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Explain Bayesian neural networks

Bayesian neural networks (BNNs) are a type of neural network that incorporates Bayesian

inference principles to improve their predictive power and uncertainty estimates.

In a traditional neural network, the weights and biases are learned through an optimization

process such as stochastic gradient descent, which aims to minimize the error between

the predicted and actual outputs. However, this approach does not account for

uncertainty in the weights and biases, which can lead to overconfident predictions and

poor generalization to new data.

In contrast, BNNs use Bayesian inference to estimate a probability distribution over the
weights and biases of the network. This allows for the quantification of uncertainty in the

model and the ability to make probabilistic predictions.

One common way to implement BNNs is through variational inference, which involves
approximating the true posterior distribution over the weights with a simpler,
parameterized distribution. The parameters of the distribution are learned through
optimization, and the resulting distribution over the weights can be used to compute

predictive probabilities for new inputs.
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Bayesian inference



Bayesian inference

* Bayes’ rule:

P(A)P(B|A)  P(A)P(B|A)
P(B)  [P(A)P(B|A)dA

P(A|B) =




Bayesian inference

P(0)P(datal@) _  P(O)P(datalB)

* P(Oldata) = P(data) [ P(B)P(data|6)d

* Prior: P(0);
* Likelihood of data given 6: P(data|0);
* Posterior: P(0|data).




Introduction to BNNSs



Bayesian deep learning




Bayesian deep learning: definition

* Deep neural network: f(x; );

* Likelihood:
p(D16) = [1;p(y;lf (xi; 0)), with D = {(x;, yi) ey

e Standard neural network:
e Maximize likelihood:

0" = argmax Yilogp(yilf (x;; 0))

* Prediction on x™:

p(yrIf(x76%))

Blundell, Charles, et al. "Weight uncertainty in neural network." ICML, 2015.



Bayesian deep learning: definition

 Deep neural network: f(x; 9);
* Likelihood:
p(D16) = [1;pilf (x5 6)), with D = {(x;, y)}iL4 /Q\

* Bayesian neural network: @< ﬁé\ /@ \@

* Bayesian inference: S DNV
p(6)p(D]6) '
p(0|D) =
[ p(®)p(D10) do
* Prediction on x™ (Bayesian model averaging):

p(y*|x*,D) = [p(y*|f (x*; 6))p(6|D) d6

Blundell, Charles, et al. "Weight uncertainty in neural network." ICML, 2015.




Bayesian deep learning: application

* Incorporate prior knowledge
* Overcoming catastrophic forgetting in transfer/continual learning.

o Low eror fortask B == EWC
== Low error for task A = |2

/7 == NO penalty

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Bayesian deep learning: application

* Incorporate prior knowledge
* Improve out-of-distribution generalization.

-4 -2 0 2 4 -4 - 0

Sun, Shengyang, et al. "Functional variational Bayesian neural networks." ICLR, 2019.



Bayesian deep learning: application

* Provide predictive uncertainty

(a) Input Image (b) Ground Truth  (c) Semantic (d) Aleatoric (e) Epistemic
Segmentation Uncertainty Uncertainty

Kendall, Alex, and Yarin Gal. "What uncertainties do we need in Bayesian deep learning for computer vision?." NeurlPS, 2017.



Approximation in BNNs



Approximate inference in BNNs

p(0)p(DIF)
[ p(0)p(D]6)d6
* Approximate p(0|D) with g, (0):

* Choose q,(0) from a simple distribution family, e.g., mean-field Gaussian;

* True posterior p(6|D) =

* q,(0) is parametrized by variational parameters ¢, e.g., mean and std in Gaussian;
* Minimize the dissimilarity between q,(8) and p(6|D).

* Predictive distribution p(v*|x*,D) = [ p(y*|f (x*;8))p(0|D) db:
* Monte Carlo approximation:
p(y*|x", D) = [ p(y7|f (x5 0))qy(8) dO

~ LK PO IF (5 010), 6~ (0)

. PPN




Variational Inference: q, () =~ p(8|D)

* Inference as optimization
P n(61D)

[ ]
/ KL[q,(6)[p(6]D)]
q,(0) ’

Blei, David M., Alp Kucukelbir, and Jon D. McAuliffe. "Variational inference: A review for statisticians." JASA, 2017.



Variational Inference: q,(8) = p(6|D)

* Kullback-Leibler Divergence )
q
KL[4,@)[p(61D)] = Eq,)[l08 5]
* Measures how similar are q,(8) and p(8|D);
* KL|q,(0)|p(6|D)] = 0;
* KL[q,(8)|p(6]D)] = 0 when q,,(6) = p(8]D);
* KL[q,(®)|p(81D)] # KL[p(681D)|q,(6)].




Variational Inference: q,, () =~ p(6|D)

* Derive the Evidence Lower BOund (ELBO) from KL Divergence

.................................................................................................. q (8)
KL ) 0|D lo
___________________ g @01 = Bay o8
_ qe(@)p(D) | dy(6)
“Eq, 6) [‘ °8 w10y ~ 08P (D) + Eqy o) [l"gpw)p(mm

........................................... p(@)p(@ | 6)] log p(D)
IKL[%(e)lp(em)]

Model ELBO
Evidence




Variational Inference: q, () =~ p(8|D)

* Minimize KL[q¢ (9)‘p(9|2))] is equivalent to maximize ELBO.
. KL[q¢(9)|p(9|D)] is intractable but ELBO is tractable.

* Rewrite the ELBO (L(¢)):

p(8)p(D|6)
qy(6)

= Eq,(¢)[log p(D|6)] — KL[q,(6)|p(6)]

log p(D)

L(p) = Eq,0) [108

IKL[%(H)IP(HID)]

ELBO



Variational Inference: q, () =~ p(8|D)

* Minimize KL[q¢ (9)‘p(9|2))] is equivalent to maximize ELBO.
. KL[q¢(9)|p(9|D)] is intractable but ELBO is tractable.

* Rewrite the ELBO (L(¢)):

p(@)p(])|9) s T e
qw(H) .......................................................................................................................................................................................

Data fitness term Regularization term

L(p) = Eq,0) [108



Variational Inference: q, () =~ p(8|D)

* Rewrite the ELBO (L(¢)):

p(@)p(@l@) |
q¢(0) .......................................................................................................................................................................................

Data fitness term Regularization term

» Data fitness term: expected log likelihood
e Similar with the standard DL loss that we use for training;
* Except that now the network’s weights are sampled from q,,(6);

* Eq,(0)llog p(DI0)] = X;log p(yilf (xi; 6))), 6;~q,(6).

L(p) = Eq,0) [108



Variational Inference: q, () =~ p(8|D)

* Rewrite the ELBO (L(¢)):

p(@)p(@l@) |
q¢(0) .......................................................................................................................................................................................

Data fitness term Regularization term

* Regularization term: KL between the posterior and prior
* Make the posterior distribution closer to the prior;
e Often analytically tractable.

L(¢) = Eq,0) [108



Recap: approximate inference in BNNs

* True posterior p(8|D) is intractable:

* Approximate p(6|D) with variational inference:
* Choose q,(0) from a simple distribution family, e.g., mean-field Gaussian;
* Maximize the ‘ELBO’ w.r.t. ¢ to fit q,(6).

* Predictive distribution p(y*|x™, D) is intractable:
* Monte Carlo approximation:

p(y*|x*, D) = [ p(y*If (x*;0))q,(6) db

~ LS PO IF (5 00)), 0~ (6)



Example: mean-field BNNs

* Fully factorized Gaussian prior:
p(0) = I1;;,p(0), PO = N(0,08)

* Fully factorized Gaussian approximated posterior:
Auo(0) =1l 19,0 ;0 (91-(;))» q,® ;O (91-(;)) N (1 >, (1)2)

l] l] iy’ l]

* Likelihood: p(D16) = [1; p(y;|f (x;; 8)), with i.i.d. assumption of data
* Regression: p(y;|f (x;; 0)) = N (f (x;; 0), 08).



Example: mean-field BNNs

* Fully factorized Gaussian prior:
p(0) = I1;;,p(0), PO = N(0,08)

* Fully factorized Gaussian approximated posterior:
qu,o-(e) = Hl] I q D (1) (Ql(]l)) , qﬂ(l) O (9( )) ( (l) (1)2)

l] l] iy’ l]

* Likelihood: p(D16) = [1; p(y;|f (x;; 8)), with i.i.d. assumption of data
e Classification: p(y;|f (x;; 8)) = Categorical(logit = f(x;; 8)).



Example: mean-field BNNs

* Revisit the ELBO (L(,ul,va)):
Lwo) = ) Eq,, @08 pOilf (i 0)] = KL[4uo (6 p(0)]

* Expected loglikelihood:
* Mini-batch training with {(x,,, Y)Y ~D.

N N —M
D Ea @ogpOilf G0 ~ 37 ) Eq, (6108 POl Gemi 6)]

* Monte Carlo: E, (g)[log p(rm|f Cems )] = log p(vnlf Cons 01, O~ 41,6(0)

* Reparameterization trick for mean-field BNNs: 0~ g, ,(0) < 0= pu+ 0 © &, g~N(0,1)



Example: mean-field BNNs

* Revisit the ELBO (L(,ul,va)):
L(u,0) = zi_l Eq, . og p(ilf (xi; )] — KL[q,,5(0)|p(6)]

* Regularization:
* Analytically tractable for two Gaussian distributions:

l l |
log 4 Ui(f)z T /"lgj)z 1
ai(jl) Ug 2

KL[9,,0(0)[p(8)] = )

L,J,l




Example: mean-field BNNs

* Revisit the ELBO (L(ul,va)):
Lwo) = ) Eq,,@Mlogp0ilf i 0)] = KL[g,,5(0)|p(0)]

* Maximize the ELBO w.r.t. u, o using SGD or Adam



Priors in BNNSs



Mean-field prior is not good enough

* Fully factorized Gaussian prior:

p(0) =TI1;;,p(6;), p(8) = N'(0,0¢1)

* It is hard to encode any prior knowledge into such prior.
* O is high-dimensional parameters of a nonlinear deep NN.

e Can we use better priors?



Pretrain priors on relevant tasks

* Two tasks:
* Task A (source task) with dataset Dy, e.g., ImageNet;
* Task B (target task) with dataset Dg, e.g., CIFAR-10.

transfer/continual learning:
Pretrain the on task A —»

Finetune the on task B with

Catastrophic forgetting: 8" no longer works on D4
Suboptimal transfer learning

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

e Two tasks:

* Task A (source task) with dataset Dy, e.g., ImageNet;
* Task B (target task) with dataset Dg, e.g., CIFAR-10.

transfer/continual learning:

* Pretrain the on task A —
logp(0|D,4) = logp(Dy16) +logp(6) —logp(Da)
 Finetune the on task B with

Prior used in Dp is the posterior
in Dy, e.g., a pretrained prior.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

e Two tasks:

* Task A (source task) with dataset Dy, e.g., ImageNet;
* Task B (target task) with dataset Dg, e.g., CIFAR-10.

transfer/continual learning:

* Pretrain the on task A —
logp(6|D4) = logp(D4l0) + logp(8) — logp(Dy)
 Finetune the on task B with

log p(81D,, Dp) = log p(Dpl0) + Alogp(0|D,) — logpa(Dp)

Scaling
hyperparameter

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

e Two tasks:

* Task A (source task) with dataset Dy, e.g., ImageNet;
* Task B (target task) with dataset Dg, e.g., CIFAR-10.

transfer/continual learning:

* Pretrain the on task A —
logp(01D4) = logp(Dyl0) + logp(6) —logp(Da)
 Finetune the on task B with

logp(8|Da, D) = logp(Dgl6) +Alogp(6|Dy) — logpa(De)
Catastrophic forgetting resolved: log p(6|D,4, Dg) works on both D, and Dg
* Better performance on Dg in transfer learning.

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

* Elastic Weight Consolidation (EWC)
* Approximate by Laplace approximation
e Similar with mean-field variational inference

e Find the Maximum a Posteriori (MAP) estimation of
* Ignores the uncertainty of

A train A train B train C B 1.0 4 single task performance
1.0 - ; l EWC 4 L “\0‘0——0‘.\_"_’
< r t::z L2 | EWC
v ‘ ! SGD +~
(44 ! |
= 084 : i @
| } S 0.9 -
m 1.0 : ! S
~ ; S — c
& : g
0.8 - | ; g
1 i L
v 1.0 ! ; 0.8
i l ; SGD+drop
0.8 T ! L T T T T T T T T T
2 3 4 5 6 7 8 9 10
Frac. correct Training time Number of tasks

Kirkpatrick, James, et al. "Overcoming catastrophic forgetting in neural networks." PNAS, 2017.



Pretrain priors on relevant tasks

* Pretrained prior can come from self-supervised learning!

* Approximate by SWAG with a SImCLR loss
* SWAG can estimate the covariance which is ignored in VI and Laplace approximation
* Approximate the with SGHMC

90
90

65

— —_
e O 65
— —
wi w
7] i
40
2 &
40
15 .
- BNN Learned Prior (ours)
= SGD Learned Prior (ours)
10! 102 103 10*  5x10° 101 102 103 10  5x10° —— BNN Non-Learned Prior
#Training Samples #Training Samples SGD Transfer Init
~— SGD Non-Learned Prior
(a) CIFAR-10 (b) CIFAR-100

Shwartz-Ziv, Ravid, et al. "Pre-train your loss: Easy Bayesian transfer learning with informative priors." NeurlPS, 2022.



Pretrain priors with functional information

* Fully factorized Gaussian prior:
l l
p(0) =1I1,;,2(6;;), p(6;;) = N'(0,0%)

* A more flexible fully factorized hierarchical Gaussian prior:
p(0) =1I1,,,,p(0), p(6) = N(0,68), p(6d) = T~ (o, o)

* Optimize a,, B, to match the functional information at hand.



Pretrain priors with functional information

e Suppose we know that features can only explain 80% of the target:
* |.e., the proportion of variance explained (PVE) is 0.8.

* By definition, PVE of a function f(x; ) is:

Vary(f (x; 0))
Var,(f(x;0)) +
* p(8; ay, By) defines the a prior over model PVE(8; ay, fy), i.e., p(PVEg, 5. ).

PVE(O) =

* If we have a prior belief on PVE, i.e., p(PVE): e ok
e Beta distribution with mode equals to 0.8 2] = oo |ty
* Optimize ay, By such that p(PVE, 5 ) = p(PVE) £ _
° as: :88 — argI'TBlin KL[p(PVECZO,BO)lp(PVE) ] o 025 0.50 0.75 1.00 04 0.6 0.8 1.0
qo,Po PVE PVE

Cui, Tianyu, et al. “Informative Bayesian neural network priors for weak signals.” Bayesian Analysis, 2022.



Pretrain priors with functional information

* When the prior knowledge about PVE is unavailable:
* A noninformative prior over PVE (U[0,1]) improves when the data is noisy;
* A noninformative prior over weights leads to overfitting.

Periods 7 days 14 days 21 days 28 days
Metrics | MSE PVE | MSE PVE | MSE PVE | MSE PVE
0.582 0.278 | 0.615 0.164 | 0.686 0.118 | 0.701 0.095

ME+CY | 0.016)  (0.013) | (0.017)  (0.031) | (0.031)  (0.015) | (0.043)  (0.011)
o | 0500 0301 | 0556 0189 | 0652 0120 | 0.629 0101

(0.008)  (0.006) | (0.011)  (0.010) | (0.054)  (0.041) | (0.019)  (0.013)
e | 0481 0322 | 0589 0179 | 0.660  0.085 | 0.664  0.066

(0.012) (0.009)|(0.022) (0.023) | (0.047)  (0.072) | (0.043)  (0.051)
0.482  0.320 | 0.546  0.227 | 0.613  0.138 | 0.622  0.109

AMETEYE ] (0.013)  (0.010) |(0.014) (0.011)|(0.014) (0.013)|(0.017) (0.011)

Cui, Tianyu, et al. “Informative Bayesian neural network priors for weak signals.” Bayesian Analysis, 2022.



Pretrain priors with functional information

e Suppose we know the neural network functions come from a Gaussian
process p(f)

* Gaussian processes are distributions over functions f

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Pretrain priors with functional information

* Suppose we know the neural network functions come from a Gaussian
process p(f)

* Gaussian processes are distributions over functions f

* For a fully factorized hierarchical Gaussian prior over weights 0:

p(©) =I1;;,0;), p(8;) = N (0,07), p(af) = T~*(as, B)
* It defines a prior over function: p(f; a, B) = [ p(f10)p(6; a, B)dO

* Minimize the Wasserstein distance between p(f; a, ) and p(f)

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Pretrain priors with functional information

GP prior BNN - FH prior BNN - GPi-H prior
4 S N
2 T o]
0 F—— 0
22— < -2
—4 —4 ]
| | [ | |
~10 0 10
BNN posterior BNN posterior
(FH prior) (GPi-H prior)

Tran, Ba-Hien, et al. "All you need is a good functional prior for Bayesian deep learning." JMLR, 2022.



Recap: informative weight space prior

* Pretrain the weight space prior on relevant tasks
* Resolve the catastrophic forgetting in continual learning;
* Improve the prediction performance on target tasks;

* Pretrain the weight space prior with functional information
* Prior over PVE improves the model prediction on noisy data;
e Gaussian processes prior improves the model uncertainty on OOD data.
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