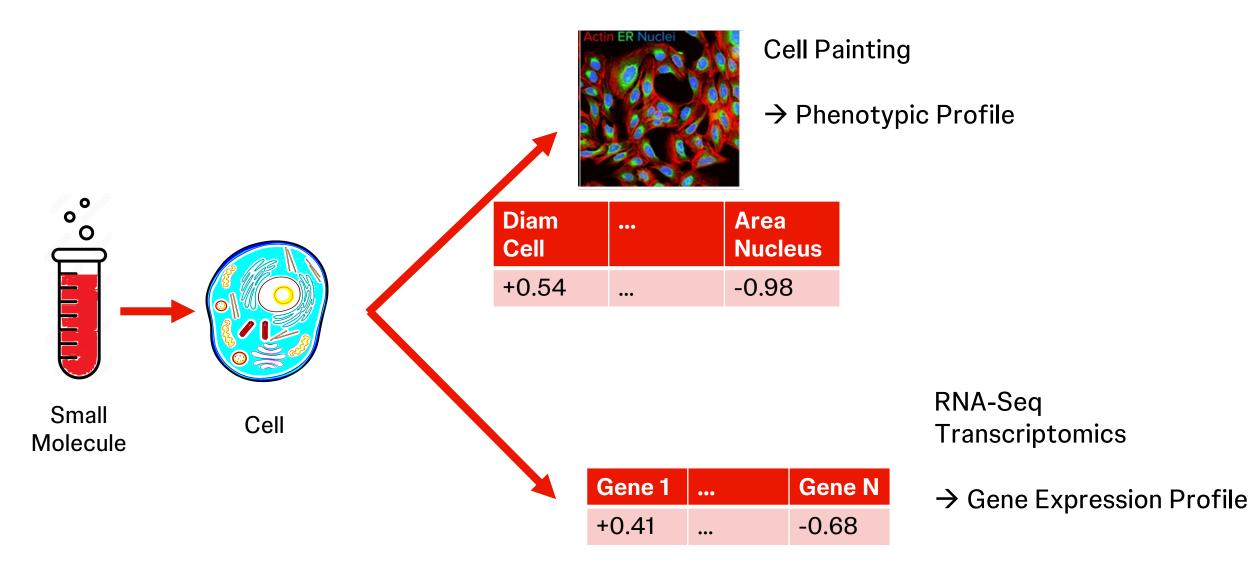
Cross Modality Representation Learning of Cell Painting and Transcriptomics data

Son Ha PhD Student Beerse, Belgium

Introduction

Cell Painting (CP) and Transcriptomics (TX) data



Cross Modality Representation Learning Motivation

- Real world problem: TX data is costly to generate
 - \rightarrow New compounds will only have CP data, TX missing
- <u>Can we learn better single modality representations given unlabeled data from multiple modalities?</u>
- Cross modality representation learning (Ngiam 2011):

Feature Learning	Downstream Tasks	
CP + TX	СР	

- Other multimodal representation learning benefits:
 - Integration of different data types for downstream tasks
 - Improve modelling capability of Modes of Actions/Bioassays.

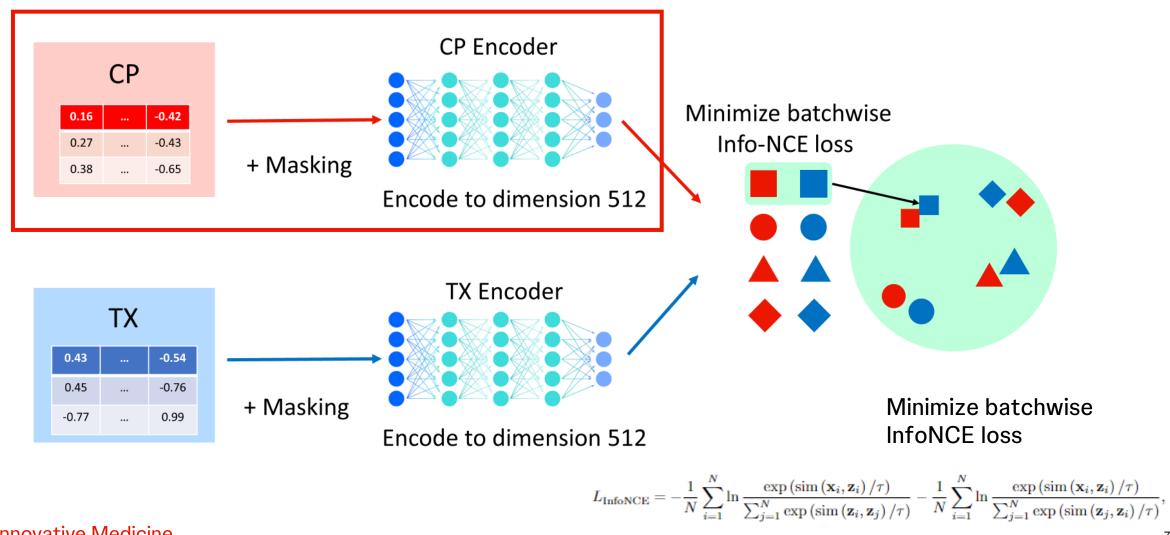
Summary of this work

- Benchmark two cross modality representation learning methods for CP and TX data:
 - Contrastive Learning
 - Bimodal autoencoder
- Evaluate them on a variety of downstream tasks

Slide legal disclaimer goes here if required Slide footer goes here if required

Methods

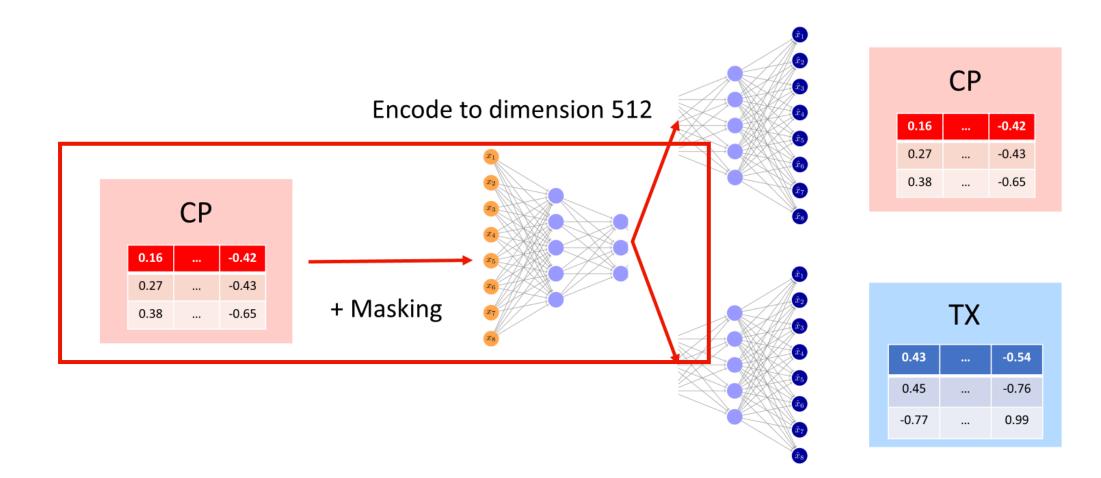
Contrastive Learning Pretraining



J&J Innovative Medicine

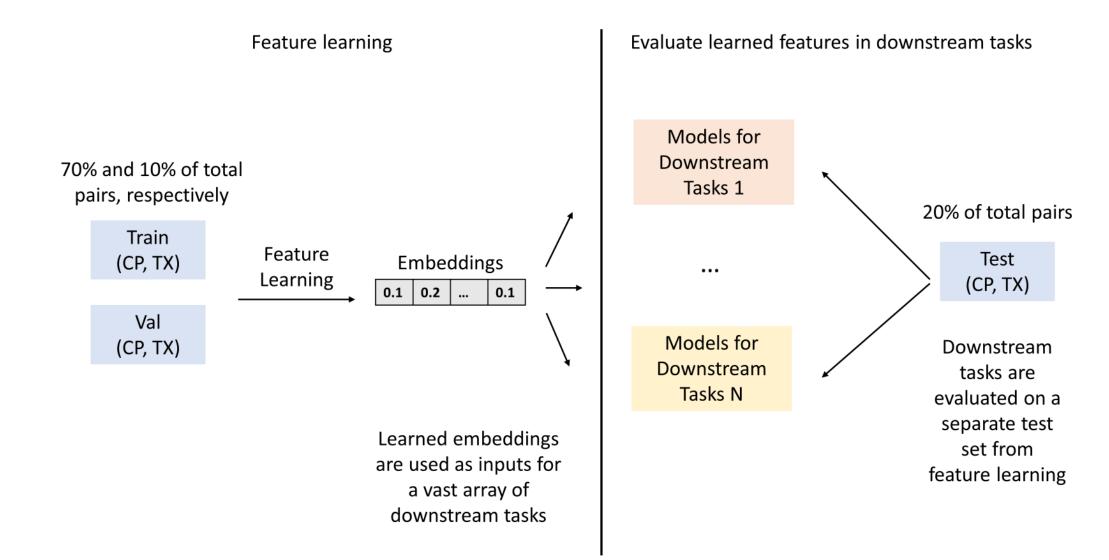
Alec Radford, et al.. (2021). Learning Transferable Visual Models From Natural Language Supervision.

Bimodal Autoencoder Pretraining



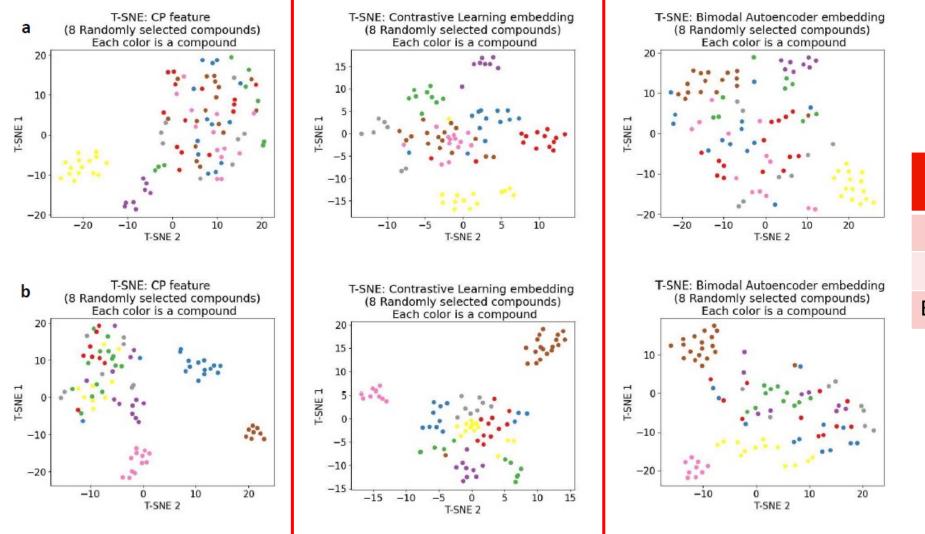
Minimize average of the 2 MSE reconstruction losses

Training and Evaluating Learned Embeddings



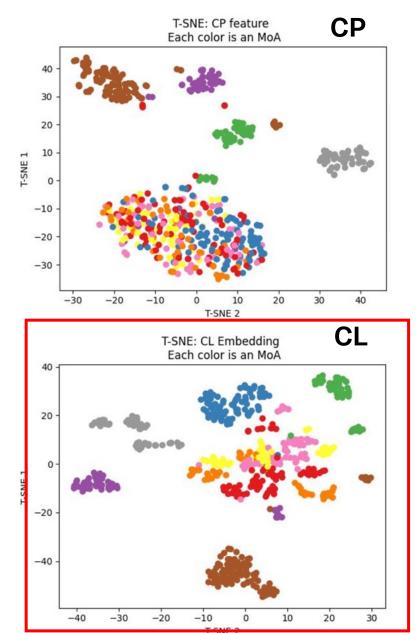
Result

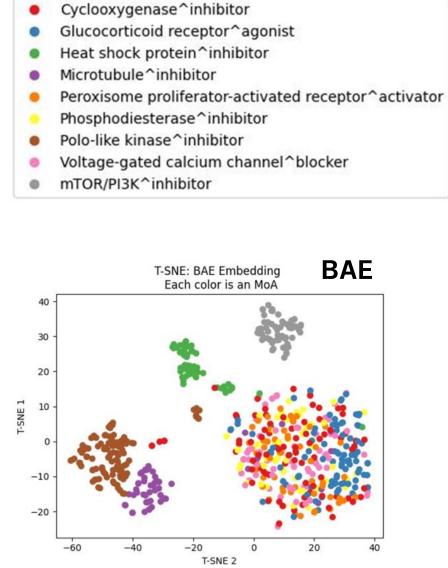
Unsupervised Task: CP replicates Clustering



Feature Type	kNN Accuracy CP Replicates	
СР	0.416	
CL Embedding	0.805	
BAE Embedding	0.428	

Unsupervised Task: Mode of Action Clustering





Feature Type	kNN Accuracy MoA	
СР	0.784	
CL Embedding	0.952	
BAE Embedding	0.784	

Supervised Task – Multitask Bioactivity Classification

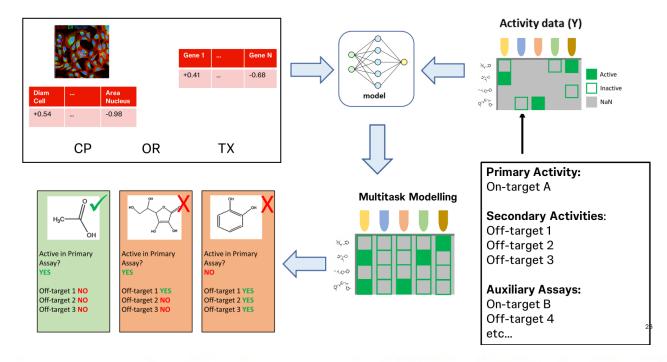
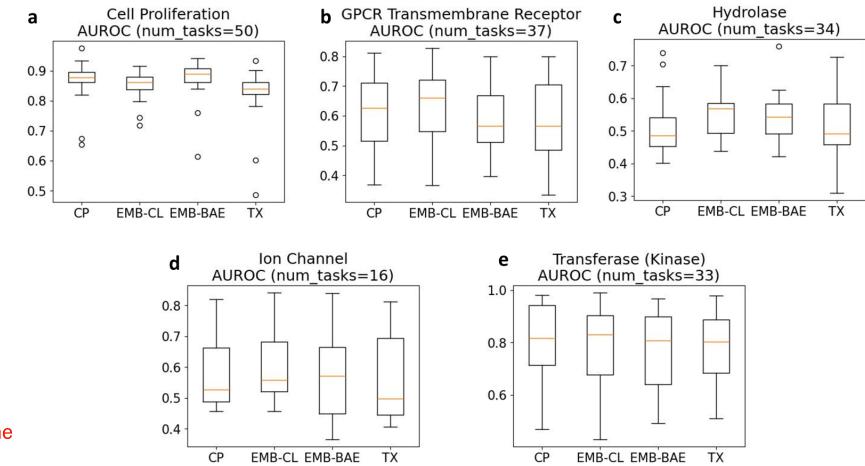


Table 2 Performances of each feature type for 703 bioactivity classification tasks. Mean metrics \pm standard deviation metrics for the mean AUROC and mean RIPtoP-AUPRC columns. #(AUROC > 0.7) denotes number of tasks that achieves AUROC > 0.7.

	Feature Type	Mean AUROC	Mean RIPtoP-AUPRC	#(AUROC > 0.7)	#(AUROC > 0.8)
	СР	0.680 ± 0.15	0.334 ± 0.25	290	169
	CL Emb	0.687 ± 0.13	0.343 ± 0.24	294	164
	BAE Emb	0.674 ± 0.14	0.325 ± 0.24	274	149
J&J Innovative	TX	0.659 ± 0.13	0.279 ± 0.22	252	126

Bioactivity Classification Grouped by Protein Family

- CL embedding outperforms CP feature in GPCR, Hydrolase and Ion Channel tasks.
- BAE embedding, surprisingly, outperforms CP feature and CL embedding in Cell Proliferation.



Learned Embedding improves upon underperforming CP tasks that TX does well

- Motivation:
 - TX costly to generate → new compounds will only have CP but not TX
 → Lose out on 'good TX models'
 - Can embedding improves underperforming CP models that TX does well?
 - Yes, we achieve improvement with statistical significance .

Table 3 Performances of each feature type for 47 bioactivity classification tasks that TX performs well (AUROC>0.7) and CP does not perform well (AUROC>0.7). Mean metrics \pm standard deviation metrics for the mean AUROC and mean RIPtoP-AUPRC columns. #(AUROC > 0.7) denotes number of tasks that achieves AUROC > 0.7.

Feature Type	Mean AUROC	Mean RIPtoP-AUPRC	#(AUROC > 0.7)	#(AUROC > 0.8)
CP	0.641 ± 0.04	0.359 ± 0.11	0	0
CL Emb BAE Emb	$\begin{array}{c} 0.671 \pm 0.06 \\ 0.656 \pm 0.06 \end{array}$	$\begin{array}{c} 0.407 \pm 0.15 \\ 0.373 \pm 0.12 \end{array}$	14	1
	0.050 ± 0.00	0.373 ± 0.12	13	0
ТХ	0.736 ± 0.03	0.468 ± 0.09	47	1

J&J Innovative Medicine Tasks criteria: (TX tasks >0.7 AUROC, CP tasks <0.7 AUROC, at least 20 positives and 20 negatives)

Discussion

Discussion

- Supervised learning (bioactivity classification):
 - CL embedding achieves higher mean AUROC and RIPtoP-AUPRC over CP feature.
 - CL embedding outperforms CL feature in GPCR, Hydrolase and Ion Channel tasks, while BAE outperforms CL feature in Cell Proliferation tasks.
 - For tasks that TX performs well and CP performs badly, embeddings from CP improve performance over CP features.
- Unsupervised clustering:
 - CL embedding achieves highest kNN Accuracy, while BAE embedding achieves minimal improvement.
 - Visual inspection agrees with the above results.