
Efficient uncertainty estimation with 
node-based Bayesian neural 

networks 
Trung Trinh



• Part 1: Node-based Bayesian neural networks (node-based BNNs).

• Part 2: Tackling input corruptions with node-based BNNs.
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Part 1: Node-based Bayesian 
neural networks
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• Accurate uncertainty estimations are crucial for utilizing machine 
learning in real world applications.
• Neural networks are overconfident predictors
• because they cannot represent epistemic uncertainty.

• Two main approaches to represent epistemic uncertainty:
• Deep ensembles: combine multiple maximum-a-posteriori (MAP) solutions.
• Bayesian neural networks: probabilistic (Bayesian) representations of epistemic 

uncertainty.

Uncertainty in Deep learning
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Bayesian neural networks (BNNs)

Bayesian neural 
network (BNN)

Deterministic 
neural network
(DNN)

Neal (1996). Bayesian Learning for Neural Networks.

Thomas Bayes
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• Theoretically, BNNs have better performance than DNNs because they aggregate 
predictions from multiple hypotheses.
• Practically, however, the results are not great.

• High-fidelity posterior approximations of BNNs (full batch HMC) are computationally expensive 
to obtain due to the sizes of these models.
• Stochastic HMC or variational inference (VI) are used for inference, which requires “sharpening” the 

target posterior (cold posteriors) to obtain good approximations.1

• Izmailov et al. (2021)2 used 512 TPUv3 to perform full-batch HMC and discovered that BNNs 
did worse than DNNs under input corruptions

BNNs are challenging in practice

1 Wenzel et al. (2020). How Good is the Bayes Posterior in Deep Neural Networks Really?
2 Izmailov et al. (2021). What are Bayesian neural network posteriors really like?

ResNet-20, CIFAR-10-C
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• Function-space inference. (Wang et al, 2019; Sun et al, 2019; D’Angelo et al, 2021)
• Architecture-space inference.
• Depth uncertainty NNs (Antorán et al, 2020).

• Activation-space inference (node-based BNNs):
• Dropout. (Gal et al, 2016)
• Rank-1 BNNs. (Dusenberry et al, 2020; Trinh et al, 2022)

Alternatives to weight-based BNNs

1 Wang et al. (2019). Function space particle optimization for Bayesian neural networks.
2 Sun et al. (2019). Functional variational Bayesian neural networks.
3 D’Angelo et al. (2021). Repulsive Deep Ensembles are Bayesian.
4 Antorán et al. (2020). Depth Uncertainty in Neural Networks.
5 Gal et al. (2016). Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
6 Dusenberry et al. (2020). Efficient and Scalable Bayesian Neural Nets with Rank-1 Factors.
7 Trinh et al. (2022). Tackling covariate shift with node-based Bayesian neural networks.
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Node-based Bayesian neural networks

Weight-BNNs

Node-BNNs
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An L-layer node-BNN with latent variables                                 ,                                 :

Node-based Bayesian neural networks

Previous layer’s output Latent node 
variables

For                           :
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Pre-activation 
output



Node-based Bayesian neural networks

Two types of parameters:
1. Weights and biases

è Find a MAP estimate.
2. Latent node variables

è Infer the posterior distribution.
è Node BNNs are efficient alternatives to standard weight-based BNNs.
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Training a node BNN: Variational inference

Simple, parametric distribution

Complex posterior 
distribution

Blei et al. (2017). Variational Inference: A Review for Statisticians.
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Variational posterior

Dirac delta measure
(for MAP estimation) Mixture of Gaussians
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MAP estimation of 



Training objective

expected log-likelihood

KL divergence log prior

We find               maximizing the following objective using SGD:

Evidence lower-bound
(ELBO)
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Part 2: Tackling input corruptions 
with node-based BNNs
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Covariate shift

Training data

In-distribution
test data

Out-of-distribution
test data
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Shift due to corruptions

Shifts due to corruptions

Hendrycks & Dietterich (2019). Benchmarking Neural Network Robustness to Common Corruptions and Perturbations.
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Neural networks under input corruptions

Typical 
behavior

Desirable 
behavior

17

Corruption severity
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Neural networks under input corruptions

Corrupted input Original input
Corruption function

(e.g., shot noise)

The input corruption propagates through the layers, generating a shift in the 
activation of each layer.

Activation shift

Corrupted output Clean output

Jacobian
Pre activation 

output
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Neural networks under input corruptions

Activation shift

Corrupted output Clean output

Jacobian
Pre activation 

output

The activation shift depends on:
1) The input:
2) The corruption:
3) The weights and biases:  



For a sample                        , define the corresponding simulated shift at one 
specific layer as:
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Node-based BNNs simulate shifts during training

The simulated shifts are also functions of the weights and input, similar to shifts 
caused by actual corruptions.
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Node-based BNNs simulate shifts during training

expected log-likelihood

The expected log-likelihood term of the ELBO enforces the model to achieve 
low loss on the training data despite each layer output being corrupted by noise 
from            .
èThe model is robust against simulated activation shifts caused by            .
èThe model is robust against activation shifts caused by actual corruptions. 
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Node-based BNNs simulate shifts during training

Distribution of layer 
activation induced 
by 



The latent posterior             induces a distribution of corruptions in input space                                 

0.15
0.85

0.15
0.85

Softmax output
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Approximating the implicit corruption
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Approximating the implicit corruption

Given                            ,  approximating          minimizing the following loss function 
using GD: 

Output matching L2-regularization 25
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Example of implicit corruptions
Severity



Entropy of latent variables and implicit corruptions

We hypothesize that:
1. Increasing the entropy of the latent variables         increase the diversity of the 

implicit corruptions.
2. By training under more diverse implicit corruptions, node-based BNNs become 

more robust against natural corruptions. 
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Is it true that “higher entropy = more robust node-based BNNs”?

Low entropy model High entropy model

Same ConvNet architecture
Train on CIFAR-10

Test on CIFAR-10-C
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Is it true that “higher entropy = more robust node-based BNNs”?

YES!!!
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Is a model robust against its own corruptions?

Low entropy model High entropy model

We use each model to generate a set of corrupted test images, then evaluate each 
model on its own generated corruptions.
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Is a model robust against its own corruptions?
YES (in this small experiment)

Performance 
under corruptions

Performance on clean 
images (for reference)
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Corruption severity



How robust is a model against the other model’s corruptions?
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Corruption severity



Increasing the latent entroy: Entropic regularization

The      -ELBO The original ELBO The      entropy
(increase the entropy 

of the latent variables)
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The      – ELBO = tempered posterior

Maximizing the      – ELBO is equivalent to minimizing: 

Temperature
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Effects of                 on the target posterior.

‘hot’ posterior
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temperature
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A justification for hot posterior

1) Neither the model definition or the dataset accounts for input 
corruptions.

2) Variational inference only converges to a posterior whose entropy 
is calibrated for the variability in the training data.

è By increasing the entropy of the posterior, we also account for 
the variability caused by input corruptions.



Ablation study
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Effects of      on corruption robustness

Validation Test Mild 
corruption

Severe 
corruption

VGG16 / CIFAR-100. Test on CIFAR-100-C
K: number of Gaussian components in             .
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Effects of      on corruption robustness

Optimal

More severe corruptions require higher optimal 
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Robust learning under label noise

Memorizing random labels is harder than learning generalizable patterns1

If a sample with a wrong label is corrupted with sufficiently diverse corruptions, the 
model fails to memorize this wrong label.

1Arpit et al. (2017). A closer look at memorization in deep networks.



Robust learning under label noise

ResNet18 / CIFAR-10
40% of training labels are corrupted

Train NLL of wrongly labelled samples (in orange) increase much 
faster than the train NLL of correctly labelled samples (in blue)

NLL on clean test set of CIFAR-10
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Benchmark comparison

ResNet18 / CIFAR-100
Maddox et al. (2019). A Simple Baseline for Bayesian Uncertainty in Deep Learning.
Zhang et al. (2020). Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning.
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Benchmark comparison

PreActResNet18 / TinyImageNet
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More information is available at https://aaltopml.github.io/node-BNN-covariate-shift/

Conclusion
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1) Node-based BNNs are efficient alternative to standard weight-based 
BNNs that are effective against input corruptions.

2) Node-based BNNs can be made more robust against corruptions by 
increasing the entropy of the latent posterior.

https://aaltopml.github.io/node-BNN-covariate-shift/

