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Combinatorial therapies in complex
diseases
• Combinatorial treatments involving two or more drugs have 

become a standard of care for various complex diseases
(tuberculosis, malaria, HIV, cancer)

• Their benefits include enhanced treatment efficacy, avoidance of 
drug resistance and fewer side-effects

• Promising drug combinations are typically search for by High-
Throughput-Screening (HTS) in preclinical model systems
(cancer cell lines, viral infection models)



Dose-response and synergy of drug
combinations
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https://synergyfinder.fimm.fi/synergy/synfin_docs/

Ianevski, A., Giri, A.K. and Aittokallio, T., 2020. SynergyFinder
2.0: visual analytics of multi-drug combination synergies. Nucleic
Acids Research.

• The quantities of interest are the dose-response behavior and the 
synergy of the drug combination – how much more effective the 
combination is compared to drugs acting alone



Tackling the combinatorial explosion 
with machine learning
• The main challenge in finding promising drug combinations is the 

exponential size (in # combined drugs) of the search space
• To efficiently explore this space, we need prioritization of which

drug combinations will be tested
• Machine learning is seen as a key tool for focusing the HTS 

efforts to most promising drug combinations
• NCI-Almanac dataset (Holbeck et al. 2017), with over 5000 drug

pairs tested, is the first large scale public combination 
response dataset that enables accurate ML models to be
developed
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Holbeck et al., 2017. The National Cancer Institute ALMANAC: a 
comprehensive screening resource for the detection of 
anticancer drug pairs with enhanced therapeutic activity. Cancer 
research, 77(13), pp.3564-3576.



Prediction scenarios
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Scenario Title

Out of training tensor items in the test 
set

drugs cell 
line drug-drug drug-drug-

cell
NEW-ENTRY Predicting new dose-response matrix entries no no no no

NEW-MATRIX Predicting new dose-response matrices no no no yes
NEW-COMBO Predicting new drug combinations no no yes yes
NEW COMBO-
NO-MONO

Predicting new drug combinations with no 
monotherapy measurements

no no yes yes

NEW-CELL-
LINE

Predicting dose-response matrices on new cell 
lines

no yes no yes

NEW-TISSUE-
TYPE

Predicting dose-response matrices on new tissue
types

no yes no yes

NEW-DRUG Predicting dose-response matrices on combos 
with one new drug

yes no yes yes

2-NEW-DRUGs Predicting dose-response matrices on combos 
with two new drugs

yes no yes yes

• Multiple prediction scenarios of different difficulty can be
defined on drug combination response prediction

• Scenarios with out-of-tensor drugs and/or cell lines are 
generally the harder ones



Predicting multi-way
interactions
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Multi-way interaction problems
Consider prediction problems where the predicted target
variable dependes on simultaneous interaction of m objects
- Pairwise cases (m=2):

- Movie recommendation: f(user,movie) – predict if user will like a 
movies

- Binding affinity between molecules (f(drug,target), 
f(protein,DNA), etc.)

- Higher order interactions (m > 2): 
- Genotype-phenotype interactions: m SNPs needed to explain a 

phenotype
- Drug combination responses (this talk): 2 drugs x 2 doses x target

= 5th order interaction



A first attempt of a predictive model
• Suppose we have large amounts of data on drugs and their 

responses on cancer cells
• Consider an additive model predicting the response of a 

cancer cell (c) to a drug (d):
F(d,c) = FDrug(d) + Fcell(c)

• Fdrug scores a drugs potency to kill cancer cells
• Fcell scores the cancer cells suceptibility to be killed by a 

drug
• Q: Would this model give a good basis for finding new 

drugs?
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The need for non-linearity

• An additive model can only recognize drugs that are 
effective regardless of the properties of the cancer cell 
F(d,c) = FDrug(d) + Fcell(c)

• ‘snake-oil’ type cure for everything
• cannot find targeted therapies for particular type of cancer cell

• This is true even if Fdrug and Fcell are highly non-linear
• Non-linear dependencies between the interacting objects 

need to be modelled
• Example: a polynomial of degree k can model interactions of 

k objects
• i.e. minimum quadratic model is needed for pairwise prediction
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Factorization machines & 
latent tensor reconstruction
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Starting point: polynomial regression
• Consider a quadratic regression model  𝑓: 𝑅! → 𝑅

𝑓 𝑥 =&
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#
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• O(d2) parameters to estimate
• Generalize this to m’th degree polynomials
𝑓 𝑥 = ∑"𝑤"𝑥" +∑"∑#𝑤"#𝑥"𝑥# +⋯+ ∑"!,…,""𝑤"!,…,"" ⋅ 𝑥"! ⋅ 𝑥"# ⋅ 𝑥"$
• O(dm) parameters to estimate!
• Two-fold challenge:

• Time complexity of estimating the model is exponential in m
• Statistical challenge: in practical scenarios typically not enough

data to estimate all parameters whenm > 2



Factorization machines
• Factorization machines (Rendle, 2010) are an approach to make

estimation of polynomial regression models from large dataset
feasible

• The polynomial regression model is replaced by a factorized form

,𝑦𝐹𝑀 𝑥 =&
"

𝑤"𝑥" +&
"%&"

0𝑝" , 3𝑝"' 𝑥"𝑥"'

• 𝑝" ∈ 𝑅# is a vector representing contributions of variable 𝑥" to 𝑘
latent factors, where typically 𝑘 ≪ 𝑑 (low-rank)

• The interaction weight 𝑤(" ≈ 0𝑝" , 3𝑝"' = ∑)*+# 𝑝") 𝑝"%) is
represented as a inner product over the factor contributions

• O(dk) parameters to estimate, compare to original O(d2)
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Rendle, S., 2010, December. Factorization machines. In 2010 IEEE 
International Conference on Data Mining (pp. 995-1000). IEEE.



Higher-order factorization machines
• Higher-order factorization machines (HOFM) (Blondel, 2016) can

represent polynomial models of arbitrary maximum degree m
!𝑦𝐻𝑂𝐹𝑀 𝑥 =)
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!"#!
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• The interaction weights are given by generalized inner products
w)"…)# ≈ ,p)"

(+), /… , p)#
(+) = ∑,-./ p)",

(+)⋯ p)#,
(+)

• O(dkm) parameters to estimate, compared to O(dm) of the full
model
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Blondel, M., Fujino, A., Ueda, N. and Ishihata, M., 2016. Higher-order
factorization machines. In Advances in Neural Information Processing
Systems (pp. 3351-3359).
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Figure right: factorization of a 3rd order
weight tensor



Learning HOFMs
• The objective function of learning HOFMs is given by
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• It is a differentiable non-convex functional; can be trained by 
stochastic gradient descent (SGD)

• The challenging part is the exponential number of terms in the 
expression for ,𝑦𝐻𝑂𝐹𝑀(𝑥)

• However by making use of the repetitive structure of the factor 
combinations, dynamic programming can be used to compute
,𝑦𝐻𝑂𝐹𝑀(𝑥) and its gradients in linear time 

• The SGD algorithm runs in time O(dkmn) per epoch
• GPU acceleration can be used for further speed-up
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Blondel, M., Fujino, A., Ueda, N. and Ishihata, M., 2016. Higher-order
factorization machines. In Advances in Neural Information Processing
Systems (pp. 3351-3359).



Latent tensor reconstruction
• Latent tensor reconstruction (LTR) is another machine learning 

method for learning multi-way interaction models
• It is motivated by higher-order SVD problem
• The LTR model is given by

• <.> is the inner product of two tensors and ⊗ is the tensor 
product

• Enjoys a similar exponential reduction in the number of 
parameters as HOFM, but is a more flexible model
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Wang, T., Szedmak, S., Wang, H., Aittokallio, T., Pahikkala, T., Cichonska, A. and Rousu, J., 2021. 
Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Learning LTR

• The LTR model can be 
estimated as a series of
rank-one problems

• Each subproblem finds a 
rank-one parameter tensor 
that best fits the residuals of 
the output

• The subproblem can be
solved by gradient
approaches (e.g. ADAM)
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Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



LTR vs HOFM
• HOFMs are limited to symmetric polynomials i.e. f(i,j) = f(j,i) while 

LTR is not → LTR is better as a general regression method
• In LTR, the input data can be fed through an activation function to 

give rise to a learnable embedding (e.g. non-linear dimensionality 
reduction):

• LTR requires more training data than HOFMs due to the more 
flexible function class

• LTR is arguably more interpretable due to the simpler functional 
form
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Experiments on drug
combination response
prediction
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Compared methods

• ComboFM (Julkunen et al., 2020):  relies on a recent machine 
learning technology called higher-order factorization machines
(HOFM) that allow capturing the multi-way interactions between
drug combinations and their targets

• ComboLTR (Wang et al. Bioinformatics, 2021): a latent tensor
reconstruction method, which removes some limitations of
HOFMs

• Random forest regressor (RF). Strong baseline e.g. winner of 
the AstraZeneca-Sanger DREAM Challenge.
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Julkunen, H., Cichonska, A., Gautam, P., Szedmak, S., Douat, J., Pahikkala, T., Aittokallio, T. and Rousu, J., 2020. 
Leveraging multi-way interactions for systematic prediction of pre-clinical drug combination effects. Nature communications, 11(1), pp.1-11.

Wang, T., Szedmak, S., Wang, H., Aittokallio, T., Pahikkala, T., Cichonska, A. and Rousu, J., 2021. 
Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Dataset

https://dtp.cancer.gov/ncialmanac/

Holbeck et al., 2017. The National Cancer Institute ALMANAC: a comprehensive
screening resource for the detection of anticancer drug pairs with enhanced
therapeutic activity. Cancer research, 77(13), pp.3564-3576.

• We used the NCI-ALMANAC data, large drug combinations
screening data by NCI

• We used a subset of this data where omics data for cell lines
was availables: 
• 828 324 response measurements of 5 035 drug

combinations and 
• 15 396 monotherapies in
• 19 cancer cell lines originating from 9 tissue types.

https://dtp.cancer.gov/ncialmanac/
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Data structure

a. 5-order tensor 
containing the drug 
combination 
responses

b. flattened
representation for
the learning
algorithms
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Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Prediction scenarios
• Scenario S1: Predicting new response matrix entries
• Scenario S2: Predicting new drug combination responses 

(monotherapy responses known)
• Scenario S3: Predicting new combination responses w.o.

monotherapy measurements
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Wang, T., Szedmak, S., Wang, H., Aittokallio, T., Pahikkala, T., Cichonska, A. and Rousu, J., 2021. 
Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Prediction performance



Effect of different data sources

• The predictive performance
of the models using different 
input data sources was 
studied

• In all prediction scenarios, 
the primary data (drug 
features, cell line features) 
was shown to be very small

• The response measurements
from similar drugs and cell 
lines (‘Tensor indices’) 
dominates
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Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Time and space complexity
• The time consumption of comboLTR is on par with RF,

while comboFM is significantly less time-efficient
• All three methods have similar memory-requirements
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Modeling drug combination effects via latent tensor reconstruction. Bioinformatics, 37(Supplement_1), pp.i93-i101.



Summary



Summary
• The search for new combinatorial therapies requires

prioritization due to the huge search space of drug
combinations

• Machine learning tools can be used to predict the drug
combination responses and synergies, and thus help to 
prioritize the search

• The predictive accuracy of ML models depends strongly on 
the assumed prediction scenarios 

• comboFM and comboLTR uses factorization machine 
technology to learn pairwise drug combination responses

• monotherapy responses of the drugs alone, and 
• responses of similar drug combinations in similar cell lines



Thank you for your attention!
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Tianduanyi Wang

comboFM: https://github.com/aalto-ics-kepaco/comboFM
comboLTR: https://github.com/aalto-ics-kepaco/ComboLTR

https://github.com/aalto-ics-kepaco/comboFM

