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Self-supervised contrastive learning

- Contrastive learning: predict relationship between pairs of samples

- Learn an embedding space in which similar (“positive”) sample pairs are close to each other and

dissimilar (“negative”) ones are far apart
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J&J Weng, L. and Jong Wook Kim (2021). Self-supervised learning. Self-prediction and contrastive learning. [Tutorial presentation]. In Neur/PS, 2021.
Liu, X., Zhang, F., Hou, Z., Mian, L., Wang, Z., Zhang, J., Tang, J., and Fellow, I. (2021) Self-supervised Learning: Generative or Contrastive. ArXiv, 1911.05722,


https://neurips.cc/virtual/2021/tutorial/21895

CLOOME
Contrastive Learning and Leave-One-Out Boost for Molecule Encoders

Learn molecular representations with contrastive learning using microscopy images

and molecular structures
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J&J Sanchez-Fernandez, A., Rumetshofer, E., Hochreiter, S. and Klambauer G. CLOOME: contrastive learning unlocks bioimaging databases for queries with chemical
structures. Nat Commun 14, 7339 (2023). S




CLOOME
Contrastive Learning and Leave-One-Out Boost for Molecule Encoders

Learn molecular representations with contrastive learning using microscopy images

and molecular structures
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JUMP-CP dataset

« Large microscopy image dataset, released by a consortium of 10 pharma and 2 academic partners
 Three different perturbation modalities:

* Chemical compounds (small molecules)

* Overexpression of genes

* Gene knockout by CRISPR
* 120,000 compounds

* Public compound structures or could be released by the company

* High purity (> 90 %)

« Chemically perturbed samples: 3,127,224 images

Chandrasekaran, S. N., Ackerman, J., Alix, E., Ando, D. M,, ... Carpenter, A. E. (2023). JUMP Cell Painting dataset: morphological impact of 136,000 chemical and genetic
J&J perturbations. BioRxiv, 2023.03.23.534023. https://doi.org/10.1101/2023.03.23.534023 8



Transterability benchmark

Check transferability of supervised and self-supervised methods from one dataset

(JUMP-CP. Chandrasekaran et al., 2023) to another (CellPainting. Bray et al., 2016)
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Results - MoA classification

Baselines

CellProfiler features

ResNet50 pretrained with ImageNet
Supervised

ResNet

- Chemical activity prediction
- ECFP features prediction
- CP features prediction

Self-supervised
SimCLR
DINO
CLOOME

J&dJ

MoA prediction

CLOOME (25)
CLOOME (63)
CLOOME (44)

DINO

SimCLR single
SimCLR multiple
ResNet (CP)

ResNet (ECFP)
ResNet (JUMP tasks)
ResNet (ImageNet)

CellProfiler
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Library design. Introduction

J&dJ

Goal: extend internal deck of compounds

|deally, find compounds with new and diverse

biological effects

Usually, this search is guided by chemical

structure similarity

Including phenotypic information could enrich

the search

Internal and external molecules

Con
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Library design. Phenotype clustering

Experiment
Goal: Assess clustering ability of Acapella features wrt. phenotypic effect
Experiment:
1. Select Acapella features that correspond to certain assay

2. Calculate pairwise distances

3. Calculate mean average precision

1,
0,

AP@n = z Precision@k X rel(k) rel(k) = {

# positives

N

1
mAP = Nz AP;

i=1

4. Filter out assays with less than 25 actives, 25 inactives or 100 total samples
J&J

k" element is positive
k" element not positive
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Library design. Phenotype clustering

Results
Mean average precision per assay e 6.645 assays
140 A ’
120 -  Among the top 1% ranked assays:
100 -
2 0 Protein family / Assay | Number of assays
% type
= 601 GPCR Receptor 17
407 Transferase (Kinase) 15
207 lon Channel 10
0 Proliferation assay 3

mAP

J&J



Library design. Chemotype clustering

MCS clustering. Credit: Xinhao Li

« Maximum common structure (MCS)-based clustering
provides a fully automated approach for chemical W’*‘*‘% *O’ﬁ% o a2 WNE

series identification which closely mimics human

chemical series conception. The cluster is defined by a OD

single scaffold. Molecules are assigned by substructure “:d“ Q; Q;d“ %m Caé“
matching and can be assigned to multiple clusters.

Mol Mol_7 Mol_8 Mol 9

From top to down, for each node,
compute the maximum common
structure (MCS) of the molecules
underneath.

Clustering
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Library design. Chemotype clustering

Experiment
Goal: Assess clustering ability of Acapella features wrt. chemical series

Experiment:

1. Select Acapella features of molecules that belong to certain MCS cluster
2. Calculate pairwise distances

3. Calculate mean average precision

1

n
AP@n = . z Precision@k X rel(k) rel(k) = {1,
k=1

0,

# positive

N

1
mAP = Nz AP;

J&J =1

k" element is positive
k" element not positive
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Library design. Chemotype clustering

Results

Mean average precision per chemical series

2500 A
* 11,262 chemical series

2000 A
« Chemical series with high MAP — series that

N series
=
u
o
o

1000 J can be well clustered with Acapella features —

500 - potential series with unique biology
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Library design. Chemotype clustering

Results. Overlap with bioactivity

Mean average precision per chemical series

5500 * For closely clustered chemical series in Acapella

features (> 0.2 MAP), there are 1,050 tasks, for

2000 A

which more than 60% of compounds in said

-
U1
o
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N series

10007 cluster are actives — potential compounds

500 A . . .
with unique biology
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Library design. Chemotype clustering

Results. Overlap with bioactivity

Mean average precision per chemical series

2500 A
Protein family / Assay type Number of assays
2000 A Transferase (Kinase) 190
£ 500 GPCR Transmembrane 105
2 Receptor
1000 1 Hydrolase (other) 57
500 Proliferation assay 39
0- — T T =
0.0 0.2 0.4 0.6 0.8 1.0
mAP
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Library design. CLOOME embeddings

Results

« Ongoing: compute phenotype and chemotype clustering with CLOOME embeddings
» Hypothesis: a higher number of chemotypes are closely clustered in comparison to Acapella features

* Analyze assays that with highest MAP difference between CLOOME embeddings and Acapella features

J&J
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Conclusions

« CLOOME pretraining achieves comparable performance to other self-supervised methods and fully
supervised baselines
« Chemotypes for which acapella features are closely clustered are series with potentially unique biological

effect

J&J
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