Machine Learning **Models to Address** Cardiotoxicity Within an AOP Framework

An academic perspective

Alessandra Roncaglioni

Laboratory of Environmental Chemistry and Toxicology Istituto di Ricerche Farmacologiche Mario Negri IRCCS

> AIDD/AiChemist training school March 7th 2024, Berlin

Outline

- Paradigm shift in toxicology & the role of in silico approaches
- Drug safety
 - Cardiotoxicty and ALTERNATIVE approach
 - Modeling exercises
- Conclusions

Paradigm shift in toxicology in 21st century

Efforts to move from traditional a use of new approaches NAMs "new approach methodologies"

• Increasing understanding of key toxicity pathways and molecular mechanisms leading to the toxic effects

Efforts to move from traditional animal-based testing to an increased

any technology, methodology, approach, or combination that can be used to provide information on chemical hazard and risk assessment

Adverse outcome pathways

AOPs link molecular initiating events (MIEs) to an adverse outcome (AO) through some key events (KEs)

Modelling MIEs with QSAR

Identifying chemical stressors for AOPs through predicted activities

Drug safety

- Drug safety accounts approx. for 25% of drug failure
- Multiple reasons for late discovery of drug toxicity
 - Off-target effects
 - ADME properties
 - Translational relevance to humans of preclinical safety studies in animals
 - Statistical analysis (sample size)
 - Standardized conditions vs. real life situation (genetic, age, comorbidity)

Harrison R. *Nat Rev Drug Discov* **15**, 2016 Van Norman GA, *JACC Basic* **4**, 2019

Drug safety

- Room for the use of computational methods to anticipate drug toxicity
 - More limited experimental confirmation \bigcirc
 - \bigcirc searching (costs of errors)
 - Effective to guide decision making

Statistical assessment of models differs from hit or lead

Cardiotoxicity of chemical mixtures

17.9 million

Among non-communicable diseases (NCDs), cardiovascular diseases (CVDs) are the prominent cause of mortality each year

85%

due to heart attack and stroke

Effects may be extremely marked in mature and aged population.

Regulatory guidelines and gaps for cardiotoxicity

Pharmaceuticals

Current regulatory guidelines

ICH S7A ICHS7B **ICH M4 (R2)** In vivo testing

Evaluation of heart rate, ECG, blood pressure, QT prolongation

> In vitro testing hERG/I_{KR} assay

Knowledge gaps

?

Interspecies differences

In vitro: Missing assessment of structure & contractility

Limited predictivity of current methods

Schaffert and Murugadoss et al. 2023 (ALTEX) ECG = Electrocardiogram (records electrical signal from heart to check for different heart conditions) hERG/I_{KR} assay = measures changes in activity of potassium channel, detects delayed ventricular repolarization (risk factor for arrythmias)

Chemicals, Pesticides, Biocides

Current regulatory guidelines

In vivo testing

Evaluation of cardiac organ weight, pathology, histopathology, cardiac malformation

OECD Test **Guidelines (TGs)** 407, 408, 409, 453 412 & 413 426 & 443 414

Knowledge gaps

Interspecies differences

MoA identification difficult

Large number of chemicals

Mixtures & susceptible population: not sufficiently covered

Regulatory challenges

Cardiotoxicity

- Not addressed as separate endpoint in case of chemicals, pesticides, and biocides
- Limited regulatory experience with cardiotoxicity of chemicals
- Implications on limit values & classification are not well known

Mixtures

- Too few mode of action data for individual chemicals available to calculate potential mixture activity
- **Too large number of chemical mixtures** to test via animal tests expensive, time consuming, unethical

Modeling for cardiotoxicity

- Initial focus on hERG inhibition (data rich) • Characterize the chemical space covered by QSAR models
- for
 - o prediction ability for drug and non-drug compounds (e.g.: pesticides, PAHs, etc.)
 - Profiling compounds according to most represented mechanisms of action for cardiotoxicity
- Modeling other mechanisms

hERG QSAR models

- 7963 bioactivity data reported in ChEMBL.
- New QSAR models based on different thresholds (pIC50 = 6 or pIC50 = 5) with six machine learning algorithms (RF, KNN, GB, XGB, MLP, and SVM)
- Comparison with other tools

Delre P., Front Pharmacol 2022 Sep 5;13:951083

Evaluation set

Literature review of cardiotoxic effects of chemicals (in vitro, in vivo, in humans) o 280 compounds belonging to different classes (environmental chemicals, drugs or other) o 220 of these compounds labelled with one or multiple modes of action

Shagun K et al. Chem Res Toxicol 34, 566, 2021.

Evaluation set

IRFMN hERG Models (th6)							
Class	In AD	Out Al					
All	123	61					
Environmental	31	36					
Drug	79	10					

Score plot: hERG and kinase inhibitors compounds have similar chemical features

Performance based on MoAs

hERG_IRFMN_Th5

OCHEMI

Exploiting the AOP framework in silico

Assays encoding AOP MIEs

			Calendar & Ev	ents News & Media Get Involved Support					
No U.S.	ational Toxicology Program Department of Health and Human Services		Q Search the NTP W	ebsite SEARCH					
Integrated Chemical Environment			Home Search	Tools Data About Help					
Input Results Help	The Search tool allows you to query ICE data to chemical lists as well as selection of data sets	using chemical quick list select organized by toxicity end ←	tions (chomicals and (a) III a nih ICe - C (a) (b) ht	Cerca × Ø ICE Search	× +		A ^N ☆	– □ ੯= ᠬੇ %	0
Help Video	Run Reset Union V	Γ	Select Data Sets	Acuta Lathality Constitution		Fadaariaa	Calendar & Events	News & Media Get Involved Sur	×
	Chemical Input Select Chemicals Quick List CASRNs User Chemical Identifiers	Select Data Sets Select Data Sets Data Set		 Cardiotoxicity Mode of Action CardioTox - Change in Vasoactivity 		LINUOCIIIIe	in vitro		
				CardioTox - Change in Inotropy CardioTox - Change in Action Potentia CardioTox - Cardiomyocyte/Myocardia	al Injury		in vitro in vitro in vitro		
				CardioTox - Valvular Injury/Proliferatio	ation		in vitro in vitro		

Acute Lethality	Sensitization	Irritation/Corrosion	Endocrine	Cancer	Cardiotoxicity	DA
Cardiotoxicity						
\checkmark Mode of Action						
CardioTox - Char	nge in Vasoactivity	in vitro				
CardioTox - Char	nge in Inotropy	in vitro				
CardioTox - Char	nge in Action Potenti	in vitro				
CardioTox - Card	liomyocyte/Myocard	ial Injury		in vitro		
CardioTox - Valv	ular Injury/Proliferati	in vitro				
CardioTox - Endo	othelial Injury/Coagu	ation		in vitro		

Assays encoding AOP MIEs

Modeling pipeline

Encoding chemical information

206.3

6.252

0.581

Artificial Baseline **Intelligence: Deep** Machine Learning Models Learning SVC **Text Embedding Logistic Regression** GCNN **Decision Tree Deep Neural Network Random Forest Multitask Models** KNN GaussianNB MW

We aimed to assess the best combination of model-descriptors for each endpoint by systematically evaluating all possible combinations of model types, descriptors, and biological targets.

Word Embedding

Chiarified text:1n C C C C C C [N +] (= 0) [0 -]

bedding: [[-0.02392174 0.02877975 0.047144440.03017147 -0.00659642
0.02174393] [-0.02392174 0.02877975 0.047144440.03017147 -0.00659642 0.0174293]
[-0.02392174 0.02877975 0.047144440.03017147 -0.00659642 0.02174393]
 [-0.02493726 -0.02160301 -0.02945706 0.04390224 -0.0471576
[-0.02493709] [-0.02493726 -0.02160301 -0.02945706 0.04390224 -0.0471576 0.0295709]
[-0.02493726 -0.02160301 -0.02945706 0.04390224 -0.0471576

CDDD

Character embedding shape: (1, 159, 64)

0.0295709 111

0.629

1.126

0.143

0.988

Results of Data Collection and Curation process

1) Quality control:

Only QC passed data was maintained in our dataset.

2) Activity definition:

A chemical is classified as active if it yields a positive result in at least one assay and as negative if all available results are negative.

3)SMILES curation:

Standard SMILES canonization, removed salts, concentrating on the largest fragments, excluded stereochemistry and removed the resulted duplicate structures.

ΑΟΡ	Name	Number of compounds	Active	Inactive	Active%	Inactive%	numbe assays
MIE	Inhibition Mitochondrial complexes	232	184	48	79	21	7
KE1	Increase Oxidative Stress	636	191	445	30	70	7
KE2	Mitochondrial Dysfunctions	5004	1147	3857	23	77	12

Modeling Results (ML)

	external test set		5-fold cross validation			
	Balance Accuracy	F1-Score	Balanced Accuracy	Model selected	OverSampling	Encoders S
Inhibition of mitochondrial complexes	0.721	0.865	0.833	k-Nearest Neighbors	SMOTE	Mordred Molecular Descriptors
Increase in Oxidative stress	0.720	0.605	0.748	Logistic regression	SVM-SMOTE	Mordred Molecular Descriptors
Increased Mitochondrial dysfunction	0.742	0.602	0.921	Extreme Gradient Boosting	SMOTE	Latent Description CDDD

https://doi.org/10.3390/toxics12010087

Artificial Intelligence: Deep Learning Increased Mitochondrial dysfunction

			(cv) validation set					
	Balanced Accuracy	Precision	Sensitivity	Specificity	MCC	F1-Score	Balance Accuracy	Encoder
Deep Neural Network	0.746	0.527	0.672	0.819	0.454	0.591	0.870	Circular Fingerprint
Deep Neural Network	0.700	0.446	0.638	0.762	0.358	0.525	0.737	MACCs fingerprint
Deep Neural Network	0.808	0.539	0.828	0.788	0.542	0.653	0.836	Latent representation C
Deep Neural Network	0.774	0.471	0.828	0.720	0.470	0.600	0.811	Molecular Descripto
Message Passing Neural Network	0.746	0.527	0.672	0.819	0.454	0.591	0.741	Graph
Neural Language Processing	0.780	0.551	0.741	0.819	0.510	0.632	0.753	Text Vectorization and ch embedding
Neural Language Processing Augmented	0.815	0.616	0.776	0.855	0.585	0.687	0.886	Text Vectorization and ch embedding
Multimodal	0.808	0.592	0.777	0.839	0.564	0.672	0.830	All (no graph)
Extreme Gradient Boosting (best ML model)	0.742	0.605	0.600	0.883	0.485	0.602	0.921	Latent Description CD

Model performance comparison

- Gradually increasing the size of the training set, to gain insights into the model behavior.
- The behavior of the multimodal approach aligns with the ideal scenario, consistently improving its performance as the training set gets bigger.

0.8

3alance Accuracy

0.2

0.0

A mechanistic interpretation: Model explainability

Game Theory \longrightarrow SHAP

SHAP values interpret the impact of having a certain value for a given feature in comparison to the prediction we'd make if that feature took some baseline value.

Perturbative approach $\longrightarrow LIME$

While the model may be very complex globally, it is easier to approximate it around the vicinity of a particular instance. While treating the model as a black box, we perturb the instance we want to explain and learn a sparse linear model around it, as an explanation

We want to explore the reason why the models make decisions and perform assessments

Descriptor's importance

We explored the importance of descriptors for the assessment provided by ML models. Example of results reported for increased mitochondrial dysfunction

$-0.27 = descriptor_71$	
-0.047 = descriptor_278	+0.89
-0.745 = descriptor_295	-0.74
-0.523 = descriptor_351	
-0.462 = descriptor_301	
1 = descriptor_357	
0.235 = descriptor_221	
0.427 = descriptor_137	
0.98 = descriptor_118	
437 other features	
-1.	5 –1.0

Take home messages

Conclusions & perspectives

- ML and AI models to assess the potential cardiotoxic effects of chemicals belonging to different classes such as pesticides, drugs, and industrial compounds following the AOP developed specifically for cardiotoxicity
- They can serve as a first-tier component in the Integrated Approaches to Testing and Assessment (IATA) for cardiotoxicity
- Providing elements to inform decision makers (limitations and uncertainties, interpretability/explainability)

ACKNOWLEDGEMENTS AND DISCLAIMER This work has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement No 101037090, project ALTERNATIVE. This presentation reflects the author's view, only, and the Commission is not responsible for any use that may be made of the information provided.

This project has received funding from the EU's Horizon 2020 research and innovation programme under grant agreement No 101037090