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What is longitudinal data?

Time-series data that consist of

▶ Multiple subjects
▶ Each subject measured

repeatedly over time

Observations have correlations

▶ Within a subject
▶ Across multiple subjects

Longitudinal data typically have

▶ High number of subjects
▶ Low number of

measurements per subject

I

A sub-type of time-series data obtained 
from multiple, repeatedly measured 
subjects. 

May have correlations among the 
observations within a subject and 
across multiple subjects. 

Typically has a high number of subjects 
and low number of measurements per 
subject.

siddharth.ramchandran@aalto.fi 
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What models exist?

Generalized linear mixed models (GLMM)

y = Xβ︸︷︷︸
fixed

+ Zγ︸︷︷︸
random

+ ϵ︸︷︷︸
random

,

where γ ∼ N (0,C) and ϵ ∼ N (0, σ2
nI )

Interpretable, fast, powerful, good software support

Several other models:

▶ GAMs, local polynomials, splines, hierarchical Bayesian models, Gaussian processes,
Gaussian process ANOVA, etc.
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LonGP and lgpr models

ARTICLE

An additive Gaussian process regression model
for interpretable non-parametric analysis
of longitudinal data
Lu Cheng1,2, Siddharth Ramchandran1, Tommi Vatanen 3,4, Niina Lietzén5, Riitta Lahesmaa5,
Aki Vehtari1 & Harri Lähdesmäki1

Biomedical research typically involves longitudinal study designs where samples from indi-

viduals are measured repeatedly over time and the goal is to identify risk factors (covariates)

that are associated with an outcome value. General linear mixed effect models are the

standard workhorse for statistical analysis of longitudinal data. However, analysis of long-

itudinal data can be complicated for reasons such as difficulties in modelling correlated

outcome values, functional (time-varying) covariates, nonlinear and non-stationary effects,

and model inference. We present LonGP, an additive Gaussian process regression model that

is specifically designed for statistical analysis of longitudinal data, which solves these com-

monly faced challenges. LonGP can model time-varying random effects and non-stationary

signals, incorporate multiple kernel learning, and provide interpretable results for the effects

of individual covariates and their interactions. We demonstrate LonGP’s performance and

accuracy by analysing various simulated and real longitudinal -omics datasets.
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Abstract

Motivation: Longitudinal study designs are indispensable for studying disease progression. Inferring covariate
effects from longitudinal data, however, requires interpretable methods that can model complicated covariance
structures and detect non-linear effects of both categorical and continuous covariates, as well as their interactions.
Detecting disease effects is hindered by the fact that they often occur rapidly near the disease initiation time, and
this time point cannot be exactly observed. An additional challenge is that the effect magnitude can be heteroge-
neous over the subjects.
Results: We present lgpr, a widely applicable and interpretable method for non-parametric analysis of longitudinal
data using additive Gaussian processes. We demonstrate that it outperforms previous approaches in identifying the
relevant categorical and continuous covariates in various settings. Furthermore, it implements important novel fea-
tures, including the ability to account for the heterogeneity of covariate effects, their temporal uncertainty, and ap-
propriate observation models for different types of biomedical data. The lgpr tool is implemented as a comprehen-
sive and user-friendly R-package.
Availability and implementation: lgpr is available at jtimonen.github.io/lgpr-usage with documentation, tutorials,
test data and code for reproducing the experiments of this article.
Contact: juho.timonen@aalto.fi or harri.lahdesmaki@aalto.fi
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biomedical studies often collect observational longitudinal data,
where the same individuals are measured at several time points. This
is an important study design for examining disease development and
has been extensively leveraged in biomedical studies, including vari-
ous -omics studies, such as proteomics (Liu et al., 2018), metage-
nomics (Vatanen et al., 2016) and single-cell transcriptomics
(Sharma et al., 2018). The measured response variable of interest
can be continuous (such as the abundance of a protein), discrete
(such as the number of sequencing reads in a genomic region) or bin-
ary (such as patient condition). Often also several additional varia-
bles—i.e. covariates—are measured for each subject at each
measurement time point. These can be categorical variables (such
as sex, location or whether the subject is diagnosed with a disease
or not) or continuous (such as age, time from disease initiation or
blood pressure). Identifying the relevant covariates that affect the re-
sponse variable is important for assessing potential risk factors of
the disease and for understanding disease pathogenesis.

A large body of literature has focused on the statistical analysis
of longitudinal data (Diggle et al., 2002). Observations correspond-
ing to the same individual are intercorrelated, and specialized

statistical methods are therefore required. Methods must be able to
model both time-dependent and static covariate effects at the same
time and handle irregular measurement intervals, missing data and a
varying number of measurements for different individuals.
Generalized linear mixed models (GLMMs) (Stroup, 2012) have
been found to best conform to these challenges, and they have be-
come the standard workhorse for longitudinal data analysis. The R-
package lme4 (Bates et al., 2015) has gained high popularity and be-
come a default choice for fitting GLMMs. These models, however,
require specifying a parametric (linear) form for the covariate effects
and provide biased inferences when their true effects are non-linear
or non-stationary.

GLMMs are an example of additive models, where the modelled
function is decomposed as f ¼ f ð1Þ þ % % % þ f ðJÞ, and each f ðjÞ

depends only on a subset of the covariates. The term generalized
additive models (Hastie and Tibshirani, 1986) (GAMs) is often
used to refer to models where each f ðjÞ depends only on one covari-
ate. GAMs are especially interpretable since the effect of each
covariate can be studied independently (Plate, 1999). Examples of
non-parametric GAMs are penalized smoothing splines, and their
fitting involves penalizing the wiggliness of the functions (Wood,
2006).
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Additive Gaussian processes for longitudinal data

For several existing longitudinal models:

1. The model for the unknown function is
additive:

f (x) = f (1)(x) + . . .+ f (J)(x)

2. Each f (j)(x) depends only on a small
subset of variables

We assume that each additive component has
an independent Gaussian process (GP) prior

f (j)(x) ∼ GP(0, α2
j kj(x, x

′ | θ(j))),

thus

f (x) ∼ GP


0,

J∑

j=1

α2
j kj(x, x

′ | θ(j))



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Kernel functions for longitudinal data

▶ Shared effects: the squared exponential
(SE) kernel

▶ Category effects: product of the zero-sum
and SE kernels

▶ Nonstationary shared effects: SE kernel
with monotonic nonlinear input warping

▶ Individual random effects

2.2 Kernel functions for longitudinal data
2.2.1 Shared effects
Stationary shared effects of continuous covariates are modelled
using the exponentiated quadratic (EQ) kernel

keqðx;x0j‘Þ ¼ exp $ ðx$x0Þ2

2‘2

! "
. Here, x refers to a generic continuous

covariate, and each shared effect component has its own lengthscale
parameter ‘, which determines how rapidly the component can
vary. For example, a shared age effect kernel is keqðxage; x0agej‘ageÞ.

2.2.2 Category effects
Effects of categorical covariates (such as sex or individual id) can be
modelled either as fluctuating category-specific deviations from a
shared effect (interaction of a categorical and continuous covariate)
or as static category-specific offsets. For a pair of categorical covari-
ate z (with M % 2 categories) and continuous covariate x, we use the
kernel function

kz&xððz;xÞ; ðz0;x0Þj‘Þ ¼ kzerosumðz; z0Þ ' keqðx; x0j‘Þ; (1)

when modelling the effect of z as deviation from the shared effect of
x. The zero-sum kernel kzerosumðz; z0Þ, returns 1 if z ¼ z0 and 1

1$M

otherwise. This is similar to the GP ANOVA approach in (Kaufman
and Sain, 2010). If f : R& f1; . . . ;Mg ! R is modelled using the

kernel in Equation 1, the sum
PM

r¼1
f ðt; rÞ is always zero for any t (see

proof in Supplementary Material). The fact that the sum over

categories equals exactly zero for any t greatly helps model inter-
pretation as this property separates the effect of the categorical cova-
riate from the shared effect (see Supplementary Fig. S1 for
illustration). If the effect of z is modelled as a batch or group offset,
which does not depend on time or other continuous variables, the
corresponding kernel function is just kzerosumðz; z0Þ. Again, z refers to
a generic categorical covariate.

We note that the lgpr software implementation allows using also
the categorical (CAT) kernel in place of kzerosum, when modelling the
effects of categorical covariates. This kernel function returns 1 if its
arguments belong to the same category and 0 otherwise.

2.2.3 Non-stationary effects
We use the input warping approach (Snoek et al., 2014) to model
non-stationary functions f ðjÞðxÞ, where most variability occurs near
the event x¼0. The non-stationary kernel is

knsðx; x0ja; ‘Þ ¼ keqðxaðxÞ;xaðx0Þj‘Þ; (2)

where xa : R!( $ 1; 1½ is a monotonic non-linear input warping
function

xaðxÞ ¼ 2 ' 1

1þ e$ax
$ 1

2

# $
; (3)

and the parameter a controls the width of the effect window around
x¼0.

Fig. 1. Overview of additive Gaussian process modelling of longitudinal data using lgpr. (a) A typical workflow with lgpr. 1. User gives the data and model formula as input,
along with possible additional modelling options such as non-default parameter priors or a discrete observation model. 2. The model is fitted by sampling the posterior distri-
bution of its parameters. 3. Relevances of different covariates and interaction terms are computed. The inferred signal components can be visualized to study the magnitude
and temporal aspects of different covariate effects. If a heterogeneous model component was specified, the results inform how strongly each individual experiences the effect.
(b) Examples of different types of covariate effects that can be modelled using lgpr. The components f ðjÞ; j ¼ 1; . . . ; 5 are draws from different Gaussian process priors. This
artificial data comprises 8 individuals (4 male, 4 female), and 2 individuals of each sex are cases. The shown age-dependent components are a shared age effect f ð1Þ, a sex-spe-
cific deviation f ð2Þ from the shared age effect, a disease-related age (diseaseAge) effect f ð3Þ and a subject-specific deviation f ð5Þ from the shared age effect. For each of the dis-
eased individuals, the disease initiation occurs at a slightly different age, between 20 and 40 months. Here, the magnitude of the disease effect is equal for each case individual,
but lgpr can model also heterogeneous effects. The component f ð4Þ is a function of blood pressure only, but is plotted against age for consistency as the simulated blood pres-
sure variable has a temporal trend. (c) The cumulative effect f ¼

P
j f ðjÞ is the sum of the low-dimensional components

Table 1. Key differences between lgpr and LonGP

lgpr LonGP (Cheng et al., 2019)

Available kernels BIN, CAT, ZS, EQ, NS (parameterized warping), VM BIN, CAT, EQ, PER, NS (fixed warping)

Available observation models Gaussian, Poisson, NB, binomial, BB Gaussian

Bayesian inference Dynamic HMC Slice sampling and CCD (Vanhatalo et al., 2013)

Heterogeneous effects Available Not available

Covariate uncertainty Available Not available

Covariate relevance assessment Decomposition of variance Stepwise model search with crossvalidation

Note: Kernel name abbreviations: BIN, binary mask; CAT, categorical; ZS, zero-sum; EQ, exponentiated quadratic; NS, non-stationary; VM, variance mask;

PER, periodic. The input warping steepness (a in Equation 3) is fixed in LonGP but sampled in lgpr.

lgpr 3
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Kernel functions for disease effect

A. Non-stationary kernel kns(·) for the
diseased individuals
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Fig. S2. Illustration of different kernels for modeling a nonstationary disease effect. Each
row shows a kernel matrix and four randomly drawn function realizations for 8 individuals (4 case, 4
control) on age span 0 to 48 months. Lengthscale ` = 1 and warping steepness a = 0.5 have been used
for all kernels and the disease effect time is at 24 months. a) Standard nonstationary kernel using the
input warping approach. The input warping allows the function to vary in time only near the disease
effect time for cases, but also allows a baseline difference between cases and controls. b) The new
variance-masking kernel, which does not allow any difference between groups until close to the effect time
and after it. c) Heterogeneous version, which in addition allows the magnitude of the disease effect to
differ between case individuals. Individual-specific disease effect magnitude parameters have been set to
�1 = 1, �2 = 0.5, �3 = 0.3, �4 = 0.1. d) The input warping and variance masking functions.
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and after it. c) Heterogeneous version, which in addition allows the magnitude of the disease effect to
differ between case individuals. Individual-specific disease effect magnitude parameters have been set to
�1 = 1, �2 = 0.5, �3 = 0.3, �4 = 0.1. d) The input warping and variance masking functions.
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Longitudinal plasma proteomics from a T1D case-control study

3.2 Longitudinal proteomics data analysis
We used lgpr to analyse a longitudinal dataset from a recent T1D
study (Liu et al., 2018), where the longitudinal profile of protein
intensities from plasma samples was measured for 11 cases and 10
controls at nine time points that span the initiation of the disease
pathogenesis, resulting in a total of 189 data points for most pro-
teins. We chose to analyse 1538 proteins which were chosen by
requiring that at least 50% of the measurements must have non-
missing values. The exact sample sizes after discarding missing data
for each protein are shown in Supplementary Table S2. Eleven chil-
dren developed T1D, and for those individuals we defined the dis-
ease effect time to be the seroconversion age, which was defined as
age at the first detection of one or multiple T1D autoantibodies (Liu
et al., 2018). We performed our modelling using five covariates: id,
age, diseaseAge, sex and group (case/control). We followed the pre-
processing described in (Liu et al., 2018) to get normalized protein
intensities. Of the categorical covariates, id and sex are modelled as

age-dependent category-specific deviations from the shared age ef-
fect, and group is a constant group offset variable.

Covariate relevances and selection results for all proteins are
included in Supplementary Tables S2 and S3. As an example, both
models confirm the sex association of the Mullerian inhibiting factor
(uniprot id P03971) (Liu et al., 2018), assigning a relevance score of
0.912 for the sex ! age interaction term. The homogeneous model
finds 38 and the heterogeneous model finds 66 proteins associated
with the disease-related age covariate, with intersection of 20 pro-
teins. Figure 5a shows the normalized measurements for protein
Q8WA1 and Figures 5c and d show the inferred covariate effects
using the two different disease effect modelling approaches. The
new heterogeneous modelling approach is seen to detect a stronger
average disease effect, because it allows the effect sizes to vary be-
tween individuals. Moreover, the posterior distributions of
individual-specific disease effect magnitude parameters (Fig. 5e), re-
veal four individuals (id ¼ 15; 16; 17; 21) (Fig. 5b), that experience a
strong disease effect near the seroconversion time.

3.3 Longitudinal RNA-seq data analysis
We analysed also read count data from CD4þ T cells of 14 children
measured at 3, 6, 12, 18, 24 and 36 months age (Kallionpää et al.,
2019). The number of available data points was 6 (for 8 children), 5
(2 children), 4 (2 children) or 3 (2 children), resulting in a total of 72
data points. Seven children had become seropositive for T1D during
the measurement interval (cases), while the other seven children
were autoantibody negative (controls). We included 519 highly vari-
able genes in our lgpr analysis, based on preprocessing steps
explained in Supplementary Material. We included the same covari-
ates and components in our lgpr model as in the proteomics data
analysis, and age at the first detection of one or more T1D autoanti-
bodies was again used to compute the disease related age.

Covariate relevances and selection results for all genes are
included in Supplementary Table S4. Our analysis confirms the dif-
ferential expression profile of the IL32 gene between the case and
control individuals (Kallionpää et al., 2019), as the group covariate
is selected with relevance 0.196. The disease-related age was initially
selected as relevant for a total of 73 genes. As the data is sparse and
noisy, we defined a stricter rule and required that the relevance of
the disease-related age component alone is larger than 0.05. This
way we detected 12 interesting, potentially disease development-

Fig. 5. Results of analysing one example protein from a longitudinal proteomics dataset. (a) The normalized measurements for protein Q8WZA1, highlighted based on group
(case or control). The lines connect an individual. (b) Same data where four case individuals (id¼15; 16; 17; 21) are highlighted, based on being determined as affected by the
disease in heterogeneous modelling. (c) Inferred function components, as well as their sum f (using posterior mean parameters), for Q8WZA1 analysed using the homogeneous
and (d) heterogeneous model. The component relevances (relj in Equation 8) for each f ðjÞ; j ¼ 1; . . . ; 5 are 0:229; 0:157; 0:03; 0:031; 0:007 for the homogeneous model and
0:096; 0:116; 0:25; 0:037; 0:004 for the heterogeneous model, respectively. The heterogeneous model selects the disease component as relevant, whereas the homogeneous
model does not. The posterior distributions of the function components and their sum outside observed time points is computed as explained in Supplementary Material. For
clarity, standard deviations are not show for f ð1Þ and fsum. (e) Kernel density estimates for the posterior distributions of the individual-specific disease effect magnitude parame-
ters of the heterogeneous model

Fig. 6. Data and inferred covariate effects for the SIAH3 gene. (a) Raw count data
highlighted based on group (case/control) and (b) sex. (c) Inferred cumulative effect
f and (d) additive function components. Interpolation outside observed time points
is done as explained in Supplementary Material. For clarity, standard deviations are
not show for f ð1Þ and f. The seroconversion times of the seven case individuals, i.e.
used disease effect times, are 12, 12, 18, 24, 18, 12 and 18 months, indicated by the
dashed red vertical lines. Inferred component relevances for f ðjÞ; j ¼ 1; . . . ; 5 are
0:097; 0:098; 0:077; 0:043; 0:015, respectively. The selected covariates are id, age,
diseaseAge and sex
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Longitudinal plasma proteomics from a T1D case-control study

3.2 Longitudinal proteomics data analysis
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intensities from plasma samples was measured for 11 cases and 10
controls at nine time points that span the initiation of the disease
pathogenesis, resulting in a total of 189 data points for most pro-
teins. We chose to analyse 1538 proteins which were chosen by
requiring that at least 50% of the measurements must have non-
missing values. The exact sample sizes after discarding missing data
for each protein are shown in Supplementary Table S2. Eleven chil-
dren developed T1D, and for those individuals we defined the dis-
ease effect time to be the seroconversion age, which was defined as
age at the first detection of one or multiple T1D autoantibodies (Liu
et al., 2018). We performed our modelling using five covariates: id,
age, diseaseAge, sex and group (case/control). We followed the pre-
processing described in (Liu et al., 2018) to get normalized protein
intensities. Of the categorical covariates, id and sex are modelled as

age-dependent category-specific deviations from the shared age ef-
fect, and group is a constant group offset variable.

Covariate relevances and selection results for all proteins are
included in Supplementary Tables S2 and S3. As an example, both
models confirm the sex association of the Mullerian inhibiting factor
(uniprot id P03971) (Liu et al., 2018), assigning a relevance score of
0.912 for the sex ! age interaction term. The homogeneous model
finds 38 and the heterogeneous model finds 66 proteins associated
with the disease-related age covariate, with intersection of 20 pro-
teins. Figure 5a shows the normalized measurements for protein
Q8WA1 and Figures 5c and d show the inferred covariate effects
using the two different disease effect modelling approaches. The
new heterogeneous modelling approach is seen to detect a stronger
average disease effect, because it allows the effect sizes to vary be-
tween individuals. Moreover, the posterior distributions of
individual-specific disease effect magnitude parameters (Fig. 5e), re-
veal four individuals (id ¼ 15; 16; 17; 21) (Fig. 5b), that experience a
strong disease effect near the seroconversion time.

3.3 Longitudinal RNA-seq data analysis
We analysed also read count data from CD4þ T cells of 14 children
measured at 3, 6, 12, 18, 24 and 36 months age (Kallionpää et al.,
2019). The number of available data points was 6 (for 8 children), 5
(2 children), 4 (2 children) or 3 (2 children), resulting in a total of 72
data points. Seven children had become seropositive for T1D during
the measurement interval (cases), while the other seven children
were autoantibody negative (controls). We included 519 highly vari-
able genes in our lgpr analysis, based on preprocessing steps
explained in Supplementary Material. We included the same covari-
ates and components in our lgpr model as in the proteomics data
analysis, and age at the first detection of one or more T1D autoanti-
bodies was again used to compute the disease related age.

Covariate relevances and selection results for all genes are
included in Supplementary Table S4. Our analysis confirms the dif-
ferential expression profile of the IL32 gene between the case and
control individuals (Kallionpää et al., 2019), as the group covariate
is selected with relevance 0.196. The disease-related age was initially
selected as relevant for a total of 73 genes. As the data is sparse and
noisy, we defined a stricter rule and required that the relevance of
the disease-related age component alone is larger than 0.05. This
way we detected 12 interesting, potentially disease development-

Fig. 5. Results of analysing one example protein from a longitudinal proteomics dataset. (a) The normalized measurements for protein Q8WZA1, highlighted based on group
(case or control). The lines connect an individual. (b) Same data where four case individuals (id¼15; 16; 17; 21) are highlighted, based on being determined as affected by the
disease in heterogeneous modelling. (c) Inferred function components, as well as their sum f (using posterior mean parameters), for Q8WZA1 analysed using the homogeneous
and (d) heterogeneous model. The component relevances (relj in Equation 8) for each f ðjÞ; j ¼ 1; . . . ; 5 are 0:229; 0:157; 0:03; 0:031; 0:007 for the homogeneous model and
0:096; 0:116; 0:25; 0:037; 0:004 for the heterogeneous model, respectively. The heterogeneous model selects the disease component as relevant, whereas the homogeneous
model does not. The posterior distributions of the function components and their sum outside observed time points is computed as explained in Supplementary Material. For
clarity, standard deviations are not show for f ð1Þ and fsum. (e) Kernel density estimates for the posterior distributions of the individual-specific disease effect magnitude parame-
ters of the heterogeneous model

Fig. 6. Data and inferred covariate effects for the SIAH3 gene. (a) Raw count data
highlighted based on group (case/control) and (b) sex. (c) Inferred cumulative effect
f and (d) additive function components. Interpolation outside observed time points
is done as explained in Supplementary Material. For clarity, standard deviations are
not show for f ð1Þ and f. The seroconversion times of the seven case individuals, i.e.
used disease effect times, are 12, 12, 18, 24, 18, 12 and 18 months, indicated by the
dashed red vertical lines. Inferred component relevances for f ðjÞ; j ¼ 1; . . . ; 5 are
0:097; 0:098; 0:077; 0:043; 0:015, respectively. The selected covariates are id, age,
diseaseAge and sex
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3.2 Longitudinal proteomics data analysis
We used lgpr to analyse a longitudinal dataset from a recent T1D
study (Liu et al., 2018), where the longitudinal profile of protein
intensities from plasma samples was measured for 11 cases and 10
controls at nine time points that span the initiation of the disease
pathogenesis, resulting in a total of 189 data points for most pro-
teins. We chose to analyse 1538 proteins which were chosen by
requiring that at least 50% of the measurements must have non-
missing values. The exact sample sizes after discarding missing data
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dren developed T1D, and for those individuals we defined the dis-
ease effect time to be the seroconversion age, which was defined as
age at the first detection of one or multiple T1D autoantibodies (Liu
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processing described in (Liu et al., 2018) to get normalized protein
intensities. Of the categorical covariates, id and sex are modelled as
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fect, and group is a constant group offset variable.

Covariate relevances and selection results for all proteins are
included in Supplementary Tables S2 and S3. As an example, both
models confirm the sex association of the Mullerian inhibiting factor
(uniprot id P03971) (Liu et al., 2018), assigning a relevance score of
0.912 for the sex ! age interaction term. The homogeneous model
finds 38 and the heterogeneous model finds 66 proteins associated
with the disease-related age covariate, with intersection of 20 pro-
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Q8WA1 and Figures 5c and d show the inferred covariate effects
using the two different disease effect modelling approaches. The
new heterogeneous modelling approach is seen to detect a stronger
average disease effect, because it allows the effect sizes to vary be-
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Comparison against LMM

2.2.4 Disease effects
Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ $ f

a
vmðx

0Þ $ knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!%0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for
both groups, when x! '1. We choose to use f a

vmðxÞ ¼ 1
1þe'aðx'rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1'h

! "

and xaðrÞ ¼ 2h' 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½'r; r%. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects
To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ%, where Q is the number of individuals and each
bi 2 ½0; 1%. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0

p
.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ $ kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b
is bi ) Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects
The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage ' teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs ' teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-
stration of our method’s scalability. (a) Comparison between lgpr and linear mixed
effect modelling using the lme4 and lmerTest packages. The panels show ROC
curves for the problem of classifying covariates as relevant or irrelevant, when the
total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison
against LonGP. The bar plots show the fraction of times each covariate was chosen
in the final model over 100 simulated datasets. The red underlined text indicates the
covariates that were relevant in generating the data. The left panel shows results for
100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-
ate. The centre panel shows results for 100 simulations where the disease-related
age was not a relevant covariate. The right panel shows distribution of runtimes
over the total 200 datasets for both methods. The bar lengths are average runtimes,
and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of
effects that are present only for a subset of case individuals. (a) ROC curves for
covariate relevance assessment using both a heterogeneous and a homogeneous dis-
ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals
affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected
individuals. The boxplots show the distributions of the posterior medians of the in-
dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100
simulated datasets. The box is the interquantile range (IQR) between the 25th and
75th percentiles, vertical line inside the box is the 50th percentile and the whiskers
extend a distance of at most 1:5 $ IQR from the box boundary. Each panel corre-
sponds to the same experiment as the one above it
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2.2.4 Disease effects
Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ $ f

a
vmðx

0Þ $ knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!%0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for
both groups, when x! '1. We choose to use f a

vmðxÞ ¼ 1
1þe'aðx'rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1'h

! "

and xaðrÞ ¼ 2h' 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½'r; r%. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects
To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ%, where Q is the number of individuals and each
bi 2 ½0; 1%. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0

p
.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ $ kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b
is bi ) Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects
The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage ' teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs ' teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-
stration of our method’s scalability. (a) Comparison between lgpr and linear mixed
effect modelling using the lme4 and lmerTest packages. The panels show ROC
curves for the problem of classifying covariates as relevant or irrelevant, when the
total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison
against LonGP. The bar plots show the fraction of times each covariate was chosen
in the final model over 100 simulated datasets. The red underlined text indicates the
covariates that were relevant in generating the data. The left panel shows results for
100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-
ate. The centre panel shows results for 100 simulations where the disease-related
age was not a relevant covariate. The right panel shows distribution of runtimes
over the total 200 datasets for both methods. The bar lengths are average runtimes,
and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of
effects that are present only for a subset of case individuals. (a) ROC curves for
covariate relevance assessment using both a heterogeneous and a homogeneous dis-
ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals
affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected
individuals. The boxplots show the distributions of the posterior medians of the in-
dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100
simulated datasets. The box is the interquantile range (IQR) between the 25th and
75th percentiles, vertical line inside the box is the 50th percentile and the whiskers
extend a distance of at most 1:5 $ IQR from the box boundary. Each panel corre-
sponds to the same experiment as the one above it
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2.2.4 Disease effects
Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ $ f

a
vmðx

0Þ $ knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!%0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for
both groups, when x! '1. We choose to use f a

vmðxÞ ¼ 1
1þe'aðx'rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1'h

! "

and xaðrÞ ¼ 2h' 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½'r; r%. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects
To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ%, where Q is the number of individuals and each
bi 2 ½0; 1%. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0

p
.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ $ kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b
is bi ) Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects
The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage ' teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs ' teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-
stration of our method’s scalability. (a) Comparison between lgpr and linear mixed
effect modelling using the lme4 and lmerTest packages. The panels show ROC
curves for the problem of classifying covariates as relevant or irrelevant, when the
total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison
against LonGP. The bar plots show the fraction of times each covariate was chosen
in the final model over 100 simulated datasets. The red underlined text indicates the
covariates that were relevant in generating the data. The left panel shows results for
100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-
ate. The centre panel shows results for 100 simulations where the disease-related
age was not a relevant covariate. The right panel shows distribution of runtimes
over the total 200 datasets for both methods. The bar lengths are average runtimes,
and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of
effects that are present only for a subset of case individuals. (a) ROC curves for
covariate relevance assessment using both a heterogeneous and a homogeneous dis-
ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals
affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected
individuals. The boxplots show the distributions of the posterior medians of the in-
dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100
simulated datasets. The box is the interquantile range (IQR) between the 25th and
75th percentiles, vertical line inside the box is the 50th percentile and the whiskers
extend a distance of at most 1:5 $ IQR from the box boundary. Each panel corre-
sponds to the same experiment as the one above it
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2.2.4 Disease effects
Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ $ f

a
vmðx

0Þ $ knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!%0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for
both groups, when x! '1. We choose to use f a

vmðxÞ ¼ 1
1þe'aðx'rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1'h

! "

and xaðrÞ ¼ 2h' 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½'r; r%. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects
To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ%, where Q is the number of individuals and each
bi 2 ½0; 1%. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0

p
.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ $ kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b
is bi ) Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects
The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage ' teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs ' teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-
stration of our method’s scalability. (a) Comparison between lgpr and linear mixed
effect modelling using the lme4 and lmerTest packages. The panels show ROC
curves for the problem of classifying covariates as relevant or irrelevant, when the
total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison
against LonGP. The bar plots show the fraction of times each covariate was chosen
in the final model over 100 simulated datasets. The red underlined text indicates the
covariates that were relevant in generating the data. The left panel shows results for
100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-
ate. The centre panel shows results for 100 simulations where the disease-related
age was not a relevant covariate. The right panel shows distribution of runtimes
over the total 200 datasets for both methods. The bar lengths are average runtimes,
and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of
effects that are present only for a subset of case individuals. (a) ROC curves for
covariate relevance assessment using both a heterogeneous and a homogeneous dis-
ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals
affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected
individuals. The boxplots show the distributions of the posterior medians of the in-
dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100
simulated datasets. The box is the interquantile range (IQR) between the 25th and
75th percentiles, vertical line inside the box is the 50th percentile and the whiskers
extend a distance of at most 1:5 $ IQR from the box boundary. Each panel corre-
sponds to the same experiment as the one above it
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2.2.4 Disease effects
Cheng et al. (2019) modelled disease effects using the kernel in
Equation 2 for the disease-related age xdisAge, i.e. time from disease
initiation or onset of each individual. Note that for the control sub-
jects, xdisAge is not observed at all. In general, data for a continuous
covariate x can be missing in part of the observations. In such cases,
we adopt the approach of (Cheng et al., 2019) and multiply the ker-
nel of x with a binary mask (BIN) kernel which returns 0 if either of
its arguments is missing and 1 if they are available.

Whereas this approach can model a non-stationary trend that is
only present for the diseased individuals, its drawback is that it can
capture effects that are merely a different base level between the dis-
eased and healthy individuals. In order to find effects caused by the
disease progression, we design a new kernel

kvmðx;x0ja; ‘Þ ¼ f a
vmðxÞ $ f

a
vmðx

0Þ $ knsðx;x0ja; ‘Þ; (4)

where f a
vmðxÞ : R!%0; 1½ is a variance mask function that forces the

disease component to have zero variance, i.e. the same value for
both groups, when x! '1. We choose to use f a

vmðxÞ ¼ 1
1þe'aðx'rÞ,

which means that the allowed amount of variance between these
groups rises sigmoidally from 0 to the level determined by the mar-

ginal variance parameter, so that the midpoint is at r ¼ 1
a log h

1'h

! "

and xaðrÞ ¼ 2h' 1. The parameter h therefore determines a connec-
tion between the regions where the disease component is allowed to
vary between the two groups and where it is allowed to vary over
time. In our experiments, we use the value h¼0.025. This means,
that 95% of the variation in xa occurs on the interval ½'r; r%. The
kernels in Equations 2 and 4 combined with the missing value mask-
ing, as well as functions drawn from the corresponding GP priors,
are illustrated in Supplementary Figure S2.

2.2.5 Heterogeneous effects
To model effects that have the same effect shape but possibly differ-
ent magnitude for each individual, we define additional parameters
b ¼ ½b1; . . . ;bQ%, where Q is the number of individuals and each
bi 2 ½0; 1%. Denote X id ¼ f1; . . . ;Qg and assume two individuals
xid ¼ q 2 X id and x0id ¼ q0 2 X id. An effect is made heterogeneous in

magnitude by multiplying its kernel by kheterðxid;x
0
idjbÞ ¼

ffiffiffiffiffiffiffiffiffiffiffi
bqbq0
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.

For example, to specify a heterogeneous disease effect component,
we use the novel kernel

kheterðxid;x
0
idjbÞ $ kvmðxdisAge; x

0
disAgeja; ‘disAgeÞ: (5)

For heterogeneous disease effects, the number of needed b
parameters equals the number of only the case individuals.

In our implementation, the prior for the unknown parameters b
is bi ) Betaðb1;b2Þ, where the shape parameters b1 and b2 can be
defined by the user. By default, we set b1 ¼ b2 ¼ 0:2, in which case
most of the prior mass is near the extremes 0 and 1 (Supplementary
Fig. S3c). This choice is expected to induce sparsity, so that some
individuals have close to zero effect magnitude. The posterior distri-
butions of bi can then be used to make inferences about which case
individuals are affected by the disease (bi close to 1) and which are
not (bi close to 0). The kernel in Equation 5 is illustrated in
Supplementary Figure S2c.

We note that the lgpr software implementation allows defining
also different types of heterogeneous components, by replacing the
VM kernel with the EQ or NS kernel in Equation 5, and that mul-
tiple heterogeneous components can be included in a model.

2.2.6 Temporally uncertain effects
The presented disease effect modelling approach relies on being able
to measure the disease onset or effect time teff for each case individ-
ual, since the disease-related age is defined as xdisAge ¼ xage ' teff. In
Cheng et al. (2019), teff was defined as age on the clinically deter-
mined disease initiation date, but in general the effect time can differ
from it. Our implementation allows Bayesian inference also for the
effect times, and can therefore capture effects that for some or all
case individuals occur at a different time point than the clinically
determined date. The user can set the prior either directly for the ef-
fect times teff , or for the difference between the effect time and
observed initiation time, Dt ¼ tobs ' teff . The first option is suitable
if the disease is known to commence at certain age for all individu-
als. The latter option is useful in a more realistic setting where such
information is not available, and it is reasonable to think that the
clinically determined initiation time tobs is close to the true effect
time.

2.3 Model inference
We collect all marginal variances, lengthscales and other possible
kernel hyperparameters in a vector hkernel. Parameters of the obser-
vation model are denoted by hobs and other parameters such as those

Fig. 2. Covariate relevance assessment comparison with other methods and demon-
stration of our method’s scalability. (a) Comparison between lgpr and linear mixed
effect modelling using the lme4 and lmerTest packages. The panels show ROC
curves for the problem of classifying covariates as relevant or irrelevant, when the
total number of data points is N¼ 100, 300 and 600, respectively. (b) Comparison
against LonGP. The bar plots show the fraction of times each covariate was chosen
in the final model over 100 simulated datasets. The red underlined text indicates the
covariates that were relevant in generating the data. The left panel shows results for
100 datasets that includes the disease-related age (diseaseAge) as a relevant covari-
ate. The centre panel shows results for 100 simulations where the disease-related
age was not a relevant covariate. The right panel shows distribution of runtimes
over the total 200 datasets for both methods. The bar lengths are average runtimes,
and the turnstiles indicate runtime standard deviations

Fig. 3. Heterogeneous disease effect modelling with lgpr improves detection of
effects that are present only for a subset of case individuals. (a) ROC curves for
covariate relevance assessment using both a heterogeneous and a homogeneous dis-
ease model for simulated data with 2, 4, 6 and 8 out of the 8 case individuals
affected, respectively. (b) Heterogeneous modelling with lgpr can reveal the affected
individuals. The boxplots show the distributions of the posterior medians of the in-
dividual-specific disease effect magnitude parameters bid; id ¼ 1; . . . ; 8 over 100
simulated datasets. The box is the interquantile range (IQR) between the 25th and
75th percentiles, vertical line inside the box is the 50th percentile and the whiskers
extend a distance of at most 1:5 $ IQR from the box boundary. Each panel corre-
sponds to the same experiment as the one above it
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Abstract

Gaussian process (GP) models that combine both categorical and continuous input variables
have found use e.g. in longitudinal data analysis and computer experiments. However, standard
inference for these models has the typical cubic scaling, and common scalable approximation
schemes for GPs cannot be applied since the covariance function is non-continuous. In this work,
we derive a basis function approximation scheme for mixed-domain covariance functions, which
scales linearly with respect to the number of observations and total number of basis functions. The
proposed approach is naturally applicable to Bayesian GP regression with arbitrary observation
models. We demonstrate the approach in a longitudinal data modelling context and show that it
approximates the exact GP model accurately, requiring only a fraction of the runtime compared
to fitting the corresponding exact model.

1 INTRODUCTION

Gaussian processes (GPs) o↵er a flexible non-
parametric way of modeling unknown functions.
While Gaussian process regression and classifi-
cation are commonly used in problems where
the domain of the unknown function is con-
tinuous, recent work has seen use of GP mod-
els also in mixed domains, where some of the
input variables are categorical or discrete and
some are continuous. Applications of mixed-
domain GPs are found e.g. in Bayesian optimiza-
tion (Garrido-Merchán and Hernández-Lobato,
2020), computer experiments (Zhang and Notz,
2015; Deng et al., 2017; Roustant et al., 2020;
Wang et al., 2021) and longitudinal data analy-
sis (Cheng et al., 2019; Timonen et al., 2021).
For example in biomedical applications, the
modeled function often depends on categorical
covariates, such as treatment vs. no treatment,
and accounting for such time-varying e↵ects is
essential. Since all commonly used kernel func-
tions (i.e. covariance functions) are defined for
either purely continuous or purely categorical in-

put variables, kernels for mixed-domain GPs are
typically obtained by combining continuous and
categorical kernels through multiplication. Ad-
ditional modeling flexibility can be obtained by
summing the product kernels as has been done
in the context of GP modeling for longitudinal
data (Cheng et al., 2019; Timonen et al., 2021).

It is well known that exact GP regression has
a theoretical complexity of O(N3) and requires
O(N2) memory, where N is the number of ob-
servations. This poses a computational problem
which in practice renders applications of exact
GP regression infeasible for large data. Vari-
ous scalable approximation approaches for GPs
have been proposed (see e.g. (Liu et al., 2020) for
a review). However, many popular approaches,
such as the inducing point (Snelson and Ghahra-
mani, 2006; Titsias, 2009) and kernel interpola-
tion (Wilson and Nickisch, 2015) methods, can
only be applied directly if the kernel (i.e. covari-
ance) function is continuous and di↵erentiable.
In addition, they typically require the Gaussian
observation model, which is not appropriate for
modeling for example discrete, categorical or or-
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Abstract

Longitudinal datasets measured repeatedly
over time from individual subjects, arise in
many biomedical, psychological, social, and
other studies. A common approach to anal-
yse high-dimensional data that contains miss-
ing values is to learn a low-dimensional rep-
resentation using variational autoencoders
(VAEs). However, standard VAEs assume
that the learnt representations are i.i.d., and
fail to capture the correlations between the
data samples. We propose the Longitudinal
VAE (L-VAE), that uses a multi-output ad-
ditive Gaussian process (GP) prior to extend
the VAE’s capability to learn structured low-
dimensional representations imposed by aux-
iliary covariate information, and derive a new
KL divergence upper bound for such GPs.
Our approach can simultaneously accommo-
date both time-varying shared and random
e↵ects, produce structured low-dimensional
representations, disentangle e↵ects of indi-
vidual covariates or their interactions, and
achieve highly accurate predictive perfor-
mance. We compare our model against pre-
vious methods on synthetic as well as clinical
datasets, and demonstrate the state-of-the-
art performance in data imputation, recon-
struction, and long-term prediction tasks.
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1 Introduction

Longitudinal datasets naturally arise in a wide variety
of fields and applications, such as biomedicine, soci-
ology, psychology, and many others. Such datasets
include, for example, healthcare records, social media
behaviour, consumer behaviour, etc., all collected re-
peatedly over time for each individual. Most longitudi-
nal datasets contain both dependent and independent
variables. For example, in biomedical data, dependent
variables can comprise of lab tests and other measure-
ments of the patient, whereas independent variables
contain auxiliary descriptors of the patient, such as
age, sex, time to disease event, etc. Analysing lon-
gitudinal datasets collected in such studies is chal-
lenging as they often involve time-varying covariates,
high-dimensional correlated measurements, and miss-
ing values.

While non-linear, high-dimensional generative mod-
els are capable of learning complex data distributions,
the statistical inference for such models is generally
highly non-trivial. Auto-Encoding Variational Bayes
(AEVB) (Kingma and Welling, 2014) is a powerful
deep learning technique for e�cient inference of latent
variable models. The variational autoencoder (VAE)
(Kingma and Welling, 2014; Rezende et al., 2014), the
most popular exemplification of AEVB, learns a low-
dimensional latent code of the dataset using two com-
plementary deep neural networks (DNNs) to encode
the high-dimensional data and decode the latent dis-
tribution, respectively. However, VAEs usually ignore
the possible correlations (e.g. temporal correlations)
between the learnt latent embeddings.

Related work Numerous extensions to achieve cor-
relations in the latent space, model temporal data, and
enhance the expressiveness of posterior distributions
have been proposed for VAEs. Kulkarni et al. (2015)
had proposed to group samples with specific proper-
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Deep latent variable models

Generative models of the form

z ∼ pθ(z)

y ∼ Expfam(y | dψ(z))

Amortized variational inference with qϕ(z | y)
(auto-encoding variational Bayes)

When ϕ and ψ are neural nets, the model is
called the variational autoencoder (VAE)

So we have an encoder that takes in images and produces probability distributions in the
latent space, and a decoder that takes points in the latent space and returns artificial
images. So for a given image, the encoder produces a distribution, a point in the latent
space is sampled from that distribution, and then that point is fed into the decoder which
produces an artificial image.

A variational autoencoder

The Structure of the Latent Space
I said earlier that the decoder should expect to see points sampled from a standard normal
distribution. But now I’ve stated that the decoder receives samples from non-standard
normal distributions produced by the encoder. These two things aren’t at odds, though, if
points sampled from the encoder still approximately fit a standard normal distribution.
We want a situation like this:

3

Encoder Decoder

3

latentspace

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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Conditional deep latent variable models

Conditional generative models of the form

z ∼ pθ(z | x)
y ∼ Expfam(y | dψ(z, x))

and amortized variational inference with
qϕ(z | y, x)

Limitations of VAEs and cVAEs

1. The model assumes that the data samples
are independent

2. Real-world data contains missing values

3. Real-world data can be multi-modal

image of a particular number on demand. Enter the conditional variational autoencoder
(CVAE). The conditional variational autoencoder has an extra input to both the encoder
and the decoder.

A conditional variational autoencoder

At training time, the number whose image is being fed in is provided to the encoder and
decoder. In this case, it would be represented as a one-hot vector.

To generate an image of a particular number, just feed that number into the decoder along
with a random point in the latent space sampled from a standard normal distribution.
Even if the same point is fed in to produce two different numbers, the process will work
correctly, since the system no longer relies on the latent space to encode what number you
are dealing with. Instead, the latent space encodes other information, like stroke width or
the angle at which the number is written.

33

Encoder

latentspace

https://ijdykeman.github.io/ml/2016/12/21/cvae.html

https://ijdykeman.github.io/ml/2016/12/21/cvae.html
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Deep latent variable models:
Longitudinal, missing and multi-modal data
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Multi-output additive GP prior

The L-dimensional latent z has a vector-valued additive model, conditioned on x

z = f(1)(x) + f(2)(x) + . . .+ f(R)(x) + diag(σ2
z1, . . . , σ

2
zL),

where each
f(r)(x) ∼ GP(0,K(r)(x, x′|θ))

with a matrix-valued (L× L) cross-covariance function K(r)(x, x′|θ)

Thus

z ∼ GP

(
0,

R∑

r=1

K(r)(x, x′|θ) + diag(σ2
z1, . . . , σ

2
zL)

)
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Kernel functions for longitudinal data

▶ Shared effects: the exponentiated
quadratic (EQ) kernel

▶ Nonstationary shared effects: EQ kernel
with monotonic nonlinear input warping

▶ Category effects: product of the zero-sum
and EQ kernels

▶ Individual random components

2.2 Kernel functions for longitudinal data
2.2.1 Shared effects
Stationary shared effects of continuous covariates are modelled
using the exponentiated quadratic (EQ) kernel

keqðx;x0j‘Þ ¼ exp $ ðx$x0Þ2

2‘2

! "
. Here, x refers to a generic continuous

covariate, and each shared effect component has its own lengthscale
parameter ‘, which determines how rapidly the component can
vary. For example, a shared age effect kernel is keqðxage; x0agej‘ageÞ.

2.2.2 Category effects
Effects of categorical covariates (such as sex or individual id) can be
modelled either as fluctuating category-specific deviations from a
shared effect (interaction of a categorical and continuous covariate)
or as static category-specific offsets. For a pair of categorical covari-
ate z (with M % 2 categories) and continuous covariate x, we use the
kernel function

kz&xððz;xÞ; ðz0;x0Þj‘Þ ¼ kzerosumðz; z0Þ ' keqðx; x0j‘Þ; (1)

when modelling the effect of z as deviation from the shared effect of
x. The zero-sum kernel kzerosumðz; z0Þ, returns 1 if z ¼ z0 and 1

1$M

otherwise. This is similar to the GP ANOVA approach in (Kaufman
and Sain, 2010). If f : R& f1; . . . ;Mg ! R is modelled using the

kernel in Equation 1, the sum
PM

r¼1
f ðt; rÞ is always zero for any t (see

proof in Supplementary Material). The fact that the sum over

categories equals exactly zero for any t greatly helps model inter-
pretation as this property separates the effect of the categorical cova-
riate from the shared effect (see Supplementary Fig. S1 for
illustration). If the effect of z is modelled as a batch or group offset,
which does not depend on time or other continuous variables, the
corresponding kernel function is just kzerosumðz; z0Þ. Again, z refers to
a generic categorical covariate.

We note that the lgpr software implementation allows using also
the categorical (CAT) kernel in place of kzerosum, when modelling the
effects of categorical covariates. This kernel function returns 1 if its
arguments belong to the same category and 0 otherwise.

2.2.3 Non-stationary effects
We use the input warping approach (Snoek et al., 2014) to model
non-stationary functions f ðjÞðxÞ, where most variability occurs near
the event x¼0. The non-stationary kernel is

knsðx; x0ja; ‘Þ ¼ keqðxaðxÞ;xaðx0Þj‘Þ; (2)

where xa : R!( $ 1; 1½ is a monotonic non-linear input warping
function

xaðxÞ ¼ 2 ' 1

1þ e$ax
$ 1

2

# $
; (3)

and the parameter a controls the width of the effect window around
x¼0.

Fig. 1. Overview of additive Gaussian process modelling of longitudinal data using lgpr. (a) A typical workflow with lgpr. 1. User gives the data and model formula as input,
along with possible additional modelling options such as non-default parameter priors or a discrete observation model. 2. The model is fitted by sampling the posterior distri-
bution of its parameters. 3. Relevances of different covariates and interaction terms are computed. The inferred signal components can be visualized to study the magnitude
and temporal aspects of different covariate effects. If a heterogeneous model component was specified, the results inform how strongly each individual experiences the effect.
(b) Examples of different types of covariate effects that can be modelled using lgpr. The components f ðjÞ; j ¼ 1; . . . ; 5 are draws from different Gaussian process priors. This
artificial data comprises 8 individuals (4 male, 4 female), and 2 individuals of each sex are cases. The shown age-dependent components are a shared age effect f ð1Þ, a sex-spe-
cific deviation f ð2Þ from the shared age effect, a disease-related age (diseaseAge) effect f ð3Þ and a subject-specific deviation f ð5Þ from the shared age effect. For each of the dis-
eased individuals, the disease initiation occurs at a slightly different age, between 20 and 40 months. Here, the magnitude of the disease effect is equal for each case individual,
but lgpr can model also heterogeneous effects. The component f ð4Þ is a function of blood pressure only, but is plotted against age for consistency as the simulated blood pres-
sure variable has a temporal trend. (c) The cumulative effect f ¼

P
j f ðjÞ is the sum of the low-dimensional components

Table 1. Key differences between lgpr and LonGP

lgpr LonGP (Cheng et al., 2019)

Available kernels BIN, CAT, ZS, EQ, NS (parameterized warping), VM BIN, CAT, EQ, PER, NS (fixed warping)

Available observation models Gaussian, Poisson, NB, binomial, BB Gaussian

Bayesian inference Dynamic HMC Slice sampling and CCD (Vanhatalo et al., 2013)

Heterogeneous effects Available Not available

Covariate uncertainty Available Not available

Covariate relevance assessment Decomposition of variance Stepwise model search with crossvalidation

Note: Kernel name abbreviations: BIN, binary mask; CAT, categorical; ZS, zero-sum; EQ, exponentiated quadratic; NS, non-stationary; VM, variance mask;

PER, periodic. The input warping steepness (a in Equation 3) is fixed in LonGP but sampled in lgpr.

lgpr 3

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btab021/6104850 by guest on 04 M

arch 2021
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High-dimensional, correlated data

Data:

Y = [y1, . . . , yN ]
T = [Y T

1 , . . . ,Y
T
P ]T D-dimensional data

X = [x1, . . . , xN ]
T = [XT

1 , . . . ,X
T
P ]T Q-dimensional covariates

Z = [z1, . . . , zN ]
T = [z̄1, . . . , z̄L] L-dimensional latent
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The generative model: L-VAE

Conditional probability for the full dataset (X ,Y )

pω(Y |X ) =

∫

Z

pψ(Y |Z )pθ(Z |X )dZ

=

∫

Z

(
N∏

n=1

p(yn|dψ(zn))︸ ︷︷ ︸
likelihoods

)
pθ(Z |X )︸ ︷︷ ︸
GP prior

dZ ,
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Auto-encoding variational Bayes for L-VAE

Amortized variational inference:

qϕ(Z |Y ) =
N∏

n=1

N
(
zn|µϕ(yn), diag(σ2

ϕ(yn))
)

where µϕ and σ2
ϕ are neural networks

ELBO objective:

log pω(Y |X ) ≥ L(ϕ, ψ, θ;Y ,X ) ≜ Eqϕ(Z |Y ) [log pψ(Y |Z )]
︸ ︷︷ ︸

easy

−DKL(qϕ(Z |Y )||pθ(Z |X ))︸ ︷︷ ︸
closed form, but slow

▶ A novel and provably tighter evidence lower bound for longitudinal GPs (→ upper bound
for the KL)

▶ A novel mini-batch compatible KL upper bound
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Autoencoder view of L-VAELongitudinal Variational Autoencoder

ties in mini-batches to induce structure on the latent
space. The conditional VAE (CVAE) introduced in
(Sohn et al., 2015) incorporated the auxiliary covari-
ate information directly in the inference and gener-
ative networks. However, CVAE fails to model the
subject-specific temporal structure and does not ex-
plicitly constrain the latent space to achieve a low
dimensional representation that evolves smoothly in
time. Casale et al. (2018) proposed the GPPVAE to
incorporate view and object information in a Gaus-
sian process (GP) prior, to model the VAE’s latent
space structure. GPPVAE can account for temporal
covariances between samples, but its ability to model
subject-specific temporal structure is limited by the
restrictive nature of the view-object GP product ker-
nel. This compromises the applicability of GPPVAE
in longitudinal study designs. Moreover, GPPVAE’s
pseudo-minibatch stochastic gradient descent (SGD)
training scheme lacks the ability to scale to large data,
as each training step requires a pass over the full data
(epoch). Fortuin et al. (2020) built upon the idea of
using a latent GP in VAEs, and proposed the GP-
VAE that assumes an independent GP prior on each
subject’s time-series. Though GP-VAE is especially
designed for time-series data, it can neither capture
shared temporal structure across all data points nor
make use of available auxiliary covariate information
other than time.

Limitations of the expressiveness of posterior approx-
imations in VAEs has been addressed by using nor-
malising flows (NF) (Rezende and Mohamed, 2015)
implemented with RealNVPs (Dinh et al., 2017),
continuous-time NFs (Chen et al., 2018), inverse au-
toregressive flows (Kingma et al., 2016), and impor-
tance sampling (Müller et al., 2019). Methods have
also been proposed to handle the disentanglement
of dimensions in the latent space (Ainsworth et al.,
2018a,b; Higgins et al., 2017) and improve latent rep-
resentations (Alemi et al., 2018; Zhao et al., 2019). All
these methods, however, assume independence across
samples.

From the deep neural networks perspective, recurrent
architectures (RNN) have been found to be particu-
larly well-suited for temporal data analysis (Pearlmut-
ter, 1989; Giles et al., 1994), including multi-outcome
modelling problems. For example, Chung et al. (2015)
proposed the variational RNN (VRNN) which extends
the VAE into a recurrent framework for modelling
highly structured sequential data. The VRNN models
the temporal dependencies between the latent random
variables across time steps. However, Chung et al.
(2015) do not propose a way to handle and impute
missing values. Also, VRNNs neither makes use of
auxiliary covariates nor takes into account di↵ering

id, angle

n1

nP

Y

+

angle

Multi-output additive GP prior

Latent spaceData

id

Z

L L

Auxiliary covariate 
information X

Decode

p�(Y |Z )
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Prediction

Prediction

q�(Z |Y )

GP (0,
R

∑
r=1

K(r)(x(r), x�(r) |�(r)))

N
  (t

ot
al

)

Y

��

Figure 1: L-VAE overview.

time steps. BRITS (Cao et al., 2018) makes use of bi-
directional LSTM-type RNNs (Schuster and Paliwal,
1997), and can e�ciently impute missing values while
accounting for the irregularities in the sampling times.
However, BRITS is not a generative model which can
limit the applicability of the trained model. More-
over, it is not straightforward to incorporate auxiliary
information. Generative adversarial networks (GANs)
can also be used for time-series data imputation and
modelling (Goodfellow et al., 2016; Guo et al., 2019;
Luo et al., 2018). GRUI-GAN (Luo et al., 2018) is
an RNN-based method that makes use of adversar-
ial training. This recurrent model su↵ers from similar
pitfalls as BRITS with the added complexity of adver-
sarial training. Table 1 contrasts the features of our
proposed model to the key related methods.

Contributions In this paper, we propose a novel
deep generative model that extends the capabilities of
a VAE with a multi-output additive GP prior over the
latent encodings domain, that models the correlation
structure between the samples w.r.t. auxiliary infor-
mation. Our L-VAE model is conceptualised in Fig. 1.
Our model probabilistically encodes the longitudinal
measurements with missing values (missing completely
at random) onto a low-dimensional latent space with
no missing values. The structured, low-dimensional la-
tent dynamics are modelled using a multi-output addi-
tive GP that utilises the auxiliary covariates, followed
by decoding back to the data domain. Such a GP
prior introduces computational challenges for which
we derive a novel divergence bound that leverages the
commonly used inducing point formalism (Quiñonero-
Candela and Rasmussen, 2005; Titsias, 2009) for e�-
cient model inference. Our contributions can be sum-
marised as follows:

• We introduce a VAE for longitudinal data with
auxiliary covariate information, that can model
the structured latent space dynamics with a
multi-output additive GP prior.

• We derive an e�cient mini-batch based GP infer-
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The Health MNIST experiment

Ramchandran, Tikhonov, Kujanpää, Koskinen, Lähdesmäki
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Training
sequence

Reconstruction

Training
sequence
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16Rotation angle

Unseen rotation

Model prediction

a

b

c

Figure 2: The rotated MNIST experiments. (a) Reconstructions obtained from our model using f ca(id) +
f se(angle) + f ca⇥se(id ⇥ angle), and 16 latent dimensions. The blank boxes corresponds to the missing images.
Rotation angle 4 is completely withheld from all instances. (b) Predictions for 18 random draws of the out-of-
sample prediction state (i.e. unobserved angle in panel a ). The first row is the real data and the bottom row is
our model’s prediction. (c) MSE on test set. The error bars represent the minimum and maximum values after
10 repetitions. The training, test, and validation sets are re-sampled for each repetition.

Time from disease event 9876543210-1-2-3-4-5-6-7-8-9 9-10

True image

GP-VAE prediction
[Fortuin et al., (2019)]

Our model prediction

Data

True image

GP-VAE prediction
[Fortuin et al., (2019)]

Our model prediction

Data

True image

GP-VAE prediction
[Fortuin et al., (2019)]

Our model prediction

Data

a b

VRNN
[Chung et al., (2015)]

Figure 3: The Health MNIST experiments. (a) Reconstructions and predictions obtained from our model using
f ca(id) + f se(age) + f ca⇥se(id ⇥ age) + f ca⇥se(sex ⇥ age) + f ca⇥se(diseasePresence ⇥ diseaseAge), and 32 latent
dimensions. For the other methods, 64 latent dimensions were used when applicable. (b) MSE from imputing
the missing values for the observed time points. Three model variants are shown for L-VAE.

3.1 Rotated MNIST digits

We demonstrate our method on a variant of the
MNIST dataset that comprises of 400 unique instances
of the digit ‘3’ as proposed in Casale et al. (2018).
Each instance in this training set is rotated through
16 evenly separated rotation angles in [0, 2⇡). That
is, we have two covariates: categorical id and contin-
uous angle. Moreover, the validation set comprises of
40 unique instances of the digit ‘3’ rotated through
16 evenly separated rotation angles like the training
set. As proposed in Casale et al. (2018), we created
the test set (out-of-sample predictions) by completely
removing one of the rotation angles for each instance
and further removed four randomly selected angles to
simulate incomplete data.

Hence, for each sequence, 5 images are not observed
(see Fig. 2(a)). Therefore, in this experiment the train-
ing set parameters are P = 400, N = 4400 (where each
np = 11), and Q = 2. The test set comprises of 400 test
images of one rotation angle each. Fig. 2(a) demon-
strates that our model was able to reconstruct arbi-
trary rotation angles, including the out-of-sample rota-
tion (Fig. 2(b)). Fig. 2(c) compares the mean squared
error (MSE) of the test set reconstructions from our
method (three di↵erent GP variants) and GPPVAE
and GP-VAE. The reconstruction loss decreases with
increasing latent space dimension L, but our method
consistently outperforms both the GPPVAE and GP-
VAE.

▶ Simulated longitudinal data using MNIST
dataset

▶ Train: P = 1000 unique instances
(N = 20000)

▶ Q = 6 covariates: id, age, diseasePresence,
diseaseAge, sex, and location

▶ Test: 100 additional instances: given time
points [−10, . . . ,−6], predict [−5, . . . , 9]

Longitudinal Variational Autoencoder

3.2 Health MNIST

We simulate a longitudinal dataset with missing values
using a modified version of the MNIST dataset. The
dataset imitates many properties that may be found
in actual medical data. In this experiment, we took
the digits ‘3’ as well as ‘6’ and assumed that the dif-
ferent digits would represent two biological sexes. To
simulate a shared age-related e↵ect, all digit instances
where shifted towards the right corner over time. We
assume that half of the instances of ‘3’ and ‘6’ remain
healthy (diseasePresence = 0) and half get a disease
(diseasePresence = 1). For the diseased instances, we
performed a sequence of 20 rotations with the amount
of rotation depending on the time to disease diagnosis
(diseaseAge).

We also introduced an irrelevant binary covariate, lo-
cation which is set randomly for each unique instance.
To every data point, we applied a random rotational
jitter to mimic the addition of noise. We also randomly
selected 25% of each image’s pixels and set them as
missing (we use these pixels to assess the imputation
capability). Therefore, the simulated training dataset
comprises of P = 1000 unique instances with a total
of N = 20000 samples such that each np = 20. Each
sample has Q = 6 covariates, namely age, id, diseaseP-
resence, diseaseAge, sex, and location. The validation
set comprised of 200 instances which are not present
in the training. Additionally, the training dataset con-
tained 100 additional instances for which the images of
only the first 5 time points are given (as in the ‘Data’
row of Fig. 3(a)) — we use these to assess prediction
capability by computing the MSE as well as by visu-
alising the output of the decoder. As in Fortuin et al.
(2020), we try to draw an analogy to healthcare by
assuming that each frame of the time series represents
a collection of measurements pertaining to a patient’s
health state and that the temporal evolution repre-
sents the non-linear evolution of that patient’s health
state.

Fig. 3(a) indicates that our approach performs well in
reconstructing the temporal trajectory (or disease tra-
jectory as per our analogy) and is able to predict the
remaining trajectory, given the corresponding covari-
ates. The benefits of using our model can especially be
seen in the time period [�4, 9] as it e↵ectively captures
the non-linear transformation about the disease event.
GP-VAE is also capable to e↵ectively reconstruct in
the time period [�10,�6], but fails completely in fu-
ture predictions because it can only utilise the age co-
variate. Fig. 3(b) shows that our model also outper-
forms GP-VAE, GPPVAE, BRITS and GRUI-GAN in
imputing the missing values for observed time points.
Fig. 3(b) also highlights the robustness of our approach
as the irrelevant covariate, location, has a very mild

Table 2: MSE from performing future predictions (i.e.,
from time [-5, 9]) on the Health MNIST dataset. The
values are the means and respective standard errors.
Model Latent dimension MSE
GPPVAE 64 0.057 ± 0.003
GP-VAE 64 0.059 ± 0.002
VRNN 64 0.049 ± 0.004
BRITS N/A 0.047 ± 0.004
GRUI-GAN 64 0.053 ± 0.007
L-VAE 8 0.038 ± 0.003
L-VAE 16 0.033 ± 0.0018
L-VAE 32 0.025 ± 0.0015

detrimental e↵ect on the overall model performance.
Finally, Table 2 shows that L-VAE outperforms other
methods in performing future predictions. See Suppl.
Figs. 3 and 4 for latent space visualisations.

3.3 Healthcare data

We evaluated our model on health-care data from the
Physionet Challenge 2012 (Silva et al., 2012). The ob-
jective of this challenge was to predict the in-hospital
mortality of the patients that were monitored in the
Intensive Care Unit (ICU) over a period of 48 hours.
We made use of data from 3997 individuals (‘set a’)
for training and 1000 individuals (‘set c’) for valida-
tion. Additionally, we used 3993 individuals (‘set b’)
for testing. As in Cao et al. (2018), we focused on
modelling the measurements of 35 di↵erent attributes
(such as glucose level, blood pressure, body temper-
ature, etc.), approx. 80% of which are missing in the
data. We also made use of 7 patient-specific general
auxiliary covariates that were made available as a part
of the challenge, i.e. patient identifier (id), type of ICU
unit (ICUtype), height, weight, age, sex, in-hospital
death (mortality) as well as measurement hour (time),
some of which were also missing for some patients. We
constructed an additional covariate (time to mortality
or mortalityTime) based on the provided survival time
(see Suppl. Sec. 6 for data pre-processing). For model
training, data for all patients (P = 3997) is available
hourly (np = 48), so N = 191856. We trained our L-
VAE model using the training samples and used it to
build a Bayes classifier aimed at predicting the patient
mortality for test data. Since the test data lacks infor-
mation on mortality and mortalityTime covariates, for
each patient in the test set, characterised by a pair of
48 hour attributes time-series Y⇤ and incomplete aux-
iliary information X⇤, we approximated the marginal
log-likelihoods from eq. (4) of the two alternative hy-
potheses: Li = L(�,  , ✓; Y⇤, X⇤, mortality = i) for
i = {0, 1}. Then the predicted mortality probability
was computed as P1 = exp(L1)/(exp(L0) + exp(L1)).
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Figure 2: The rotated MNIST experiments. (a) Reconstructions obtained from our model using f ca(id) +
f se(angle) + f ca⇥se(id ⇥ angle), and 16 latent dimensions. The blank boxes corresponds to the missing images.
Rotation angle 4 is completely withheld from all instances. (b) Predictions for 18 random draws of the out-of-
sample prediction state (i.e. unobserved angle in panel a ). The first row is the real data and the bottom row is
our model’s prediction. (c) MSE on test set. The error bars represent the minimum and maximum values after
10 repetitions. The training, test, and validation sets are re-sampled for each repetition.
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Figure 3: The Health MNIST experiments. (a) Reconstructions and predictions obtained from our model using
f ca(id) + f se(age) + f ca⇥se(id ⇥ age) + f ca⇥se(sex ⇥ age) + f ca⇥se(diseasePresence ⇥ diseaseAge), and 32 latent
dimensions. For the other methods, 64 latent dimensions were used when applicable. (b) MSE from imputing
the missing values for the observed time points. Three model variants are shown for L-VAE.

3.1 Rotated MNIST digits

We demonstrate our method on a variant of the
MNIST dataset that comprises of 400 unique instances
of the digit ‘3’ as proposed in Casale et al. (2018).
Each instance in this training set is rotated through
16 evenly separated rotation angles in [0, 2⇡). That
is, we have two covariates: categorical id and contin-
uous angle. Moreover, the validation set comprises of
40 unique instances of the digit ‘3’ rotated through
16 evenly separated rotation angles like the training
set. As proposed in Casale et al. (2018), we created
the test set (out-of-sample predictions) by completely
removing one of the rotation angles for each instance
and further removed four randomly selected angles to
simulate incomplete data.

Hence, for each sequence, 5 images are not observed
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ing set parameters are P = 400, N = 4400 (where each
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tion (Fig. 2(b)). Fig. 2(c) compares the mean squared
error (MSE) of the test set reconstructions from our
method (three di↵erent GP variants) and GPPVAE
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consistently outperforms both the GPPVAE and GP-
VAE.

▶ Simulated longitudinal data using MNIST
dataset

▶ Train: P = 1000 unique instances
(N = 20000)

▶ Q = 6 covariates: id, age, diseasePresence,
diseaseAge, sex, and location

▶ Test: 100 additional instances: given time
points [−10, . . . ,−6], predict [−5, . . . , 9]

Longitudinal Variational Autoencoder

3.2 Health MNIST

We simulate a longitudinal dataset with missing values
using a modified version of the MNIST dataset. The
dataset imitates many properties that may be found
in actual medical data. In this experiment, we took
the digits ‘3’ as well as ‘6’ and assumed that the dif-
ferent digits would represent two biological sexes. To
simulate a shared age-related e↵ect, all digit instances
where shifted towards the right corner over time. We
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healthy (diseasePresence = 0) and half get a disease
(diseasePresence = 1). For the diseased instances, we
performed a sequence of 20 rotations with the amount
of rotation depending on the time to disease diagnosis
(diseaseAge).

We also introduced an irrelevant binary covariate, lo-
cation which is set randomly for each unique instance.
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missing (we use these pixels to assess the imputation
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sample has Q = 6 covariates, namely age, id, diseaseP-
resence, diseaseAge, sex, and location. The validation
set comprised of 200 instances which are not present
in the training. Additionally, the training dataset con-
tained 100 additional instances for which the images of
only the first 5 time points are given (as in the ‘Data’
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capability by computing the MSE as well as by visu-
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the non-linear transformation about the disease event.
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values are the means and respective standard errors.
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detrimental e↵ect on the overall model performance.
Finally, Table 2 shows that L-VAE outperforms other
methods in performing future predictions. See Suppl.
Figs. 3 and 4 for latent space visualisations.

3.3 Healthcare data

We evaluated our model on health-care data from the
Physionet Challenge 2012 (Silva et al., 2012). The ob-
jective of this challenge was to predict the in-hospital
mortality of the patients that were monitored in the
Intensive Care Unit (ICU) over a period of 48 hours.
We made use of data from 3997 individuals (‘set a’)
for training and 1000 individuals (‘set c’) for valida-
tion. Additionally, we used 3993 individuals (‘set b’)
for testing. As in Cao et al. (2018), we focused on
modelling the measurements of 35 di↵erent attributes
(such as glucose level, blood pressure, body temper-
ature, etc.), approx. 80% of which are missing in the
data. We also made use of 7 patient-specific general
auxiliary covariates that were made available as a part
of the challenge, i.e. patient identifier (id), type of ICU
unit (ICUtype), height, weight, age, sex, in-hospital
death (mortality) as well as measurement hour (time),
some of which were also missing for some patients. We
constructed an additional covariate (time to mortality
or mortalityTime) based on the provided survival time
(see Suppl. Sec. 6 for data pre-processing). For model
training, data for all patients (P = 3997) is available
hourly (np = 48), so N = 191856. We trained our L-
VAE model using the training samples and used it to
build a Bayes classifier aimed at predicting the patient
mortality for test data. Since the test data lacks infor-
mation on mortality and mortalityTime covariates, for
each patient in the test set, characterised by a pair of
48 hour attributes time-series Y⇤ and incomplete aux-
iliary information X⇤, we approximated the marginal
log-likelihoods from eq. (4) of the two alternative hy-
potheses: Li = L(�,  , ✓; Y⇤, X⇤, mortality = i) for
i = {0, 1}. Then the predicted mortality probability
was computed as P1 = exp(L1)/(exp(L0) + exp(L1)).
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The Physionet 2012 experiment

▶ Predict in-hospital mortality of ICU patients

▶ Train: P = 3997 individuals (N = 191856)

▶ Test: P = 3993 individuals

▶ D = 35 features: glucose level, blood pressure,
temperature, ...

▶ Q = 9 covariates: id, time, ICUtype, height,
weight, age, sex, mortality, mortalityTime

▶ Model-based prediction for mortality

P1 =
exp(L1)

exp(L0) + exp(L1)
,

where Li = L(ϕ, ψ, θ;Y∗,X∗,mortality = i) for
i = {0, 1}

Ramchandran, Tikhonov, Kujanpää, Koskinen, Lähdesmäki

Figure 4: Test set AUROC scores for the patient
mortality prediction task for the Physionet Challenge
2012 dataset. The number of latent dimensions is 32.
Higher score is better. The error bars represent the
minimum and maximum values after 10 repetitions.

We provide a detailed explanation of the Bayes classi-
fier and mortality probability P1 in Suppl. Sec. 6.

To demonstrate the e�cacy of our method, we com-
pared the AUROC scores for predicting mortality of
the test data instances obtained using our method with
those obtained from GP-VAE, a standard VAE, HI-
VAE (Nazábal et al., 2020), BRITS and GRUI-GAN.
These methods either do not use any auxiliary infor-
mation (HI-VAE and VAE) or use only the time covari-
ate (GP-VAE, BRITS, and GRUI-GAN). The mortal-
ity classification procedure of these methods first im-
putes the missing values with the generative model,
and then exploits the imputed values as covariates to
train a logistic regression that is finally used for mor-
tality prediction (Fortuin et al., 2020). Fig. 4 shows
that our L-VAE approach achieves higher AUROC
scores. The performance with other additive GP co-
variance functions can be seen in Suppl. Fig. 5.

4 Discussion

In this paper, we introduced a novel deep generative
model, L-VAE, that incorporates auxiliary covariate
information to model the structured latent space dy-
namics for longitudinal datasets with missing values.
We also introduced a novel computationally e�cient
inference strategy that exploits the structure of the
additive GP covariance functions resulting in a novel
lower bound. Moreover, the derived bound is theoreti-
cally guaranteed to be tighter than the free-form vari-
ational bound of Titsias (2009). We further developed
this bound to allow mini-batch SGD training for com-

putational e�ciency. We demonstrated the e�cacy of
our method on synthetic as well as real-world datasets
by showing that L-VAE achieves better out-of-sample
prediction performance and missing value imputation
than competing methods. Given the flexibility of our
model and the state-of-the-art results, we expect L-
VAE to become a useful tool for high-dimensional lon-
gitudinal data analysis.
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Randomized clinical trial (RCT) analysis

▶ Predict appearance of adverse effects (AE) in
RCTs (colon cancer treatment)

▶ P = 480 subjects (N = 6605)

▶ D = 30 features: lab measurements and vitals

▶ Q = 24 covariates: demographics, adverse
effects, medication

▶ Model-based prediction for adverse effects

P1 =
exp(L1)

exp(L0) + exp(L1)
,

where Li = L(ϕ, ψ, θ;Y∗,X∗,AE = i) for
i = {0, 1}

Adverse effect (AE) AUC
Skin appendage conditions 0.970
General system disorders nec 0.945
Gastrointestinal signs and symp. 0.900
Gastrointestinal mot. & def.cond. 0.871
White blood cell disorders 0.901
Oral soft tissue conditions 0.966
Neurological disorders nec 0.908
Respiratory disorders nec 0.978
Appetite and GND 0.915
Infections - pathogen unspec. 0.873
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Deep latent variable models:
Longitudinal, missing and multi-modal data
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Learning conditional VAEs with missing covariates

Many real-world datasets contain missing
values

▶ Missingness in features y

▶ Missingness in covariates x

Goal: learn conditional VAE models
from partially observed datasets that
contain missing values also in the

auxiliary covariates x

For each data sample (x, y) any subset of the
covariates x and observed variables y
may be missing completely at random (MCAR)

x = (xo , xu) y = (yo , yu)

X = (X o ,X u) Y = (Y o ,Y u)
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The model

Augment the generative model with a prior
distribution for x, pλ(x)

pω(y, z, x) = pψ(y | z)pθ(z | x)pλ(x)

Covariates x contain both discrete and
continuous variables

▶ Amortised variational approximation for xu

▶ Maximize the ELBO while simultaneously
marginalising uncertainty associated with
the missing covariates

The ELBO with missing covariate

log pω(Y
o|X o) ≥ L(ϕ, ψ, θ, λ;Y o,X o)

≜ Eq[log pψ(Y
o|Z )]

−KL[qϕ(Z ,X
u|Y o,X o)||pθ,λ(Z ,Xu|X o)]︸ ︷︷ ︸

DKL

where

DKL = Eq [KL[qϕ(Z |Y o,X o)||pθ(Z |Xu,X o)]]

+KL[qϕ(X
u|X o)||pλ(Xu)]

Mini-batch compatible scalable computation
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VAE model overview

I

Model Overview
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Time-series MNIST dataset

Manipulated digits from the MNIST
dataset

▶ digit rotation

▶ shift along diagonal

▶ image intensity

▶ [time]

Figure 4: Visualisation of the modified digits Y .

the adverse events and concomitant medications were known. We then transformed this data into a longitudinal format
grouped by the unique patient IDs. The longitudinal samples Y comprised of vital signs and laboratory measurements and
the auxiliary covariates X comprised of demographic information, adverse events, and concomitant medications.

Figure 5: Histogram comparing the fraction of observed measurements for each measurement attribute in Y .

We then computed the number of observed measurements in the dataset. Fig. 5 visualises the fraction of observed measure-
ments for each attribute of Y . About 25.01% of the measurements in Y were observed. In Y , we drop the columns with
less than 10% of measurements observed. Also, we keep the samples with at least 50% of measurements observed and
remove the rest. Moreover, we remove subjects that have less than 5 samples. Finally, we perform min-max normalisation
of the measurements Y . We picked the 10 most occurring adverse events and 10 most occurring concomitant medications
to include in X . The training set comprised of 144 individuals or 979 observations, the validation set comprised of 20
individuals or 141 observations, and the test set comprised of 20 individuals or 167 observations. We experimented with
different amounts of missing values (5%, 10%, 20%, 30%, and 40%) artificially introduced into the auxiliary covariates of

A.3 SCALABLE MINI-BATCH COMPATIBLE KL UPPER BOUND FOR THE L-VAE MODEL
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. This is an unbiased estimate of the KL divergence upper bound

EP⇠S{1,...,P}(D̂4
KL) = D4

KL � DKL(N (µ̄, W )||N (0,⌃)). This property enables us to use the mini-batching tech-
nique for a more precise approximate computation of the KL divergence term of L-VAE and its gradients, by approximately
splitting equal number of patients to each batch. For a more detailed derivation, please refer to Ramchandran et al. [2021].

B GENERATION OF THE ROTATED DIGIT DATASET

We created this dataset by taking a digit from the MNIST dataset and performing several manipulations to it. Each
manipulated digit would become a measurement/observation instance (Y ) and the corresponding values of the manipulations
would become the auxiliary covariates (X). There were three main manipulations that were performed: a rotation about the
centre of the digit, a translation (or shift) along the diagonal, and intensity of the digit (or contrast). Fig. 3 visualises the
covariates X for the temporal rotated digit dataset. Moreover, fig. 4 visualises some sample data Y that has been manipulated
using the auxiliary covariates X .

Figure 3: Visualisation of the auxiliary covariates X .

C PRE-PROCESSING OF CLINICAL TRIAL DATA

We make use of the Prostat_Sanofi_2007_79 study (https://data.projectdatasphere.org/
projectdatasphere/html/content/79). The study included a comparator arm with 371 patients and
several different measurement domains. We pre-processed the data to obtain data measurements Y and auxiliary covariate
information X . The measurement domains that we selected were laboratory measurements, demographic information, vital
signs, adverse events, and concomitant medications. Moreover, we only chose observations where the start and end date of
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NLL for test predictions

Table 2: NLL values (⇥102) for predicting Y in the test set given a partially observed X using

GP prior VAE (L-VAE) based methods on various versions of the non-temporal and temporal

rotated digits dataset. † refers to the extended encoder model q�(xu|yo, xo) together with

the full covariance prior. A lower value is better.

Method Dataset
Missing %

5% 10% 20% 30% 40%

Regression L-VAE with mean impute Dataset 1 0.72 ± 0.007 0.74 ± 0.005 1.4 ± 0.007 2.8 ± 0.01 3.6 ± 0.01

Regression L-VAE with KNN impute Dataset 1 0.62 ± 0.005 0.71 ± 0.006 1.1 ± 0.008 2.3 ± 0.008 3.1 ± 0.01

Regression L-VAE with HI-VAE impute Dataset 1 0.6 ± 0.004 0.65 ± 0.005 0.94 ± 0.007 1.9 ± 0.006 2.8 ± 0.008

Regression L-VAE with our method † Dataset 1 0.56 ± 0.003 0.59 ± 0.003 0.83 ± 0.003 1 ± 0.003 2.4 ± 0.007

Regression L-VAE with our method Dataset 1 0.58 ± 0.004 0.6 ± 0.004 0.81 ± 0.004 1.1 ± 0.004 2.3 ± 0.009

Regression L-VAE with oracle Dataset 1 0.55 ± 0.003 0.58 ± 0.002 0.74 ± 0.004 0.82 ± 0.002 1.8 ± 0.006

Regression L-VAE with mean impute Dataset 2 0.21 ± 0.02 0.25 ± 0.009 0.36 ± 0.01 0.48 ± 0.03 0.51 ± 0.02

Regression L-VAE with KNN impute Dataset 2 0.18 ± 0.02 0.22 ± 0.01 0.32 ± 0.02 0.41 ± 0.03 0.56 ± 0.03

Regression L-VAE with HI-VAE impute Dataset 2 0.16 ± 0.008 0.21 ± 0.007 0.29 ± 0.008 0.33 ± 0.007 0.45 ± 0.009

Regression L-VAE with our method † Dataset 2 0.15 ± 0.003 0.21 ± 0.003 0.24 ± 0.003 0.3 ± 0.03 0.38 ± 0.006

Regression L-VAE with our method Dataset 2 0.14 ± 0.003 0.19 ± 0.002 0.26 ± 0.004 0.29 ± 0.05 0.39 ± 0.008

Regression L-VAE with oracle Dataset 2 0.12 ± 0.003 0.18 ± 0.003 0.21 ± 0.004 0.26 ± 0.006 0.36 ± 0.006

Temporal L-VAE with mean impute Dataset 3 0.19 ± 0.008 0.27 ± 0.008 0.39 ± 0.02 0.42 ± 0.01 0.56 ± 0.03

Temporal L-VAE with KNN impute Dataset 3 0.17 ± 0.005 0.25 ± 0.009 0.35 ± 0.01 0.47 ± 0.02 0.58 ± 0.03

Temporal L-VAE with HI-VAE impute Dataset 3 0.14 ± 0.004 0.21 ± 0.007 0.29 ± 0.009 0.42 ± 0.01 0.51 ± 0.03

Temporal L-VAE with our method † Dataset 3 0.12 ± 0.003 0.18 ± 0.002 0.23 ± 0.004 0.35 ± 0.02 0.46 ± 0.03

Temporal L-VAE with our method Dataset 3 0.12 ± 0.002 0.19 ± 0.003 0.25 ± 0.006 0.38 ± 0.01 0.44 ± 0.02

Temporal L-VAE with oracle Dataset 3 0.11 ± 0.001 0.16 ± 0.003 0.21 ± 0.007 0.28 ± 0.008 0.37 ± 0.01

Table 3: MSE values for covariate imputation on various versions of the rotated digits dataset.

A lower value is better.

Method Dataset
Missing %

5% 10% 20% 30% 40%

Mean impute Dataset 1 0.225 0.45 0.52 0.87 1.025

KNN impute Dataset 1 0.175 0.425 0.51 0.575 0.823

C-VAE with our method Dataset 1 0.19 ± 0.08 0.23 ± 0.05 0.3 ± 0.06 0.45 ± 0.08 0.61 ± 0.05

Regression L-VAE with our method Dataset 1 0.075 ± 0.05 0.1 ± 0.06 0.225 ± 0.05 0.28 ± 0.06 0.39 ± 0.06

Mean impute Dataset 2 0.15 0.425 0.55 0.925 1.05

KNN impute Dataset 2 0.275 0.31 0.45 0.825 0.975

C-VAE with our method Dataset 2 0.1 ± 0.01 0.275 ± 0.04 0.41 ± 0.07 0.71 ± 0.06 0.725 ± 0.06

Regression L-VAE with our method Dataset 2 0.05 ± 0.04 0.125 ± 0.04 0.26 ± 0.06 0.48 ± 0.05 0.61 ± 0.04

Mean impute Dataset 3 0.75 0.77 0.95 0.97 1.25

KNN impute Dataset 3 0.71 0.74 1.025 1.012 1.35

Temporal L-VAE with our method Dataset 3 0.21 ± 0.02 0.22 ± 0.04 0.29 ± 0.06 0.35 ± 0.04 0.68 ± 0.06

observed and contains no missing values (the oracle model). Table 1 shows the

results of the models in terms of negative log likelihood (NLL) for predicting

Y of the test set given a partially observed X of the test set. It can be seen360

that relative to the vanilla CVAE and other standard baselines (mean and k-NN

imputation) the performance of CVAE improves by making use of our proposed

marginalisation method.
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MSE in test set covariate imputation
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the full covariance prior. A lower value is better.
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Randomized clinical trial (RCT) analysis

Longitudinal data from a RCT (prostate cancer
treatment) observed over a period of ∼2 years

▶ 184 patients, 1287 data samples

▶ D = 28 lab measurements as well as vital
signs (Y )

▶ Q = 23 patient-specific auxiliary covariates
(X )

Evaluate NLL for test set predictions

data in X and Y of the training, test, and validation set.

We compare a vanilla CVAE in which xu and yu are re-
placed by 0 and a CVAE in which the missing values are
marginalised using our method. Moreover, we also compare
the performance of using a CVAE in which the missing val-
ues in x are imputed using mean imputation and k-Nearest
Neighbours (k-NN) imputation. As a baseline, we also in-
clude the scenario in which x is fully observed and contains
no missing values (the oracle model). Table 1 shows the res-
ults of the models in terms of negative log likelihood (NLL)
for predicting Y of the test set given a partially observed X
of the test set. It can be seen that the performance of CVAE
improves by making use of our proposed marginalisation
method. Moreover, our method’s performance is generally
close to that of the oracle method (CVAE with oracle) that
makes use of fully observed covariates.

4.2 EXPERIMENTS WITH GP PRIOR VAES

We demonstrate the improvement afforded by our method
to GP prior VAEs using the L-VAE model. We compare the
performance of L-VAE enhanced with our method, with the
original L-VAE where the missing values in x are imputed
using mean imputation and k-Nearest Neighbours (k-NN)
imputation. We also compare our method to the baseline
scenario in which x is fully observed (the oracle model). We
compare the performance of the models in terms of negative
log likelihood (NLL) for predicting Y of the test set given
a partially observed X of the test set in table 2. The exper-
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The MSE values of the imputed auxiliary covariates X of
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We experimented with different amounts of missing values
(5%, 10%, 20%, 30%, and 40%) artificially introduced com-
pletely at random into the auxiliary covariates of the training
set, validation set, and test set. We measured the model’s
ability to generate the test data given just the partially ob-
served auxiliary covariates of the test set. Our method es-
timates the missing auxiliary covariates using the proposed
amortised variational inference and then generates the data
Y of the test set by building upon L-VAE. Fig. 2 compares
the NLL obtained by L-VAE enhanced with our method,
with other methods for auxiliary covariate imputation. The
auxiliary covariates in L-VAE with oracle are fully-observed
and hence, demonstrates the lowest possible NLL. The lower
NLL obtained by using our method with L-VAE shows that
we are able to achieve better prediction performance even
for longitudinal datasets. The MSE of the imputed auxiliary
covariates X of the test set can be seen in Suppl. table 10.

5 DISCUSSION

In this paper, we introduced a novel method to improve the
performance of conditional VAEs on datasets in which the
auxiliary covariates are partially observed. We achieve this
by assigning a prior distribution for the missing covariates
and estimating their posterior distribution using amortised
variational inference. The method that we proposed is ap-
plicable to a variety of conditional VAE models, including
but not limited to, CVAEs and GP prior VAEs. Further-
more, we derive computationally efficient evidence lower
bounds that make use of mini-batching for CVAE and GP
prior based methods. The efficacy of our proposed method
was demonstrated on synthetic toy datasets as well as a
real-world clinical trial dataset. Our experiments focused
on the benefits of simultaneously estimating the missing
auxiliary covariates along with the missing observations in
conditional VAE models. Given the wide applicability of
this work, we believe that our method would be important
in the development of conditional VAE models.
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Randomized clinical trial (RCT) analysis

Longitudinal data from a RCT (prostate cancer
treatment) observed over a period of ∼2 years

▶ 184 patients, 1287 data samples

▶ D = 28 lab measurements as well as vital
signs (Y )

▶ Q = 23 patient-specific auxiliary covariates
(X )

Evaluate NLL for test set predictions

data in X and Y of the training, test, and validation set.
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A Parkinson’s Progression Markers Initiative Dataset (Marek et al., 2011)

Longitudinal data from a observational studies

▶ Approx. 5 year follow-up study

▶ 545 patients: 371 PD, 174 healthy

▶ Total 3135 measurements

▶ D = 42 features in Y : cognitive tests,
DaTSCAN, cerebrospinal fluid results,
bio-specimen, etc. with ∼ 4.8% missing
values

▶ Q = 7 auxiliary covariates (X ) with
missingness between 2% and 32%

Evaluate NLL for test set predictions
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Deep latent variable models:
Longitudinal, missing and multi-modal data
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Biomedical data sets are often multi-modal

I

A sub-type of time-series data obtained 
from multiple, repeatedly measured 
subjects. 

May have correlations among the 
observations within a subject and 
across multiple subjects. 

Typically has a high number of subjects 
and low number of measurements per 
subject.

siddharth.ramchandran@aalto.fi 

What is longitudinal data?
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L-VAE model for multi-modal / heterogeneous data (HL-VAE)

We utilize ideas from (Nazabel et al., 2020) for
modeling heterogeneous data

Heterogeneous decoder

zn
g

an1 an2 anD

h1 h2 hD

anD

γn1 γn2 γnD

yn1 yn2 ynD. . .

. . .

. . .

Figure 3: Decoder

Generative Model:

p(yn, zn) = p(zn)
∏

d

p(ynd|γnd)

= p(zn)
∏

d∈On

p (ynd | zn)
∏

d∈Mn

p (ynd | zn)

γnd = hd(and) An = [an1, ..., anD] = g(zn)
An: Homogeneous Layer for input n
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A Parkinson’s Progression Markers Initiative Dataset (Marek et al., 2011)

▶ Approx. 5 year follow-up study

▶ 545 patients: 371 PD, 174 healthy

▶ Total 3135 measurements

▶ D = 80 dimensional measurements (Y )

▶ Q = 7 auxiliary covariates (X )

Configuration
Gaussian Distribution 8
LogNormal Distribution 12

Poisson Distr. 12

Ordinal 12
Categorical 36

predictive log-likeliHood and error for test set

Normal
Dataset L-VAE ↓ HL-VAE ↓
Future Prediction
10% Missing 3.01 ± 0.36 3.25 ± 0.11
20% Missing 2.90 ± 0.24 3.13 ± 0.13
30% Missing 3.42 ± 0.69 2.99 ± 0.03
40% Missing 4.80 ± 0.98 3.15 ± 0.05
50% Missing 6.26 ± 0.57 3.18 ± 0.09
Test Prediction
10% Missing 3.44 ± 0.79 3.21 ± 0.14
20% Missing 3.22 ± 0.49 3.06 ± 0.04
30% Missing 3.59 ± 0.89 3.40 ± 0.03
40% Missing 4.91 ± 1.11 3.10 ± 0.05
50% Missing 6.24 ± 0.76 3.29 ± 0.10

(a) NLL

Non Categorical
Dataset L-VAE ↓ HL-VAE ↓
Future Prediction
10% Missing 0.099 ± 0.003 0.086 ± 0.002
20% Missing 0.097 ± 0.001 0.086 ± 0.003
30% Missing 0.1 ± 0.001 0.091 ± 0.002
40% Missing 0.102 ± 0.001 0.088 ± 0.004
50% Missing 0.105 ± 0.002 0.094 ± 0.002
Test Prediction
10% Missing 0.093 ± 0.004 0.079 ± 0.003
20% Missing 0.091 ± 0.002 0.080 ± 0.003
30% Missing 0.094 ± 0.002 0.087 ± 0.003
40% Missing 0.095 ± 0.001 0.085 ± 0.001
50% Missing 0.099 ± 0.001 0.091 ± 0.003

(b) NRMSE

Table 1: Comparison in terms of predictive (a) NLL and (b) NRMSE for missing time point prediction and
predicting missing values in PPMI test splits for L-VAE and HL-VAE (lower is better).
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