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Questions

• We have a potential new treatment D for disease X. Does it work?

• Alice has been diagnosed with disease X. Should she be treated with D?

• What if Bob had not been treated?

• . . .
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Overview

• RCT vs OS—Don’t we already have a perfect solution?

• Potential Outcomes—How to formally speak about the task?

• Estimators—What do we estimate and how?

• Approaches—An Overview on proposals in the literature

• Outlook—What remains to be done
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RCT vs OS: The “gold standard”, Randomized controlled trials

✓ principled approach reducing potential bias

✓ well structured, specific data collection

� expensive, time consuming

� ethical constraints

� rarity of disease

� biased populations

OS: Observational Study
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RCT vs OS: Effect estimation with electronic health records

✓ abundant data

✓ representative of the wider population

� confounding issues

� worse data quality

⇒ Today: Focus on treatment effect estimation via observational data
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Notation

For a patient i we observe. . .

• covariates Xi ∈ X (e.g., age, gender, medical history, lab measurements,. . . )

• a treatment assignment Ti ∈ T (e.g., receive an operation, a specific drug dosage,. . . )

• Assume throughout that T = {0, 1}

• an outcome Yi ∈ Y (e.g., time until death, recovery,. . . )

X

T

Y
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Example

Patient Age Gender Lab1 . . . Treated Untreated

Alice 25 f 30 mg/l . . . ? ?
Bob 32 m 13 mg/l . . . 12 months ?
Charlie 21 m 58 mg/l . . . ? 7 months
Denise 27 f 23 mg/l . . . ? 14 months
Eve 40 f 17 mg/l . . . 34 months ?
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Potential Outcomes (i)

• Assume Yi = TiYi(1) + (1 − Ti)Yi(0)

• Y(0),Y(1) ∈ Y are potential outcomes

• We observe only YBob(1), never the counterfactual YBob(0)

• Conditional average treatment effect (CATE)

τ(x) ≜ E [Yi(1)− Yi(0)|X = x]

• Average treatment effect (ATE): Ep(x) [τ(x)]

• Average treatment effect on the treated (ATT): Ep(x) [τ(x)|T = 1]

→ We are interested in the conditional average treatment effect

See e.g., Peters et al. (2017) for a discussion on the relation to the do-calculus
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ATE vs CATE

Figure via Bica et al. (2021)
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Potential Outcomes (ii)

Assumptions for identifiability of causal effects

(i) Consistency Y = TY(1) + (1 − T)Y(0)
the potential outcome is the observed given a specific treatment

(ii) Unconfoundedness (Y(0),Y(1)) ⊥⊥ T |X (in an RCT: (Y(0),Y(1)) ⊥⊥ T)
no hidden confounders → can’t be tested in practice

(iii) Overlap 0 < π(x) < 1,∀x ∈ X where π(x) ≜ P(Ti = 1|Xi = x)(Propensity score)
we need to observe treatment alternatives for an effect estimation

Unconfoundedness encourages a high dimensionality ↔ Overlap encourages a low one
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Potential Outcomes (iii) — Sidenote on Propensity Scores

• Propensity score: π(x) ≜ P(Ti = 1|Xi = x)

• Balancing score: b(X) such that X ⊥⊥ Z|b(X)

• Theorem: If (Y(1),Y(0)) ⊥⊥ T |X, then (Y(1),Y(0)) ⊥⊥ T |b(X)

• Theorem:1 π(x) is balancing and it is the “optimal” one.

• Use this to:

1. Construct an estimator π̂(x)

2. Match two groups by the closeness of their estimated propensity scores

3. Estimate the average treatment effect using the matched observations

1Rosenbaum and Rubin (1983)
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Estimators – Two broad paths
Terminology following Curth et al., (2021)

The target: τ(x) = E [Y(1)− Y(0)|X = x] = E [Y(1)|X = x]− E [Y(0)|X = x]

1. one-step plug-in learners

• Consider estimating µt(x) = E [Y(t)|X = x]

• get τ̂(x) = µ̂1(x)− µ̂0(x)

2. two-step learners

(i) Estimate η = (µ0(x), µ1(x), π(x))

(ii) Construct pseudo-outcomes Yη such that τ(x) = E [Yη|X = x]
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Estimators – One-step plugin learners

τ̂(x) = µ̂1(x)− µ̂0(x)

Two broad approaches:
1. T-Learner: Learn separate models µ0, µ1 : X → Y
2. S-Learner:

(i) Augment the covariate space:
Learn a joint model µ : X × T → Y, s.t., µt(x) ≜ µ(x, t)

(ii) Use a shared representation space:
Learn f0(·), f1(·), h(·), s.t., µt(x) = ft(h(x))

Figure due to Curth et al. (2021)
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Estimators – Pseudo-outcomes

Why might we not be happy with them?

• T-Learners cannot take shared representations into account

• τ(x) might be simpler than µ0(x), µ1(x)
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Estimators – Pseudo-outcomes: Regression Adjustment

Reminder, we consider two steps:

(i) Estimate µ0(·), µ1(·), π(·); (ii) Construct pseudo-observations Yη to learn τ̂

Target: τ(x) = E [Yη|X = x]

Three approaches for this task are. . .

• . . . Regression adjustment → unbiased if µ̂ is correct

• . . . Inverse Propensity weighting → unbiased if π̂ is correct

• . . . Doubly Robust Learner → unbiased if either is unbiased

Manuel Haußmann treatment effect estimation 15 / 31



Estimators – Pseudo-outcomes: Regression adjustment
X-Learner (Künzel et al., 2019)

1. Given µ̂0, µ̂1 impute treatment effects

D1
i = Y1

i − µ̂0(X1
i ) D0

i = µ̂1(X0
i )− Y0

i

2. Construct estimators τ̂1(x), τ̂0(x)

3. Estimate CATE as τ̂(x) = g(x)τ̂0(x) + (1 − g(x))τ̂1(x) (g(x) ∈ [0, 1])

A simpler variant (Curth et al., 2021)

Yη̂ = T(Y − µ̂0(X)) + (1 − T)(µ̂1(X)− Y)
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Estimators – Pseudo-outcomes: Inverse propensity score weighting

Our pseudo-outcomes are given as

Yη̂ =

(
T

π̂(X)
− 1 − T

1 − π̂(X)

)
Y
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Estimators – Pseudo-outcomes: Inverse propensity score weighting

Figure due to Chesnaye et al. (2022)
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Estimators – Pseudo-outcomes: Inverse propensity score weighting

Our pseudo-outcomes are given as

Yη̂ =

(
T

π̂(X)
− 1 − T

1 − π̂(X)

)
Y

We get that

E [Yη̂|X = x] =
π(x)
π̂(x)

µ1(x)−
1 − π(x)
1 − π̂(x)

µ0(x) = τ(x),

if π̂(x) = π(x).

A downside: The variance explodes if π(x) is close to zero/one
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Estimators – Pseudo-outcomes: Doubly robust estimator
DR-Learner (Kennedy, 2020)

Combining the first two approaches we get

Yη̂ =

(
T

π̂(X)
− 1 − T

1 − π̂(X)

)
Y +

[(
1 − T

π̂(X)

)
µ̂1(x)−

(
1 − 1 − T

1 − π̂(X)

)
µ̂0(x)

]
If π̂ = π or µ̂t = µt we get E [Yη̂|X = x] = τ(x)
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A quick summary

• CATE: τ(x) = E [Y(1)− Y(0)|X = x]

• Step 1: Build estimators for µ0, µ1, π

• Step 2:

• Estimate τ indirectly.
Potential problems due to unnecessary complexity, but complete usage of D

• Estimate τ directly.
Two step approach requires data split

Note: So far we have not really cared about the estimation method
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Common Approaches – Variations in the architectural structure

• Regularization within the representation space (Shalit et al., 2017)

Increase the overlap by minimizing an Integral Probability Metric (IPM)

min IPM(p(Φ|t = 1), p(Φ|t = 0))

Known as TARNet and CFRNet (with/without IPM)
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Common Approaches – Variations in the architectural structure

• Increasing the predictive constraints in the latent space (Shi et al., 2019)

• Q ≜ µ and g ≜ π

• Predict the propensity score via the representation space

• (as well as an additional regularization on the loss)

Known as DragonNet
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Common Approaches – Variations in the architectural structure

• Splitting the representation space (Hassanpour and Greiner, 2020, Curth et al., 2021)
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Common Approaches – Generative models

• Causal Effect Variational Autoencoder (Louizos et al., 2017)

• Covariates X are a noisy view of latent covariates Z

Z

X T

Y

• Inference via amortized variational inference by optimizing the ELBO

• But: See also Rissanen and Marttinen (2021) for a critique
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Common Approaches – Generative models

• Balancing Variational Neural Inference for Causal Effects (Lu et al., 2020)

Eq(z) [log p(x|z) + log p(y|z, t) + log p(t|z)]− KL (q(z|x, y, t) ∥ p(z))− D(q0, q1)

(leave log p(x|z) optional; m(·), τ(·) part of R-learner for log p(y|z, t))
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Outlook: Other questions to tackle

• Interpretability of the learned estimators (E.g., Crabbé et al., 2022)
Doctors won’t trust black-box predictors

• Uncertainty-aware models (E.g., Jesson et al., 2020; 2021; 2022)
What about predictive uncertianties?

• Missing treatment information (E.g., Kuzmanovic et al., 2023)
What about missing observations
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Outlook: Other questions to tackle

• Further combinations of trial data with observational data

• Combining RCT data with OS (E.g., Hatt et al., 2022)
Can we use the complementary strengths?

• External controls: Combination of single-arm trial data with hospital records

• Longitudinal structures (E.g., Bica et al., 2020; Frauen et al., 2023)
What about time?

• Predictive guarantees (generalization bounds, etc.)

• . . .
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