Efficient uncertainty estimation with node-based Bayesian neural networks

Trung Trinh

Structure

• Part 1: Node-based Bayesian neural networks (node-based BNNs).

• Part 2: Tackling input corruptions with node-based BNNs.

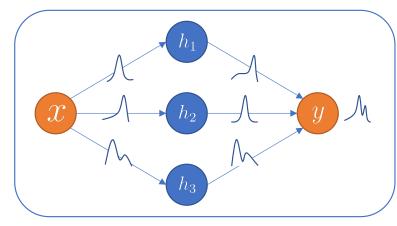
Part 1: Node-based Bayesian neural networks

Uncertainty in Deep learning

- Accurate uncertainty estimations are crucial for utilizing machine learning in real world applications.
- Neural networks are overconfident predictors
 - because they cannot represent epistemic uncertainty.
- Two main approaches to represent epistemic uncertainty:
 - Deep ensembles: combine multiple maximum-a-posteriori (MAP) solutions.
 - Bayesian neural networks: probabilistic (Bayesian) representations of epistemic uncertainty.

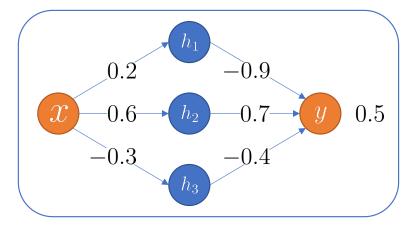
Bayesian neural networks (BNNs)

Bayesian neural network (BNN)



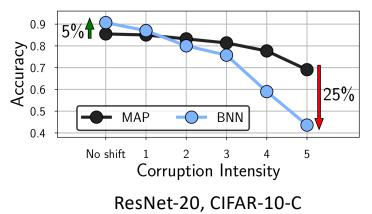
Thomas Bayes

Deterministic neural network (DNN)



BNNs are challenging in practice

- Theoretically, BNNs have better performance than DNNs because they aggregate predictions from multiple hypotheses.
- Practically, however, the results are not great.
 - High-fidelity posterior approximations of BNNs (full batch HMC) are computationally expensive to obtain due to the sizes of these models.
 - Stochastic HMC or variational inference (VI) are used for inference, which requires "sharpening" the target posterior (cold posteriors) to obtain good approximations.¹
 - Izmailov et al. (2021)² used 512 TPUv3 to perform full-batch HMC and discovered that BNNs did worse than DNNs under input corruptions



¹ Wenzel et al. (2020). How Good is the Bayes Posterior in Deep Neural Networks Really? ² Izmailov et al. (2021). What are Bayesian neural network posteriors really like?

Alternatives to weight-based BNNs

- Function-space inference. (Wang et al, 2019; Sun et al, 2019; D'Angelo et al, 2021)
- Architecture-space inference.
 - Depth uncertainty NNs (Antorán et al, 2020).
- Activation-space inference (node-based BNNs):
 - Dropout. (Gal et al, 2016)
 - Rank-1 BNNs. (Dusenberry et al, 2020; Trinh et al, 2022)

¹ Wang et al. (2019). Function space particle optimization for Bayesian neural networks.

² Sun et al. (2019). Functional variational Bayesian neural networks.

³ D'Angelo et al. (2021). Repulsive Deep Ensembles are Bayesian.

⁴ Antorán et al. (2020). Depth Uncertainty in Neural Networks.

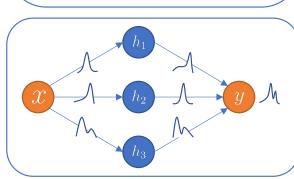
⁵ Gal et al. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning

⁶ Dusenberry et al. (2020). Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors.

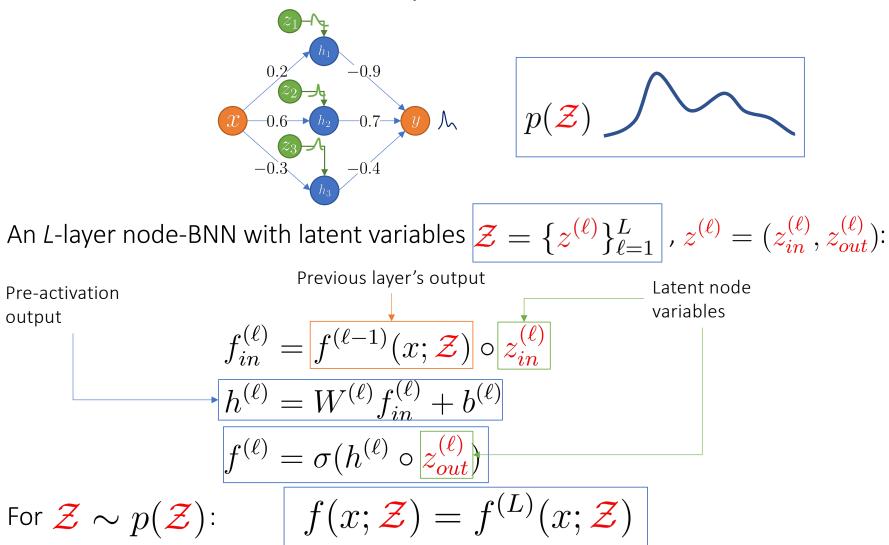
⁷ Trinh et al. (2022). Tackling covariate shift with node-based Bayesian neural networks.

Node-based Bayesian neural networks

Node-BNNs

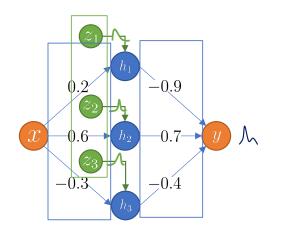


Node-based Bayesian neural networks



9

Node-based Bayesian neural networks

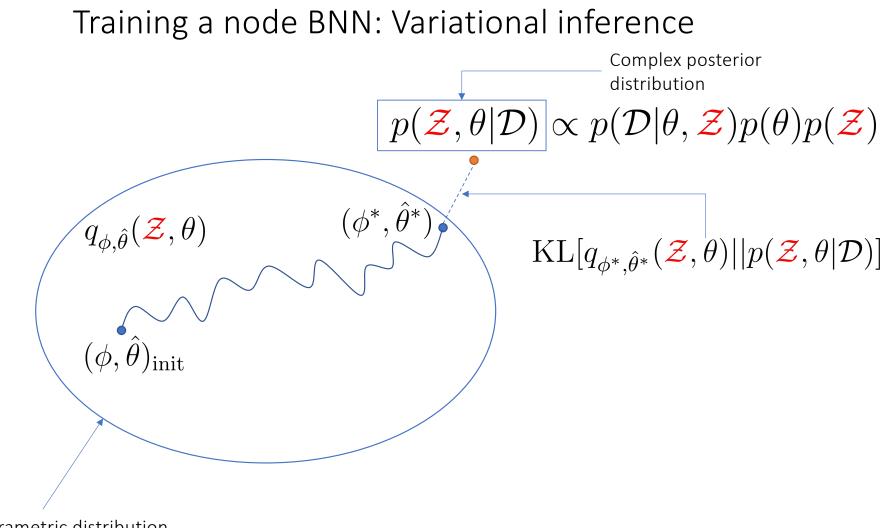


	Parameters		
Layers	weights	nodes	w/n ratio
5	42K	23	1800x
8	61M	18,307	3300x
16	15M	5,251	2900x
16	138M	36,995	3700x
50	26M	24,579	1000x
28	36M	9,475	3800x
	5 8 16 16 50	Layers weights 5 42K 8 61M 16 15M 16 138M 50 26M	$\begin{array}{c ccccc} Layers & weights & nodes \\ \hline 5 & 42K & 23 \\ 8 & 61M & 18,307 \\ 16 & 15M & 5,251 \\ 16 & 138M & 36,995 \\ 50 & 26M & 24,579 \\ \end{array}$

Two types of parameters:

1. Weights and biases
$$\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^{L}$$

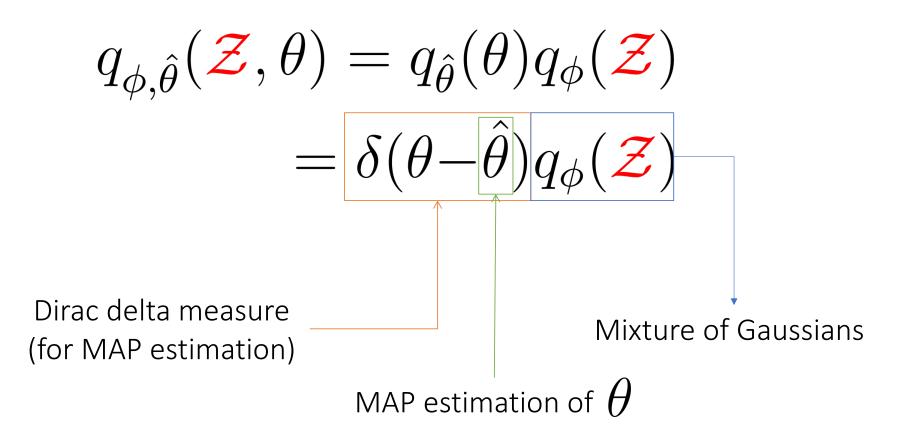
- \rightarrow Find a MAP estimate.
- 2. Latent node variables $\mathcal{Z} = \{z^{(\ell)}\}_{\ell=1}^{L}$
 - \rightarrow Infer the posterior distribution.
- → Node BNNs are efficient alternatives to standard weight-based BNNs.



Simple, parametric distribution

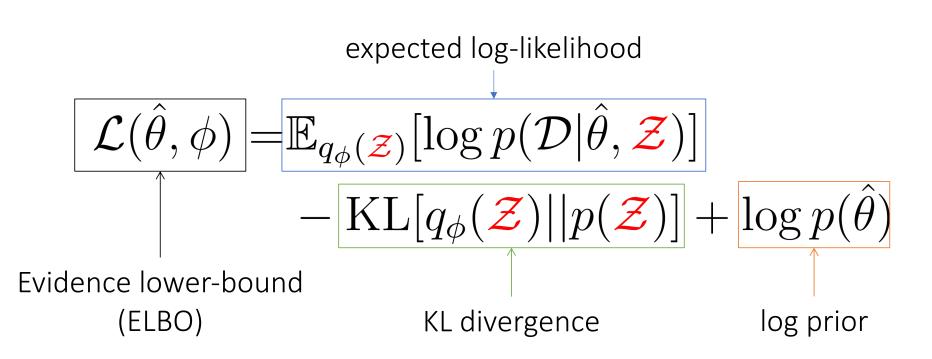
Blei et al. (2017). Variational Inference: A Review for Statisticians.

Variational posterior



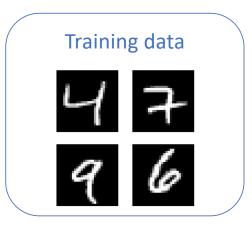
Training objective

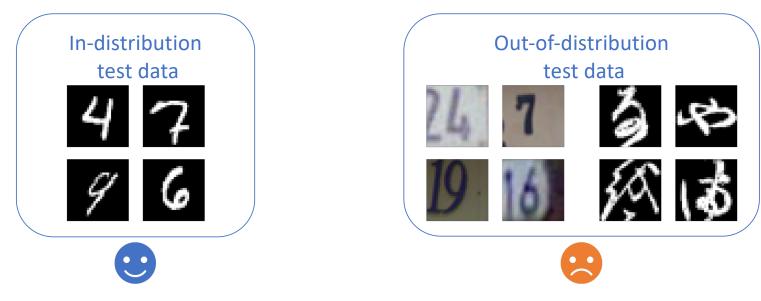
We find $(\hat{\theta}, \phi)$ maximizing the following objective using SGD:



Part 2: Tackling input corruptions with node-based BNNs

Covariate shift





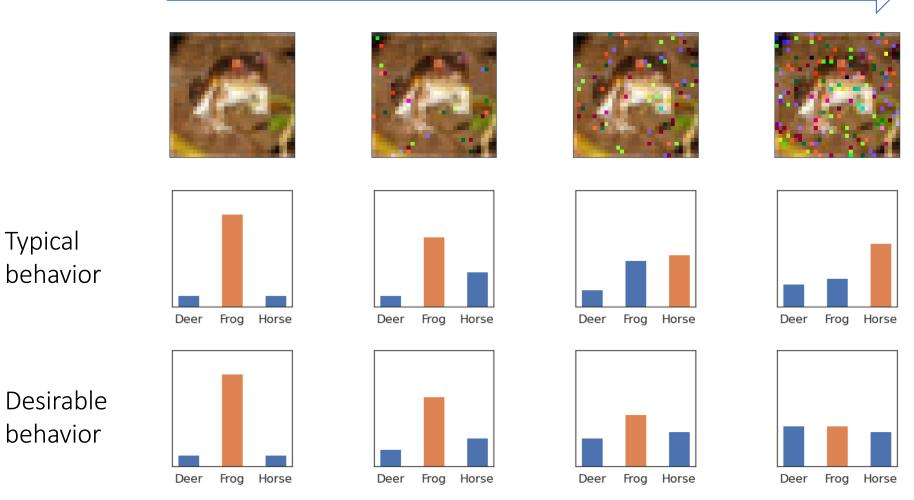
Shift due to corruptions

Shifts due to corruptions

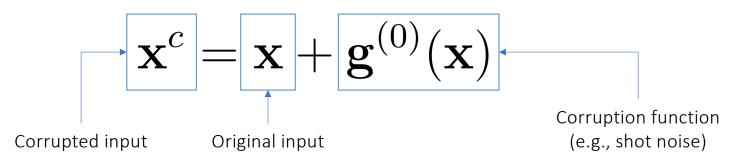
Hendrycks & Dietterich (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations.

Neural networks under input corruptions

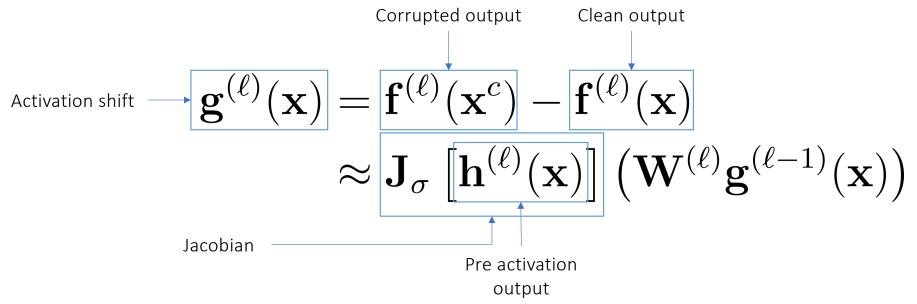
Corruption severity



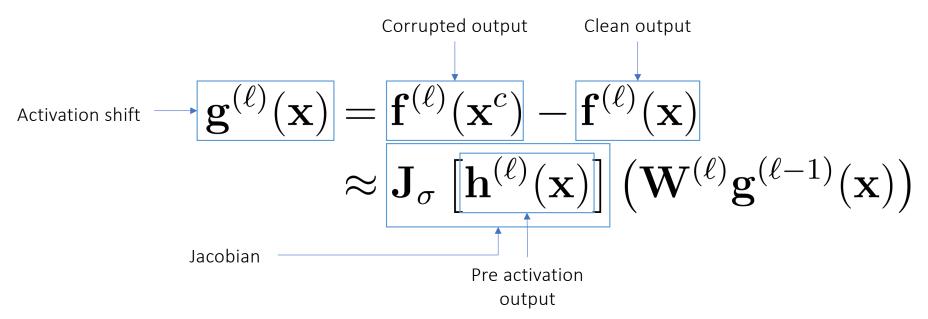
Neural networks under input corruptions



The input corruption propagates through the layers, generating a shift in the activation of each layer.



Neural networks under input corruptions



The activation shift depends on:

- 1) The input: ${f x}$
- 2) The corruption: $\mathbf{g}^{(0)}$
- 3) The weights and biases: $\theta = \{(W^{(\ell)}, b^{(\ell)})\}_{\ell=1}^{L}$

Node-based BNNs simulate shifts during training

$$\boldsymbol{\mathcal{Z}} = \{\boldsymbol{z}^{(\ell)}\}_{\ell=1}^{L} \qquad \qquad \boldsymbol{q}(\boldsymbol{\mathcal{Z}}) \boldsymbol{\checkmark}$$

For a sample $\hat{\mathcal{Z}} \sim q(\mathcal{Z})$, define the corresponding simulated shift at one specific layer as:

$$\mathbf{\hat{g}}^{(\ell)}(\mathbf{x}) = \mathbf{f}^{(\ell)}(\mathbf{x}; \hat{\mathbf{Z}}) - \mathbb{E}_{q(\mathbf{Z})}\left[\mathbf{f}^{(\ell)}(\mathbf{x}; \mathbf{Z})
ight]$$

The simulated shifts are also functions of the weights and input, similar to shifts caused by actual corruptions.

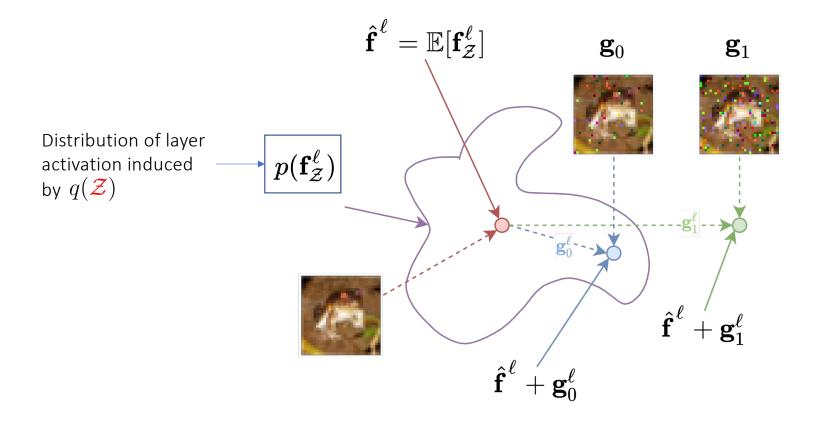
Node-based BNNs simulate shifts during training

$$\begin{aligned} & \underset{\varphi}{\text{expected log-likelihood}} \\ \mathcal{L}(\hat{\theta}, \phi) = & \mathbb{E}_{q_{\phi}(\mathcal{Z})}[\log p(\mathcal{D}|\hat{\theta}, \mathcal{Z})] \\ & - \operatorname{KL}[q_{\phi}(\mathcal{Z})||p(\mathcal{Z})] + \log p(\hat{\theta}) \end{aligned}$$

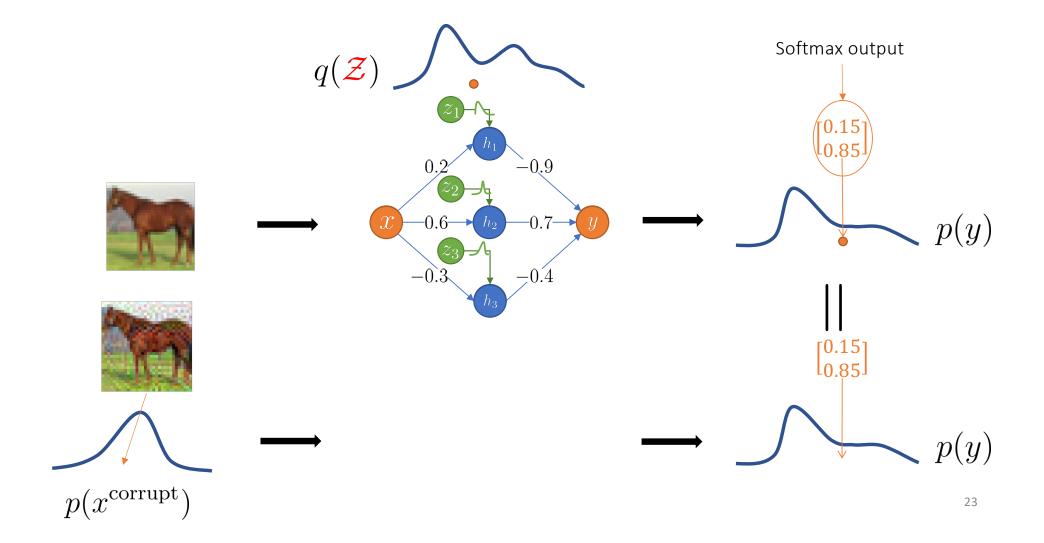
The expected log-likelihood term of the ELBO enforces the model to achieve low loss on the training data despite each layer output being corrupted by noise from $q(\mathbf{Z})$. The model is robust against simulated activation shifts caused by $q(\mathbf{Z})$.

→ The model is robust against activation shifts caused by actual corruptions.

Node-based BNNs simulate shifts during training



The latent posterior $q(\mathcal{Z})$ induces a distribution of corruptions in input space $p(x^{ ext{corrupt}})$

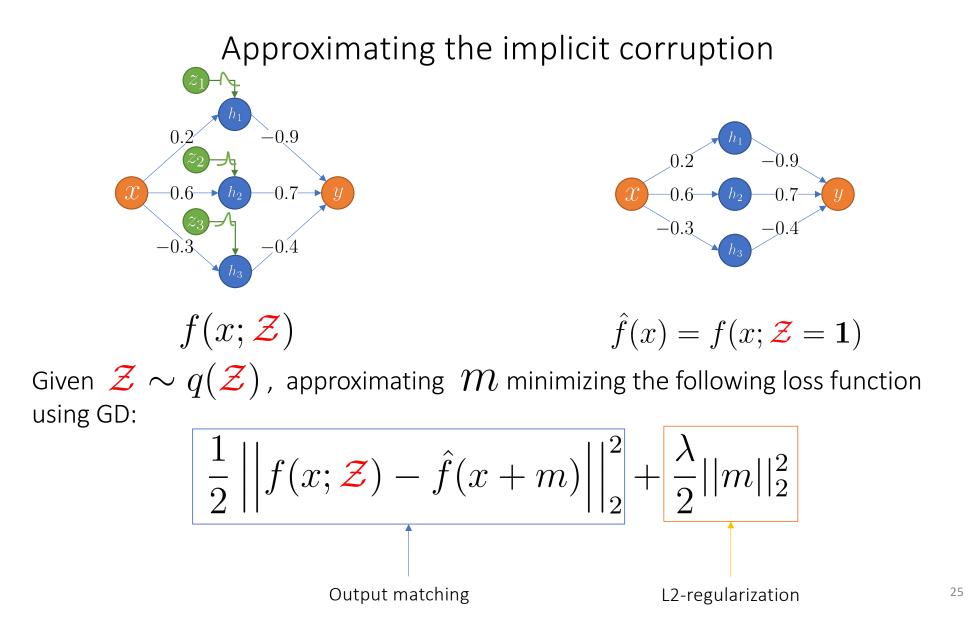


Approximating the implicit corruption

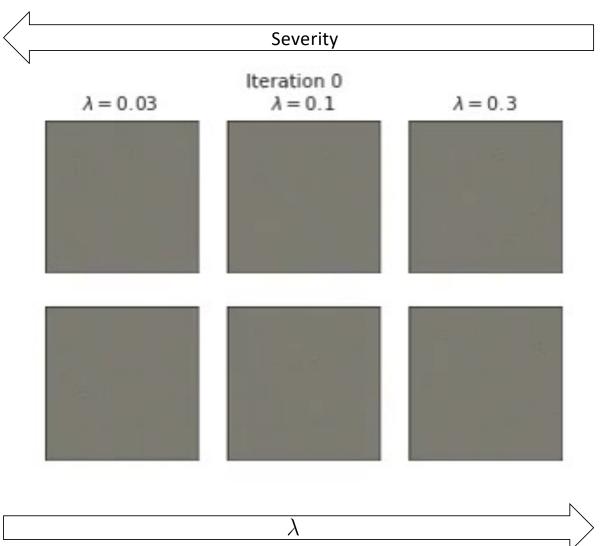
 $x_{corrupt}$

 ${\mathcal X}$

 \mathcal{m}

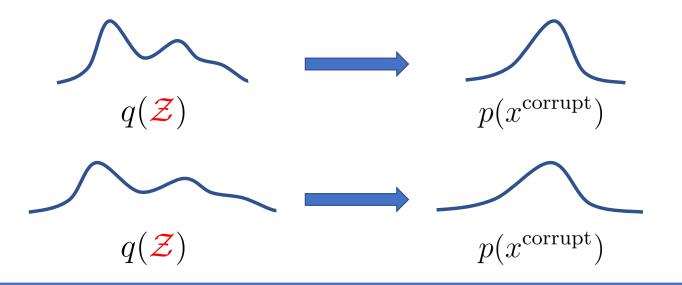


Example of implicit corruptions



26

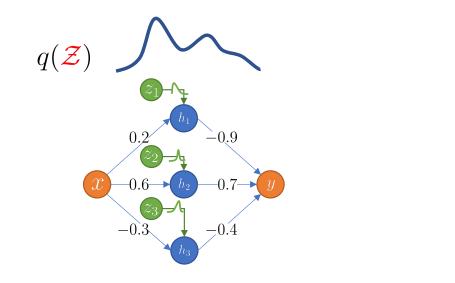
Entropy of latent variables and implicit corruptions

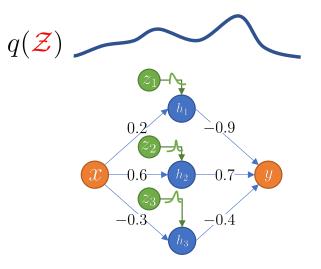


We hypothesize that:

- 1. Increasing the entropy of the latent variables \mathcal{Z} increase the diversity of the implicit corruptions.
- 2. By training under more diverse implicit corruptions, node-based BNNs become more robust against natural corruptions.

Is it true that "higher entropy = more robust node-based BNNs"?

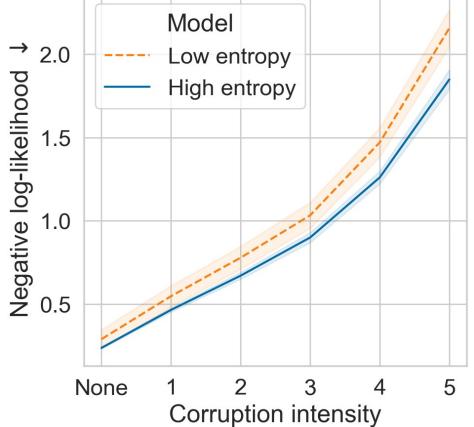




Low entropy model

High entropy model

Same ConvNet architecture Train on CIFAR-10 Test on CIFAR-10-C Is it true that "higher entropy = more robust node-based BNNs"? YES!!!



Is a model robust against its own corruptions?

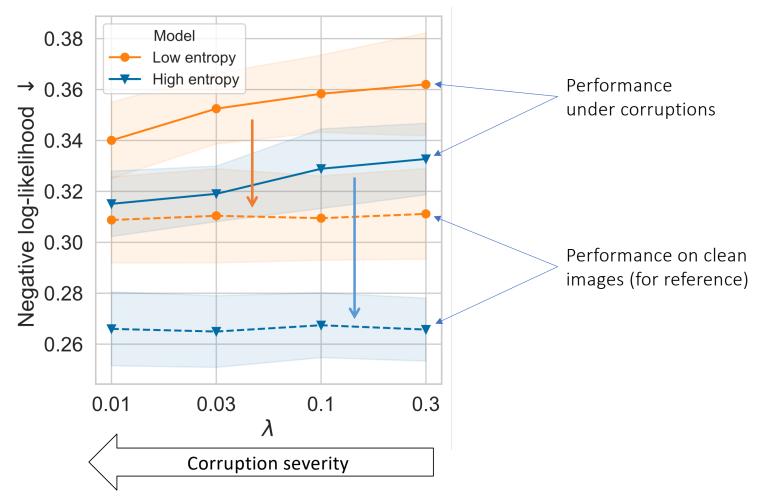
Low entropy model

High entropy model

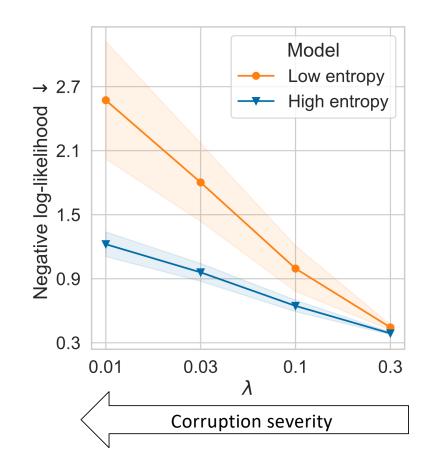
We use each model to generate a set of corrupted test images, then evaluate each model on its own generated corruptions.

Is a model robust against its own corruptions?

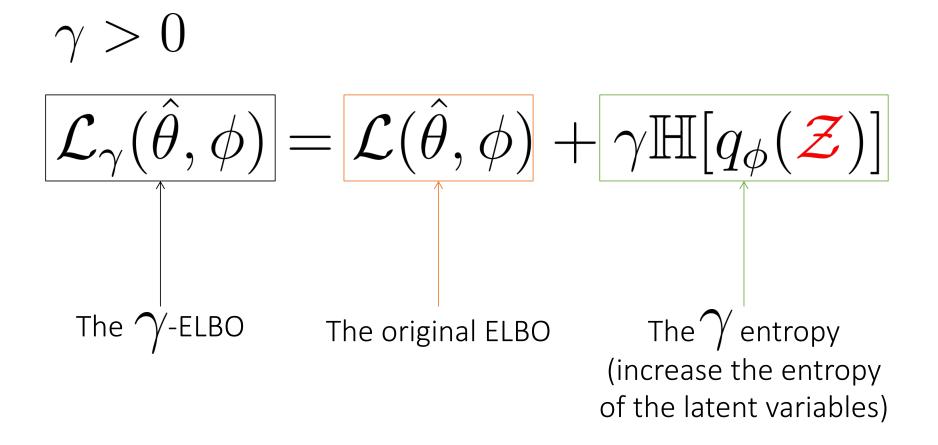
YES (in this small experiment)



How robust is a model against the other model's corruptions?



Increasing the latent entroy: Entropic regularization

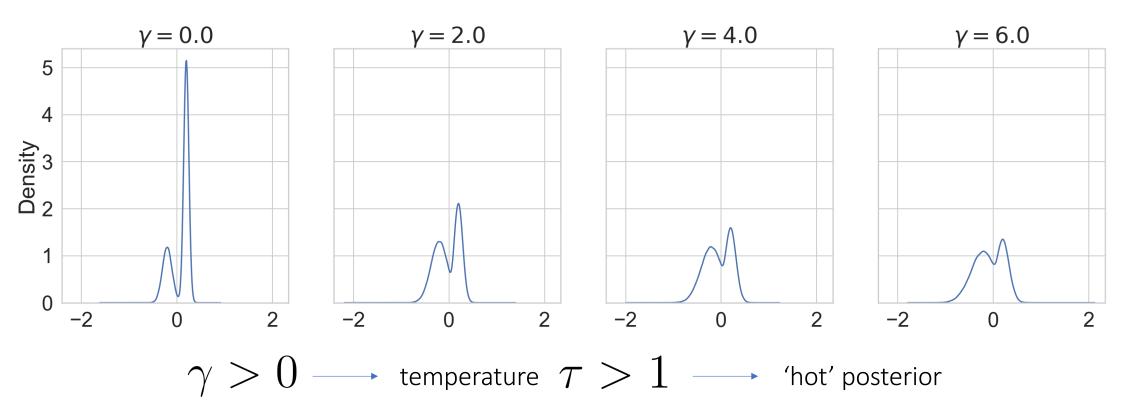


The
$$\gamma$$
 – ELBO = tempered posterior

Maximizing the γ -ELBO is equivalent to minimizing:

$$\begin{split} \mathrm{KL}[q_{\phi,\hat{\theta}}(\mathcal{Z},\theta)||p_{\gamma}(\mathcal{Z},\theta|\mathcal{D})] \\ p_{\gamma}(\mathcal{Z},\theta|\mathcal{D}) \propto p(\mathcal{D}|\mathcal{Z},\theta)^{\frac{1}{\gamma+1}}p(\mathcal{Z},\theta)^{\frac{1}{\gamma+1}} \\ Temperature \ \tau = \gamma+1 \end{split}$$

Effects of $\gamma > 0$ on the target posterior.

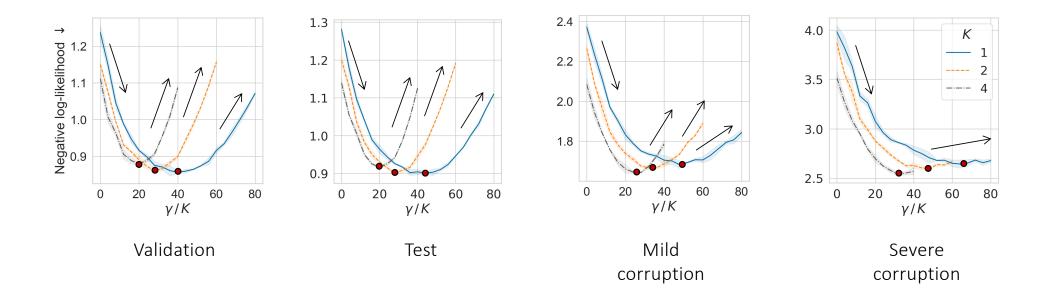


A justification for hot posterior

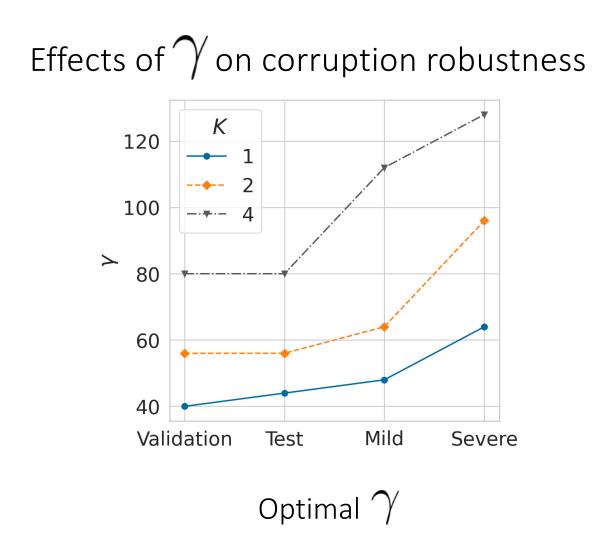
- 1) Neither the model definition or the dataset accounts for input corruptions.
- 2) Variational inference only converges to a posterior whose entropy is calibrated for the variability in the training data.
- ➔ By increasing the entropy of the posterior, we also account for the variability caused by input corruptions.

Ablation study

Effects of γ on corruption robustness



VGG16 / CIFAR-100. Test on CIFAR-100-C K: number of Gaussian components in $q_{\phi}(\mathcal{Z})$.



More severe corruptions require higher optimal $\,\gamma\,$

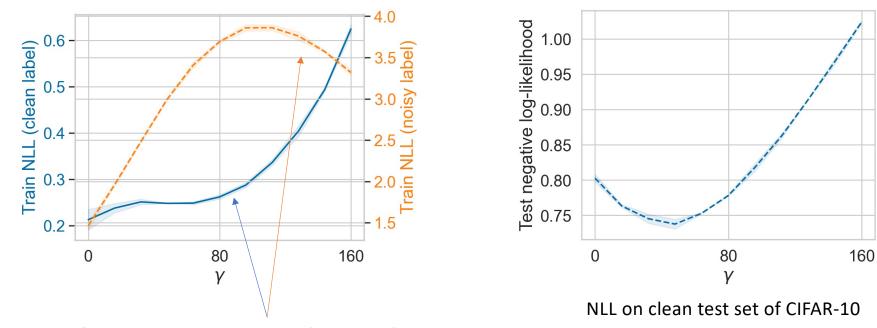
Robust learning under label noise

Memorizing random labels is harder than learning generalizable patterns¹

If a sample with a wrong label is corrupted with sufficiently diverse corruptions, the model fails to memorize this wrong label.

¹Arpit et al. (2017). A closer look at memorization in deep networks.

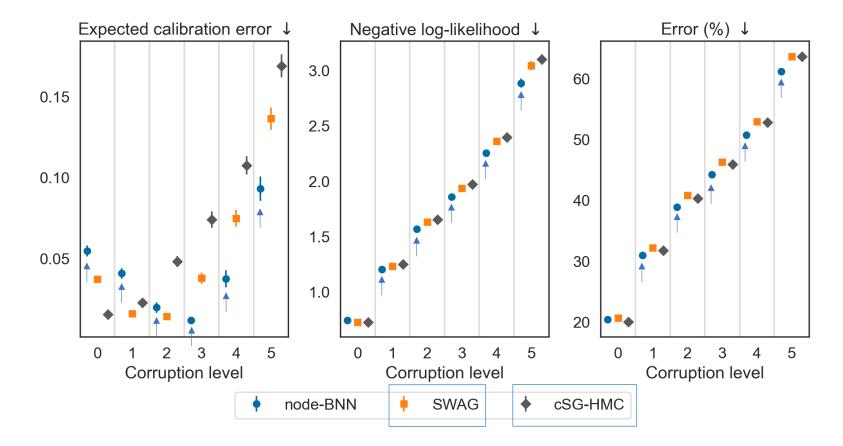
Robust learning under label noise



Train NLL of wrongly labelled samples (in orange) increase much faster than the train NLL of correctly labelled samples (in blue)

ResNet18 / CIFAR-10 40% of training labels are corrupted

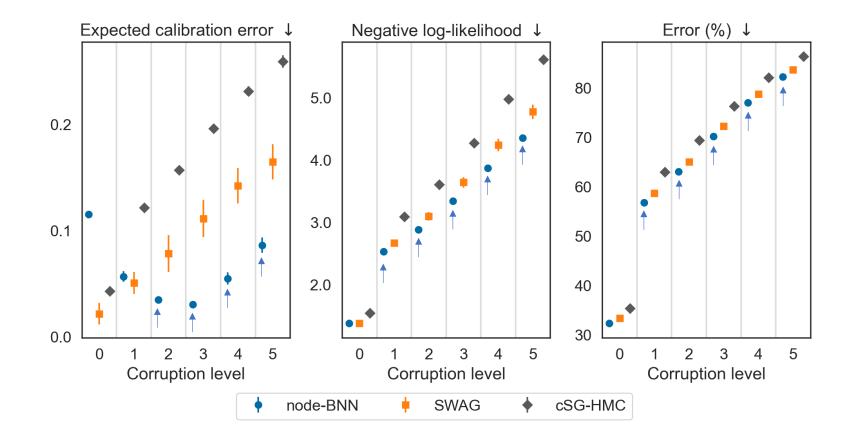
Benchmark comparison



ResNet18 / CIFAR-100

Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning. Zhang et al. (2020). Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning.

Benchmark comparison



PreActResNet18 / TinyImageNet

Conclusion

1) Node-based BNNs are efficient alternative to standard weight-based BNNs that are effective against input corruptions.

2) Node-based BNNs can be made more robust against corruptions by increasing the entropy of the latent posterior.

More information is available at https://aaltopml.github.io/node-BNN-covariate-shift/