝑝 𝜃 𝒟 is equivalent to maximize ELBO.
• KL 𝑞- 𝜃 𝑝 𝜃 𝒟 is intractable but ELBO is tractable.

• Rewrite the ELBO (𝐿(𝜑)):

𝐿 𝜑 = 𝔼:! , log
𝑝 𝜃 𝑝 𝒟 𝜃
𝑞- 𝜃

= 𝔼:! , log 𝑝 𝒟 𝜃 − KL[𝑞- 𝜃 |𝑝 𝜃 ]

Data fitness term Regularization term



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Rewrite the ELBO (𝐿(𝜑)):

𝐿 𝜑 = 𝔼:! , log
𝑝 𝜃 𝑝 𝒟 𝜃
𝑞- 𝜃

= 𝔼:! , log 𝑝 𝒟 𝜃 − KL[𝑞- 𝜃 |𝑝 𝜃 ]

• Data fitness term: expected log likelihood
• Similar with the standard DL loss that we use for training;
• Except that now the network’s weights are sampled from 𝑞! 𝜃 ;
• 𝔼"" # log 𝑝 𝒟 𝜃 ≈ ∑$ log 𝑝(𝑦$|𝑓(𝑥$; 𝜃%)), 𝜃%~𝑞! 𝜃 .

Data fitness term Regularization term



Variational Inference: 𝑞!(𝜃) ≈ 𝑝 𝜃 𝒟

• Rewrite the ELBO (𝐿(𝜑)):

𝐿 𝜑 = 𝔼:! , log
𝑝 𝜃 𝑝 𝒟 𝜃
𝑞- 𝜃

= 𝔼:! , log 𝑝 𝒟 𝜃 − KL[𝑞- 𝜃 |𝑝 𝜃 ]

• Regularization term: KL between the posterior and prior
• Make the posterior distribution closer to the prior;
• Often analytically tractable.

Data fitness term Regularization term



Recap: approximate inference in BNNs 

• True posterior 𝑝 𝜃 𝒟 is intractable:
• Approximate 𝑝 𝜃 𝒟 with variational inference:

• Choose 𝑞!(𝜃) from a simple distribution family, e.g., mean-field Gaussian;
• Maximize the ‘ELBO’ w.r.t. 𝜑 to fit 𝑞!(𝜃).

• Predictive distribution 𝑝 𝑦∗ 𝑥∗, 𝒟 is intractable:
• Monte Carlo approximation:

𝑝 𝑦∗ 𝑥∗, 𝒟 = ∫𝑝(𝑦∗|𝑓 𝑥∗; 𝜃 )𝑞-(𝜃) 𝑑𝜃
≈ )

.
∑/(). 𝑝 𝑦∗ 𝑓 𝑥∗; 𝜃/ , 𝜃/~𝑞-(𝜃)



Example: mean-field BNNs 

• Fully factorized Gaussian prior: 
𝑝 𝜃 = ∏',?,@ 𝑝(𝜃'?

@ ), 𝑝(𝜃'?
@ ) = 𝒩(0, 𝜎AB)

• Fully factorized Gaussian approximated posterior:
𝑞C,D 𝜃 = ∏',?,@ 𝑞C"#$ ,D"#$

𝜃'?
@ , 𝑞C"#$ ,D"#$

𝜃'?
@ = 𝒩(𝜇'?

@ , 𝜎'?
@ B)

• Likelihood: 𝑝 𝒟 𝜃 = ∏? 𝑝(𝑦?|𝑓 𝑥?; 𝜃 ), with i.i.d. assumption of data
• Regression: 𝑝 𝑦' 𝑓 𝑥'; 𝜃 = 𝒩(𝑓 𝑥'; 𝜃 , 𝜎EB).



Example: mean-field BNNs 

• Fully factorized Gaussian prior: 
𝑝 𝜃 = ∏',?,@ 𝑝(𝜃'?

@ ), 𝑝(𝜃'?
@ ) = 𝒩(0, 𝜎AB)

• Fully factorized Gaussian approximated posterior:
𝑞C,D 𝜃 = ∏',?,@ 𝑞C"#$ ,D"#$

𝜃'?
@ , 𝑞C"#$ ,D"#$

𝜃'?
@ = 𝒩(𝜇'?

@ , 𝜎'?
@ B)

• Likelihood: 𝑝 𝒟 𝜃 = ∏? 𝑝(𝑦?|𝑓 𝑥?; 𝜃 ), with i.i.d. assumption of data
• Classification: 𝑝 𝑦' 𝑓 𝑥'; 𝜃 = Categorical(logit = 𝑓 𝑥'; 𝜃 ).



Example: mean-field BNNs 

• Revisit the ELBO (𝐿(𝜇, 𝜎)):
𝐿 𝜇, 𝜎 =Q

'()

*
𝔼:%,' , log 𝑝(𝑦'|𝑓 𝑥'; 𝜃 − KL 𝑞C,D 𝜃 𝑝 𝜃

• Expected loglikelihood:
• Mini-batch training with { 𝑥F, 𝑦F }F()G ~𝒟.

@
$&'

(
𝔼"#,% # log 𝑝(𝑦$|𝑓 𝑥$; 𝜃 ≈

𝑁
𝑀
@

)&'

*
𝔼"#,% # log 𝑝(𝑦)|𝑓 𝑥); 𝜃

• Monte Carlo: 𝔼"#,% # log 𝑝(𝑦)|𝑓 𝑥); 𝜃 ≈ log 𝑝(𝑦)|𝑓 𝑥); 𝜃+ , 𝜃+~ 𝑞,,. 𝜃

• Reparameterization trick for mean-field BNNs: 𝜃+~ 𝑞,,. 𝜃 ⟺ 𝜃+= 𝜇 + 𝜎 ⊙ 𝜀+, 𝜀+~𝒩(0,1)



Example: mean-field BNNs 

• Revisit the ELBO (𝐿(𝜇, 𝜎)):
𝐿 𝜇, 𝜎 =Q

'()

*
𝔼:%,' , log 𝑝(𝑦'|𝑓 𝑥'; 𝜃 − KL 𝑞C,D 𝜃 𝑝 𝜃

• Regularization:
• Analytically tractable for two Gaussian distributions:

KL 𝑞C,D 𝜃 𝑝 𝜃 =Q
',?,@

log
𝜎A
𝜎'?
@ +

𝜎'?
@ B + 𝜇'?

@ B

𝜎AB
−
1
2



Example: mean-field BNNs 

• Revisit the ELBO (𝐿(𝜇, 𝜎)):
𝐿 𝜇, 𝜎 =Q

'()

*
𝔼:%,' , log 𝑝(𝑦'|𝑓 𝑥'; 𝜃 − KL 𝑞C,D 𝜃 𝑝 𝜃

• Maximize the ELBO w.r.t. 𝜇, 𝜎 using SGD or Adam



Priors in BNNs



Mean-field prior is not good enough

• Fully factorized Gaussian prior: 

𝑝 𝜃 = ∏?,N,O 𝑝(𝜃?N
O ), 𝑝(𝜃) = 𝒩(0, 𝜎PQ𝐼)

• It is hard to encode any prior knowledge into such prior.
• 𝜃 is high-dimensional parameters of a nonlinear deep NN.

• Can we use better priors?



Pretrain priors on relevant tasks

• Two tasks:
• Task A (source task) with dataset 𝒟H, e.g., ImageNet;
• Task B (target task) with dataset 𝒟I, e.g., CIFAR-10.

• Standard transfer/continual learning:
• Pretrain the NN on task A → 𝜃H∗

• Finetune the NN on task B with 𝜃H∗ as the initialization → 𝜃∗

• Catastrophic forgetting: 𝜃∗no longer works on 𝒟H
• Suboptimal transfer learning

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

• Two tasks:
• Task A (source task) with dataset 𝒟H, e.g., ImageNet;
• Task B (target task) with dataset 𝒟I, e.g., CIFAR-10.

• Bayesian transfer/continual learning:
• Pretrain the BNN on task A → log 𝑝 𝜃 𝒟H

log 𝑝 𝜃 𝒟/ = log 𝑝 𝒟/ 𝜃 + log 𝑝 𝜃 − log 𝑝(𝒟/)

• Finetune the BNN on task B with log 𝑝 𝜃 𝒟H as the prior → log 𝑝 𝜃 𝒟H, 𝒟I
log 𝑝 𝜃 𝒟/, 𝒟0 = log 𝑝 𝒟0 𝜃 + log 𝑝 𝜃 𝒟/ − log 𝑝(𝒟0)

Prior used in 𝒟& is the posterior 
in 𝒟', e.g., a pretrained prior. 

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

• Two tasks:
• Task A (source task) with dataset 𝒟H, e.g., ImageNet;
• Task B (target task) with dataset 𝒟I, e.g., CIFAR-10.

• Bayesian transfer/continual learning:
• Pretrain the BNN on task A → log 𝑝 𝜃 𝒟H

log 𝑝 𝜃 𝒟/ = log 𝑝 𝒟/ 𝜃 + log 𝑝 𝜃 − log 𝑝(𝒟/)

• Finetune the BNN on task B with log 𝑝 𝜃 𝒟H as the prior → log 𝑝 𝜃 𝒟H, 𝒟I
log 𝑝 𝜃 𝒟/, 𝒟0 = log 𝑝 𝒟0 𝜃 + λ log 𝑝 𝜃 𝒟/ − log 𝑝1(𝒟0)

Scaling 
hyperparameter 

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

• Two tasks:
• Task A (source task) with dataset 𝒟H, e.g., ImageNet;
• Task B (target task) with dataset 𝒟I, e.g., CIFAR-10.

• Bayesian transfer/continual learning:
• Pretrain the BNN on task A → log 𝑝 𝜃 𝒟H

log 𝑝 𝜃 𝒟/ = log 𝑝 𝒟/ 𝜃 + log 𝑝 𝜃 − log 𝑝(𝒟/)

• Finetune the BNN on task B with log 𝑝 𝜃 𝒟H as the prior → log 𝑝 𝜃 𝒟H, 𝒟I
log 𝑝 𝜃 𝒟/, 𝒟0 = log 𝑝 𝒟0 𝜃 +λ log 𝑝 𝜃 𝒟/ − log 𝑝1(𝒟0)

• Catastrophic forgetting resolved: log 𝑝 𝜃 𝒟H, 𝒟I works on both 𝒟H and 𝒟I
• Better performance on 𝒟I in transfer learning.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

• Elastic Weight Consolidation (EWC)
• Approximate log 𝑝 𝜃 𝒟H by Laplace approximation

• Similar with mean-field variational inference
• Find the Maximum a Posteriori (MAP) estimation of log 𝑝 𝜃 𝒟H, 𝒟I

• Ignores the uncertainty of log 𝑝 𝜃 𝒟/, 𝒟0

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

• Pretrained prior can come from self-supervised learning!
• Approximate log 𝑝 𝜃 𝒟H by SWAG with a SimCLR loss

• SWAG can estimate the covariance which is ignored in VI and Laplace approximation
• Approximate the log 𝑝 𝜃 𝒟H, 𝒟I with SGHMC

Shwartz-Ziv, Ravid, et al. "Pre-train your loss: Easy Bayesian transfer learning with informative priors." NeurIPS, 2022.



Pretrain priors with functional information

• Fully factorized Gaussian prior: 

𝑝 𝜃 = ∏?,N,O 𝑝(𝜃?N
O ), 𝑝(𝜃?N

O ) = 𝒩(0, 𝜎PQ)

• A more flexible fully factorized hierarchical Gaussian prior:

𝑝 𝜃 = ∏?,N,O 𝑝(𝜃?N
O ), 𝑝(𝜃?N

O ) = 𝒩 0, 𝜎PQ , 𝑝 𝜎PQ = ΓTU(𝛼P, 𝛽P)

• Optimize 𝛼A, 𝛽A to match the functional information at hand.



Pretrain priors with functional information

• Suppose we know that features can only explain 80% of the target:
• I.e., the proportion of variance explained (PVE) is 0.8.

• By definition, PVE of a function 𝑓(𝑥; 𝜃) is:

PVE 𝜃 =
Var2(𝑓(𝑥; 𝜃))

Var2 𝑓 𝑥; 𝜃 + 𝜎34

• 𝑝 𝜃; 𝛼A, 𝛽A defines the a prior over model PVE 𝜃; 𝛼A, 𝛽A , i.e., 𝑝(PVEJ(,K().
• If we have a prior belief on PVE, i.e., 𝑝(PVE):

• Beta distribution with mode equals to 0.8
• Optimize 𝛼A, 𝛽A such that 𝑝(PVEJ(,K() ≈ 𝑝(PVE)

• 𝛼5∗, 𝛽5∗ = argmin
7&,8&

KL 𝑝 PVE7&,8& |𝑝(PVE)

Cui, Tianyu, et al. “Informative Bayesian neural network priors for weak signals.” Bayesian Analysis, 2022.



Pretrain priors with functional information

• When the prior knowledge about PVE is unavailable:
• A noninformative prior over PVE (𝑈[0,1]) improves when the data is noisy;
• A noninformative prior over weights leads to overfitting.

Cui, Tianyu, et al. “Informative Bayesian neural network priors for weak signals.” Bayesian Analysis, 2022.



Pretrain priors with functional information

• Suppose we know the neural network functions come from a Gaussian 
process 𝑝(𝑓)
• Gaussian processes are distributions over functions 𝑓

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Pretrain priors with functional information

• Suppose we know the neural network functions come from a Gaussian 
process 𝑝(𝑓)
• Gaussian processes are distributions over functions 𝑓

• For a fully factorized hierarchical Gaussian prior over weights 𝜃:
𝑝 𝜃 = ∏',?,@ 𝑝(𝜃'?

@ ), 𝑝(𝜃'?
@ ) = 𝒩 0, 𝜎@B , 𝑝 𝜎@B = ΓL)(𝛼@, 𝛽@)

• It defines a prior over function: 𝑝 𝑓; 𝛼, 𝛽 = ∫𝑝 𝑓 𝜃 𝑝 𝜃; 𝛼, 𝛽 𝑑𝜃

• Minimize the Wasserstein distance between 𝑝 𝑓; 𝛼, 𝛽 and 𝑝(𝑓)

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Pretrain priors with functional information

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Recap: informative weight space prior

• Pretrain the weight space prior on relevant tasks
• Resolve the catastrophic forgetting in continual learning;
• Improve the prediction performance on target tasks;

• Pretrain the weight space prior with functional information
• Prior over PVE improves the model prediction on noisy data;
• Gaussian processes prior improves the model uncertainty on OOD data.
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