Treatment effect estimation with neural network-based models

AIDD SCHOOL

Manuel Haußmann

QUESTIONS

- We have a potential new treatment D for disease X. Does it work?
- Alice has been diagnosed with disease X. Should she be treated with D?
- What if Bob had not been treated?
- . .

OVERVIEW

- RCT vs OS—Don't we already have a perfect solution?
- Potential Outcomes—How to formally speak about the task?
- Estimators—What do we estimate and how?
- Approaches—An Overview on proposals in the literature
- Outlook—What remains to be done

RCT vs OS: The "GOLD STANDARD", RANDOMIZED CONTROLLED TRIALS

- √ principled approach reducing potential bias
- √ well structured, specific data collection
- 4 expensive, time consuming
- 4 ethical constraints
- 4 rarity of disease
- 5 biased populations

RCT vs OS: Effect estimation with electronic health records

- ✓ abundant data
- √ representative of the wider population
- 4 confounding issues
- 4 worse data quality

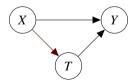
RCT vs OS: Effect estimation with electronic health records

- ✓ abundant data
- √ representative of the wider population
- 4 confounding issues
- 4 worse data quality
- \Rightarrow Today: Focus on treatment effect estimation via observational data

Notation

For a patient i we observe. . .

- covariates $X_i \in \mathcal{X}$ (e.g., age, gender, medical history, lab measurements,...)
- a treatment assignment $T_i \in \mathcal{T}$ (e.g., receive an operation, a specific drug dosage,...)
 - Assume throughout that $\mathcal{T} = \{0, 1\}$
- an outcome $Y_i \in \mathcal{Y}$ (e.g., time until death, recovery,...)



Example

Patient	Age	Gender	Lab_1	 Treated	Untreated
Alice	25	f	30 mg/l	 ?	?
Bob	32	m	13 mg/l	 12 months	?
Charlie	21	m	58 mg/l	 ?	7 months
Denise	27	f	23 mg/l	 ?	14 months
Eve	40	f	17 mg/l	 34 months	?

POTENTIAL OUTCOMES (I)

- Assume $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$
- $Y(0), Y(1) \in \mathcal{Y}$ are potential outcomes
 - We observe only $Y_{\mathsf{Bob}}(1)$, never the counterfactual $Y_{\mathsf{Bob}}(0)$
- Conditional average treatment effect (CATE)

$$\tau(x) \triangleq \mathbb{E}\left[Y_i(1) - Y_i(0)|X=x\right]$$

TREATMENT EFFECT ESTIMATION

- Average treatment effect (ATE): $\mathbb{E}_{p(x)}[\tau(x)]$
- Average treatment effect on the treated (ATT): $\mathbb{E}_{p(x)}[\tau(x)|T=1]$

POTENTIAL OUTCOMES (I)

- Assume $Y_i = T_i Y_i(1) + (1 T_i) Y_i(0)$
- $Y(0), Y(1) \in \mathcal{Y}$ are potential outcomes
 - We observe only $Y_{Bob}(1)$, never the counterfactual $Y_{Bob}(0)$
- Conditional average treatment effect (CATE)

$$\tau(x) \triangleq \mathbb{E}\left[Y_i(1) - Y_i(0)|X = x\right]$$

- Average treatment effect (ATE): $\mathbb{E}_{p(x)}[\tau(x)]$
- Average treatment effect on the treated (ATT): $\mathbb{E}_{p(x)}[\tau(x)|T=1]$
 - ightarrow We are interested in the conditional average treatment effect

ATE vs CATE

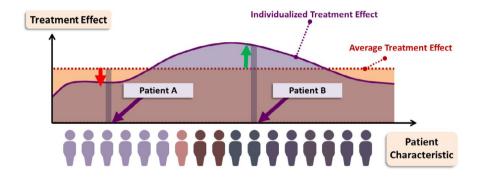


Figure via Bica et al. (2021)

MANUEL HAUSSMANN

POTENTIAL OUTCOMES (II)

Assumptions for identifiability of causal effects

- (I) Consistency Y=TY(1)+(1-T)Y(0) the potential outcome is the observed given a specific treatment
- (II) Unconfoundedness $(Y(0),Y(1)) \perp T|X$ (in an RCT: $(Y(0),Y(1)) \perp T$) no hidden confounders \rightarrow can't be tested in practice
- (III) Overlap $0 < \pi(x) < 1, \forall x \in \mathcal{X}$ where $\pi(x) \triangleq \mathbb{P}(T_i = 1 | X_i = x)$ (Propensity score) we need to observe treatment alternatives for an effect estimation

POTENTIAL OUTCOMES (II)

Assumptions for identifiability of causal effects

- (I) Consistency Y=TY(1)+(1-T)Y(0) the potential outcome is the observed given a specific treatment
- (II) Unconfoundedness $(Y(0),Y(1)) \perp T|X$ (in an RCT: $(Y(0),Y(1)) \perp T$) no hidden confounders \rightarrow can't be tested in practice
- (III) Overlap $0 < \pi(x) < 1, \forall x \in \mathcal{X}$ where $\pi(x) \triangleq \mathbb{P}(T_i = 1 | X_i = x)$ (Propensity score) we need to observe treatment alternatives for an effect estimation
- Unconfoundedness encourages a high dimensionality \leftrightarrow Overlap encourages a low one

POTENTIAL OUTCOMES (III) — SIDENOTE ON PROPENSITY SCORES

- Propensity score: $\pi(x) \triangleq \mathbb{P}(T_i = 1 | X_i = x)$
- Balancing score: b(X) such that $X \perp \!\!\! \perp Z|b(X)$
- Theorem: If $(Y(1), Y(0)) \perp T | X$, then $(Y(1), Y(0)) \perp T | b(X)$
- Theorem: $\pi(x)$ is balancing and it is the "optimal" one.
- Use this to:
 - 1. Construct an estimator $\hat{\pi}(x)$
 - 2. Match two groups by the closeness of their estimated propensity scores
 - 3. Estimate the average treatment effect using the matched observations

¹Rosenbaum and Rubin (1983)

Estimators – Two broad paths

TERMINOLOGY FOLLOWING CURTH ET AL., (2021)

The target:
$$\tau(x) = \mathbb{E}[Y(1) - Y(0)|X = x] = \mathbb{E}[Y(1)|X = x] - \mathbb{E}[Y(0)|X = x]$$

- 1. one-step plug-in learners
 - Consider estimating $\mu_t(x) = \mathbb{E}[Y(t)|X=x]$
 - get $\hat{\tau}(x) = \hat{\mu}_1(x) \hat{\mu}_0(x)$
- 2. two-step learners
 - (i) Estimate $\eta = (\mu_0(x), \mu_1(x), \pi(x))$
 - (II) Construct pseudo-outcomes Y_n such that $\tau(x) = \mathbb{E}[Y_n | X = x]$

Estimators – One-step plugin learners

$$\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

Two broad approaches:

- 1. T-Learner: Learn separate models $\mu_0, \mu_1: \mathcal{X} \to \mathcal{Y}$
- 2. S-Learner:
 - (I) Augment the covariate space:

Learn a joint model $\mu: \mathcal{X} \times \mathcal{T} \to \mathcal{Y}$, s.t., $\mu_t(x) \triangleq \mu(x,t)$

(II) Use a shared representation space:

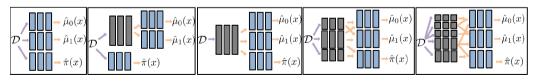
Learn $f_0(\cdot), f_1(\cdot), h(\cdot)$, s.t., $\mu_t(x) = f_t(h(x))$

Estimators – One-step plugin learners

$$\hat{\tau}(x) = \hat{\mu}_1(x) - \hat{\mu}_0(x)$$

Two broad approaches:

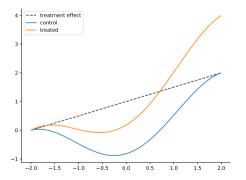
- 1. T-Learner: Learn separate models $\mu_0, \mu_1 : \mathcal{X} \to \mathcal{Y}$
- 2. S-I earner:
 - (i) Augment the covariate space: Learn a joint model $\mu: \mathcal{X} \times \mathcal{T} \to \mathcal{Y}$, s.t., $\mu_t(x) \triangleq \mu(x,t)$
 - (II) Use a shared representation space: Learn $f_0(\cdot), f_1(\cdot), h(\cdot)$, s.t., $\mu_t(x) = f_t(h(x))$



Estimators – Pseudo-outcomes

Why might we not be happy with them?

- T-Learners cannot take shared representations into account
- $\tau(x)$ might be simpler than $\mu_0(x), \mu_1(x)$



Estimators – Pseudo-outcomes: Regression Adjustment

Reminder, we consider two steps:

(i) Estimate
$$\mu_0(\cdot), \mu_1(\cdot), \pi(\cdot)$$
; (ii) Construct pseudo-observations Y_η to learn $\hat{\tau}$

Target: $\tau(x) = \mathbb{E}\left[Y_\eta | X = x\right]$

Three approaches for this task are...

- ... Regression adjustment \rightarrow unbiased if $\hat{\mu}$ is correct
- ... Inverse Propensity weighting \rightarrow unbiased if $\hat{\pi}$ is correct
- ullet . . . Doubly Robust Learner o unbiased if either is unbiased

Estimators – Pseudo-outcomes: Regression adjustment

X-Learner (Künzel et al., 2019)

1. Given $\hat{\mu}_0$, $\hat{\mu}_1$ impute treatment effects

$$D_i^1 = Y_i^1 - \hat{\mu}_0(X_i^1)$$
 $D_i^0 = \hat{\mu}_1(X_i^0) - Y_i^0$

- 2. Construct estimators $\hat{\tau}_1(x), \hat{\tau}_0(x)$
- 3. Estimate CATE as $\hat{\tau}(x) = g(x)\hat{\tau}_0(x) + (1 g(x))\hat{\tau}_1(x) \quad (g(x) \in [0, 1])$

A simpler variant (Curth et al., 2021)

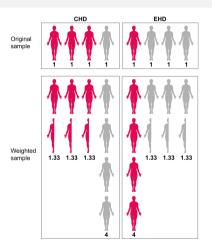
$$Y_{\hat{\eta}} = T(Y - \hat{\mu}_0(X)) + (1 - T)(\hat{\mu}_1(X) - Y)$$

Estimators – Pseudo-outcomes: Inverse propensity score weighting

Our pseudo-outcomes are given as

$$Y_{\hat{\eta}} = \left(rac{T}{\hat{\pi}(X)} - rac{1-T}{1-\hat{\pi}(X)}
ight)Y$$

Estimators – Pseudo-outcomes: Inverse propensity score weighting



18/31

Estimators – Pseudo-outcomes: Inverse propensity score weighting

Our pseudo-outcomes are given as

$$Y_{\hat{\eta}} = \left(rac{T}{\hat{\pi}(X)} - rac{1-T}{1-\hat{\pi}(X)}
ight)Y$$

We get that

$$\mathbb{E}[Y_{\hat{\eta}}|X=x] = \frac{\pi(x)}{\hat{\pi}(x)}\mu_1(x) - \frac{1-\pi(x)}{1-\hat{\pi}(x)}\mu_0(x) = \tau(x),$$

if $\hat{\pi}(x) = \pi(x)$.

A downside: The variance explodes if $\pi(x)$ is close to zero/one

Estimators – Pseudo-outcomes: Doubly robust estimator

DR-Learner (Kennedy, 2020)

Combining the first two approaches we get

$$Y_{\hat{\eta}} = \left(\frac{T}{\hat{\pi}(X)} - \frac{1 - T}{1 - \hat{\pi}(X)}\right)Y + \left[\left(1 - \frac{T}{\hat{\pi}(X)}\right)\hat{\mu}_1(x) - \left(1 - \frac{1 - T}{1 - \hat{\pi}(X)}\right)\hat{\mu}_0(x)\right]$$

If
$$\hat{\pi} = \pi$$
 or $\hat{\mu}_t = \mu_t$ we get $\mathbb{E}\left[Y_{\hat{n}}|X=x\right] = \tau(x)$

A QUICK SUMMARY

- CATE: $\tau(x) = \mathbb{E}[Y(1) Y(0)|X = x]$
- Step 1: Build estimators for μ_0, μ_1, π
- Step 2:
 - Estimate au indirectly. Potential problems due to unnecessary complexity, but complete usage of $\mathcal D$
 - Estimate τ directly. Two step approach requires data split

A QUICK SUMMARY

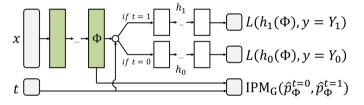
- CATE: $\tau(x) = \mathbb{E}[Y(1) Y(0)|X = x]$
- Step 1: Build estimators for μ_0, μ_1, π
- Step 2:
 - Estimate au indirectly.

 Potential problems due to unnecessary complexity, but complete usage of $\mathcal D$
 - Estimate τ directly. Two step approach requires data split

Note: So far we have not really cared about the estimation method

COMMON APPROACHES – VARIATIONS IN THE ARCHITECTURAL STRUCTURE

• Regularization within the representation space (Shalit et al., 2017)



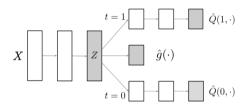
Increase the overlap by minimizing an Integral Probability Metric (IPM)

$$\min \mathsf{IPM}(p(\Phi|t=1), p(\Phi|t=0))$$

Known as TARNet and CFRNet (with/without IPM)

COMMON APPROACHES – VARIATIONS IN THE ARCHITECTURAL STRUCTURE

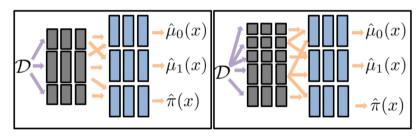
• Increasing the predictive constraints in the latent space (Shi et al., 2019)



- $Q \triangleq \mu$ and $g \triangleq \pi$
- Predict the propensity score via the representation space
- (as well as an additional regularization on the loss)

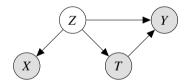
COMMON APPROACHES – VARIATIONS IN THE ARCHITECTURAL STRUCTURE

• Splitting the representation space (Hassanpour and Greiner, 2020, Curth et al., 2021)



COMMON APPROACHES – GENERATIVE MODELS

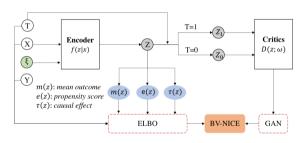
- Causal Effect Variational Autoencoder (Louizos et al., 2017)
 - Covariates X are a noisy view of latent covariates Z



- Inference via amortized variational inference by optimizing the ELBO
- But: See also Rissanen and Marttinen (2021) for a critique

COMMON APPROACHES – GENERATIVE MODELS

• Balancing Variational Neural Inference for Causal Effects (Lu et al., 2020)



$$\mathbb{E}_{q(z)}\left[\log p(x|z) + \log p(y|z,t) + \log p(t|z)\right] - \text{KL}\left(q(z|x,y,t) \parallel p(z)\right) - D(q_0,q_1)$$
 (leave $\log p(x|z)$ optional; $m(\cdot), \tau(\cdot)$ part of R-learner for $\log p(y|z,t)$)

Manuel Haussmann treatment effect estimation 26/31

Outlook: Other questions to tackle

- Interpretability of the learned estimators (E.g., Crabbé et al., 2022)

 Doctors won't trust black-box predictors
- Uncertainty-aware models (E.g., Jesson et al., 2020; 2021; 2022) What about predictive uncertianties?
- Missing treatment information (E.g., Kuzmanovic et al., 2023)
 What about missing observations

Outlook: Other ouestions to tackle

- Further combinations of trial data with observational data
 - Combining RCT data with OS (E.g., Hatt et al., 2022) Can we use the complementary strengths?
 - External controls: Combination of single-arm trial data with hospital records
- Longitudinal structures (E.g., Bica et al., 2020; Frauen et al., 2023) What about time?
- Predictive guarantees (generalization bounds, etc.)

REFERENCES

- BICA ET AL., 2020 Time Series Deconfounder: Estimating Treatment Effects of Time in the Presence of Hidden Confounders
- BICA ET AL., 2021 From Real-World Patient Data to Individualized Treatment Effects Using Machine Learning: Current and Future Methods to Address Underlying Challenges
- Chesnaye et al., 2022 An introduction to inverse probability of treatment weighting in observational research
- Crabbé et al., 2022 Benchmarking Heterogeneous Treatment Effect Models through the Lens of Interpretability
- Curth et al., 2021 Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory to Learning Algorithms
- Frauen et al., 2023 Estimating average causal effects from patient trajectories

REFERENCES

- HASSANPOUR ET AL., 2020 Learning Disentangled Representations for Counterfactual Regression
- HATT ET AL., 2022 Combining Observational and Randomized Data for Estimating Heterogeneous Treatment Effects
- JESSON ET AL., 2020 Identifying causal-effect inference failure with uncertainty-aware models
- JESSON ET AL., 2021 Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data
- JESSON ET AL., 2022 Scalable Sensitivity and Uncertinty Analysis for Causal-Effect Estimates of Continuous-Valued Interventions
- $K\ddot{\text{U}}\text{NZEL}$ ET AL., 2019 Metalearners for estimating heterogeneous treatment effects using machine learning
- $\begin{tabular}{ll} Kuzmanovic~{\tt ET~AL.}, 2022 & Estimating~Conditional~Average~Treatment~Effects~with~Missing~Treatment~Information\\ \end{tabular}$

REFERENCES

- Lu et al., 2020 Reconsidering Generative Objectives For Counterfactual Reasoning
- Louizos et al., 2017 Causal Effect Inference with Deep Latent-Variable Models
- Peters et al., 2017 Elements of causal inference
- RISSANEN AND MARTTINEN, 2021 A Critical Loook at the Consistency of Causal Estimation with Deep Latent Variable Models
- Rosebaum and Rubin, 1983 The central rol of the propensity score in observational studies for causal effects
- Shalit et al., 2017 Estimating individual treatment effect: generalization bounds and algorithms
- SHI ET AL., 2019 Adapting Neural Networks for the Estimation of Treatment Effects