

The Kaggle EUOS/SLAS Solubility Challenge: Visualizing and Understanding The Data Helps in Modelling

Bernhard Rohde

AIDD School, Helsinki, March 23, 2023

Overview

- Who am I?
- The EUOS/SLAS Solubility Challenge
- Instance Based Offset Learning
- Application of IBOL to Kaggle Challenge
- Analyzing Dataset
- Competition Entry: Prior-Only IBOL
- Post-Deadline Results
- Lessons Learned

Who am I?

- Diploma thesis on simulating EPR spectra in frozen Argon (1981, G. Maier/Gießen/DE, 'The allyl radical is flat')
- PhD on canonicalizing and searching of chemical structure representations (1982-87, A.S. Dreiding/Zürich/CH)
- Working for Ciba-Geigy => Ciba => Novartis (4/1987 to 2/2021), now part-time consultant
- Projects:
 - Computer Assisted Synthesis Planning (CASP, '87-'91, Poor Man's Synthesis Planning)
 - Structure Registration (CESAR/MACCS, CERES/ISIS, WITCH/Custom, SMR/Custom, CICLOPS/Custom Combichem)
 - Med Chem Databases (Delphi/Custom, WinMerlin/Daylight, Avalon/Oracle+Custom Cartridge, CDF-DART/Oracle+ChemAxon Cartridge)
- Open-Source Tools:
 - Avalon Toolkit
 - STRUCHK ('88): Structure checking, and standardization
 - Depicter: Used for WinMerlin, Avalon, DART, Web Service
 - Avalon Tools in RDKit: Fingerprinting, Canonicalization
- Research Interests:
 - Mostly Bayesian Methods, but trying to recycle/re-apply the above skills
 - Bayesian Optimization of chemical structures for docking (with Morgan Thomas)
 - Probabilistic Lead Optimization Flowchart (multi-objective BO, retrospective)

Figure 1 in Analytical Chemistry, Vol. 81, No. 8, April 15, 2009 shows turbidity signal for different concentrations of single compound.

DMSO-Controls – Phenytoin: high (2)

Phenytoin – Amiodarone: medium (1)

Amiodarone - oo: low (0)

Acoustic dispenser: Echo550 https://www.selectscience.net/SelectScience-

TV/Videos/echo-liquid-handling-systems-demonstration/?videoID=149

DMSO-Controls – Phenytoin: high (2)

Phenytoin – Amiodarone: medium (1)

Amiodarone - oo: low (0)

Acoustic dispenser: Echo550 https://www.selectscience.net/SelectScience-TV/Videos/echo-liquid-handling-systems-demonstration/?videoID=149

- "Simple" yard-stick model for realistic medicinal chemistry data
 - Unbalanced, lots of inactive compounds
 Censored data e. g. '> 10 μM', measurements with error
 - "Switch to classification" is wrong reflex
 - Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e. g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
 Model likelihood for selection of regressors and fingerprint generators
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators

- "Simple" yard-stick model for realistic medicinal chemistry data
 - Unbalanced, lots of inactive compounds
 Censored data e. g. '> 10 μM', measurements with error
 - "Switch to classification" is wrong reflex for censored data
 - Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e.g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators

$$\mathfrak{D} = \{d_i = (q_i, \mu_i, \sigma_i)\}_{i=1..N}$$

$$\mathfrak{N}_K(s|\mathfrak{D}) = K \text{ nearest neighbors to } s \text{ from } \mathfrak{D}$$

$$P(y|s, \mathfrak{D}) = \sum_{\mathfrak{n} \subseteq \mathfrak{N}_K(s|\mathfrak{D})} \pi(\mathfrak{n}|s) P(y|\mathfrak{n})$$

$$\pi(\mathfrak{n}|s) = \prod_{n \in \mathfrak{n}} \rho(sim(s, s_n)) \prod_{n \in \mathfrak{N}_K(s|\mathfrak{D}) \setminus \mathfrak{n}} (1 - \rho(sim(s, s_n)))$$

$$P_{KL}(y|s) = N(y; \mu, \sigma)$$

$$\mu = \mathbb{E}_{P(y|s,\mathfrak{D})}(X)$$

$$\sigma = \sqrt{\mathbb{E}_{P(y|s,\mathfrak{D})}(X^2) - \mu^2}$$

- "Simple" yard-stick model for realistic medicinal chemistry data
 Unbalanced late of inactive compounds
 - Unbalanced, lots of inactive compounds
 Censored data e. g. '> 10 μM', measurements with error
 - "Switch to classification" is wrong reflex for censored data
 - Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e.g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators

$$P(y|\mathfrak{n}) = |\mathfrak{n}|^{-1} \sum_{n \in \mathfrak{n}} N(y; \mu'_n, \sigma_n) \quad \text{if } \mathfrak{n} \neq \emptyset$$
$$= N(y; \mu'_p, \sigma_p) \quad \text{if } \mathfrak{n} = \emptyset$$

or

$$P(y|\mathbf{n}) = N(y; \mu_c, \sigma_c)$$

$$\frac{1}{\sigma_c^2} = \frac{1}{\sigma_p^2} + \sum_{n \in \mathbf{n}} \frac{1}{\sigma_p^2}$$

$$\mu_c = \sigma_c^2 \left(\frac{\mu_p'}{\sigma_p^2} + \sum_{n \in \mathbf{n}} \frac{\mu_n'}{\sigma_n^2}\right)$$

"Simple" yard-stick model for realistic medicinal chemistry data

- Unbalanced, lots of inactive compounds
- Censored data e. g. '> 10 μ M', measurements with error "Switch to classification" is wrong reflex for censored data
- Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e. g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators

$$\mu'_n = \mu_n + (\mathbf{x}(s) - \mathbf{x}_n) \cdot \mathbf{f}$$

$$\mu'_p = \mu_p + (\mathbf{x}(s) - \bar{\mathbf{x}}) \cdot \mathbf{f}_p$$

"Simple" yard-stick model for realistic medicinal chemistry data

- Unbalanced, lots of inactive compounds
- Censored data e. g. '> 10 $\mu M'$, measurements with error "Switch to classification" is wrong reflex for censored data
- Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e. g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators

$$P(M|f_{\rho}, f, g) = \frac{1 - \lambda_{f_{\rho}}}{1 - \lambda_{f_{\rho}}^{N_{f}}} \lambda_{f_{\rho}}^{M_{f_{\rho}}} {\binom{M_{f_{\rho}}}{N_{f}}}^{-1} \times \frac{1 - \lambda_{f}}{1 - \lambda_{f}^{N_{f}}} \lambda_{f}^{M_{f}} {\binom{M_{f}}{N_{f}}}^{-1} \times \frac{1 - \lambda_{g}}{1 - \lambda_{g}^{N_{f}}} \lambda_{g}^{M_{g}} {\binom{M_{g}}{N_{g}}}^{-1}$$

- "Simple" yard-stick model for realistic medicinal chemistry data
 - Unbalanced, lots of inactive compounds
 - Censored data e. g. '> 10 μM', measurements with error • "Switch to classification" is wrong reflex for censored data
 - Provides error estimates to map applicability domain
- K-Nearest Neighbor Regression on Bayesian Steroids
- Relevance Kernel ρ(sim(s,s_n))
- Powerset mixture model with KL-optimal Gaussian prediction
- Neighbor-derived mixture components can be combined in various ways, e.g. as even mixtures or consensus of experts.
- Regression Model of Prior Mean
- Regression Model of Neighbor Offsets
- (Initially) finite difference gradients for Maximum Likelihood optimization
- Model likelihood for selection of regressors and fingerprint generators
- Data likelihood using uncertain and censored data points
- Bayesian Information Criterion to regularize parameter optimization
- Greedily optimize BIC by adding and removing parameters and FP generators $BIC = M_f ln(|\mathfrak{D}|) 2ln(\hat{L}(\mathfrak{D})) 2ln(P(M|f_p, f, g))$

 $\mathfrak{D}_n = \{(q_i, \mu_i, \sigma_i) \in \mathfrak{D} | i < n\}$

$$\begin{split} (\mathfrak{D}) &= \prod_{d_n \mid q_n = i' < i'} \int_{-\infty}^{i'n} P_{KL}(y \mid s, \mathfrak{D}_n) dy \times \prod_{d_n \mid q_n = i' > i'} \int_{\mu_i}^{\infty} P_{KL}(y \mid s, \mathfrak{D}_n) dy \times \\ &\prod_{d_n \mid q_n = i' = i'} \int_{-\infty}^{\infty} N(y' - y; \mu_n, \sigma_n) P_{KL}(y \mid s, \mathfrak{D}_n) dy \end{split}$$

$$\hat{L}(\mathfrak{D}) = \max_{\mu_{\rho},\sigma_{\rho},f_{\rho},f} L(\mathfrak{D})$$

L

Application of IBOL to Kaggle Challenge Structure Preprocessing

RDKit

- Canonical representation of functional groups and salts
- Isolation of main fragment (assuming counter ions don't affect kinetic solubility in buffer)
- Assign FG categories (Acids, Amines, Aromatics, Quaternary Ammonium)
- Compute Cheminformatics descriptors (clogp, cmr, tpsa, nrb, maxpc, minpc, diameter, radius)
- Avalon fingerprint calculation
- Precompute near neighbor lists

Application of IBOL to Kaggle Challenge Naïve First Try

• Approach for challenge:

- Extend censored data use to include ranges
- Use log of class read-out limits as range boundaries
- Use full fingerprints for similarity
- Try CLOGP, CMR, and fCSP3 as single regressors
- Use 20'000 training rows (for speed reasons)
- Choose most likely predicted solubility class

Application of IBOL to Kaggle Challenge Naïve First Try

• Approach for challenge:

- Extend censored data use to include ranges
- Use log of class read-out limits as range boundaries
- Use full fingerprints for similarity
- Try CLOGP, CMR, and fCSP3 as single regressors
- Use 20'000 training rows (for speed reasons)
- Choose most likely predicted solubility class
- Result: κ = 0.004 🙁
 - Only classes 1 and 2 were populated => kappa optimization
 - There was supplier information on the compounds available to correct for supplier bias (https://www.eu-openscreen.eu/services/compound-collection.html)

=> κ = 0.08561

Competition was much better but not spectacular
 => analyze dataset and improve approach

https://www.tocris.com/products/oxotremorine-m_1067 Solubility > 100 mM https://cdn.caymanchem.com/cdn/insert/23609.pdf ~22 mM

Column Offsets

https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html

Post Deadline Results

• Dependence on Regression Components

- Using CLOGP or CMR yield private score < 0.04
- The submission entry (private score 0.2189) can be improved by adding CMR and FCSP3 as regressor

Model Components	MAP Score	Kappa Train	Lower Limit	Upper Limit	Public Score	Private Score
CLOGP	21277.22	0.04334	0.93043	0.93246	0.04192	0.02923
CMR	21258.17	0.04985	0.92308	0.92713	0.06399	0.03822
Plate	19608.21	0.21072	0.86857	0.87046	0.19448	0.19768
Plate, Row, Column	19475.75	0.22713	0.85684	0.86396	0.19252	0.21781
Plate, Row, Column, CLOGP	19441.63	0.23196	0.847	0.86459	0.19565	0.2189
Plate, Row, Column, CMR	19401.01	0.23478	0.85036	0.86205	0.20293	0.21502
Plate, Row, Column, CLOGP, CMR	19391.69	0.2376	0.84755	0.85799	0.20307	0.22241
Plate, Row, Column, CLOGP, CMR, FCSP3	19385.27	0.23704	0.84047	0.86171	0.20715	0.22434
rs						

- Just optimizing plate offsets yields most of the modeling power.
- Lower Limit and Upper Limit are probability cutoffs optimized for κ on the training data.

Post Deadline Results

Dependence on Regression Components

- Using CLOGP or CMR yield private score < 0.03
- The submission entry (private score 0.2189) car be improved by adding CMR and FCSP3 as regres

	CLOGP	21277.22	0.04334	0.93043	0.93246	0.04192	0.02923
	CMR	21258.17	0.04985	0.92308	0.92713	0.04192	0.02923
	Plate	19608.21	0.21072	0.86857	0.87046	0.19448	0.19768
	Plate, Row, Column	19475.75	0.22713	0.85684	0.86396	0.19252	0.21781
	Plate, Row, Column, CLOGP	19441.63	0.23196	0.847	0.86459	0.19565	0.2189
n	Plate, Row, Column, CMR	19401.01	0.23478	0.85036	0.86205	0.20293	0.21502
	Plate, Row, Column, CLOGP, CMR	19391.69	0.2376	0.84755	0.85799	0.20307	0.22241
	Plate, Row, Column, CLOGP, CMR, FCSP3	19385.27	0.23704	0.84047	0.86171	0.20715	0.22434
isors							

MAP Score Kappa Train Lower Limit Upper Limit Public Score Private Score

- Just optimizing plate offsets yields most of the modeling power.
- Lower Limit and Upper Limit are probability cutoffs optimized for κ on the training data.

Post Deadline Results

• Dependence on Regression Components

- Using CLOGP or CMR yield private score < 0.03
- The submission entry (private score 0.2189) can be improved by adding CMR and FCSP3 as regressors

Wodel Components	WAP Score	kappa Train	Lower Limit	Upper Limit	Public Score	Private Score	
CLOGP	21277.22	0.04334	0.93043	0.93246	0.04192	0.02923	
CMR	21258.17	0.04985	0.92308	0.92713	0.04192	0.02923	
Plate	19608.21	0.21072	0.86857	0.87046	0.19448	0.19768	
Plate, Row, Column	19475.75	0.22713	0.85684	0.86396	0.19252	0.21781	
Plate, Row, Column, CLOGP	19441.63	0.23196	0.847	0.86459	0.19565	0.2189	
Plate, Row, Column, CMR	19401.01	0.23478	0.85036	0.86205	0.20293	0.21502	
Plate, Row, Column, CLOGP, CMR	19391.69	0.2376	0.84755	0.85799	0.20307	0.22241	
Plate, Row, Column, CLOGP, CMR, FCSP3	19385.27	0.23704	0.84047	0.86171	0.20715	0.22434	

- Just optimizing plate offsets yields most of the modeling power.
- Lower Limit and Upper Limit are probability cutoffs optimized for κ on the training data.

Lessons Learned

- Do not throw your favorite ML model at an arbitrary dataset and expect it to work.
- · Having a competitor much ahead of you makes you think.
- Non-random draws from the structure universe can confuse modelling.
- Compare what you know about the problem with the data to spot (detrimental/exploitable) peculiarities. Visualization is key.
- As with many puzzles, there is more information than you think in the problem description.
- Finding the major sources of variance can give you a lot of mileage even if it does not help understanding the scientific problem.
- Probabilistic models can be used to predict uneven classification. The additional uncertainty model can even help in making decisions.
- Automatic differentiation is the key to learning (and "a retired dog can learn new tricks").

Acknowledgements

- Challenge Organizers
 - Challenging dataset with lots to learning from
- Competitors
 - Interesting discussions
 - Providing the carrot for staying focused
- Morgan Thomas
 - Docking my IBOL-selected compounds for Bayesian Optimization
 - Discussing my odd intermediate results
- Igor Tetko
 - Invitation to give this presentation
- My wife
 - Living with a retiree who is busier than before retirement