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Paradigm shift in toxicology in 21st century

Efforts to move from traditional animal-based testing to an increased 

use of new approaches 

• Increasing understanding of key toxicity pathways and molecular 

mechanisms leading to the toxic effects

any technology, methodology, approach, or 

combination that can be used to provide 

information on chemical hazard and risk 

assessment

NAMs

“new approach methodologies”



Adverse outcome pathways 

AOPs link molecular initiating events (MIEs) to an adverse outcome 

(AO) through some key events (KEs)
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Modelling MIEs with QSAR

MIEs

Identifying chemical stressors for AOPs through predicted activities



Drug safety

• Drug safety accounts approx. for 25% of drug 

failure

• Multiple reasons for late discovery of drug toxicity

o Off-target effects

o ADME properties

o Translational relevance to humans of 

preclinical safety studies in animals 

o Statistical analysis (sample size)

o Standardized conditions vs. real life situation 

(genetic, age, comorbidity)

Harrison R. Nat Rev Drug Discov 15, 2016

Van Norman GA, JACC Basic 4, 2019



Drug safety

• Room for the use of computational methods to anticipate 

drug toxicity

o More limited experimental confirmation 

o Statistical assessment of models differs from hit or lead 

searching (costs of errors)

o Effective to guide decision making



Cardiotoxicity of chemical mixtures

Environmental factors

17.9 million 
Among non-communicable 

diseases (NCDs), 
cardiovascular diseases 

(CVDs) are the prominent 
cause of mortality each year

85%
due to heart attack 

and stroke

Lifestyle

COMBINED 
EFFECTS?

Effects may be extremely marked in 
mature and aged population.



Current regulatory guidelines

In vivo testing

In vitro testing

hERG/IKR assay

Evaluation of heart rate, ECG, blood 
pressure, QT prolongation 

Knowledge gaps

Interspecies differences

In vitro: Missing assessment of structure & 
contractility

Limited predictivity of current methods

Evaluation of cardiac organ weight, 
pathology, histopathology, cardiac 

malformation

Interspecies differences

MoA identification difficult

Large number of chemicals

Mixtures & susceptible population: 
not sufficiently covered

Pharmaceuticals Chemicals, Pesticides, Biocides

ECG = Electrocardiogram (records electrical signal from heart to check for different heart conditions)
hERG/IKR assay = measures changes in activity of potassium channel, detects delayed ventricular repolarization (risk factor for arrythmias)

ICH S7A
ICHS7B

ICH M4 (R2)

OECD Test 
Guidelines (TGs)

407, 408, 409, 453
412 & 413
426 & 443

414

Schaffert and Murugadoss et al. 2023 (ALTEX)

Current regulatory guidelines

Knowledge gaps

In vivo testing

Regulatory guidelines and gaps for cardiotoxicity



Cardiotoxicity

▪ Not addressed as separate

endpoint in case of chemicals,

pesticides, and biocides

▪ Limited regulatory experience

with cardiotoxicity of chemicals

▪ Implications on limit values &

classification are not well known
10

Mixtures

▪ Too few mode of action data for 

individual chemicals available to 

calculate potential mixture activity

▪ Too large number of chemical 

mixtures to test via animal tests  

expensive, time consuming, 

unethical

Regulatory challenges



Modeling for cardiotoxicity

• Initial focus on hERG inhibition (data rich)

• Characterize the chemical space covered by QSAR models 
for

o prediction ability for drug and non-drug compounds (e.g.: 
pesticides, PAHs, etc.)

o Profiling compounds according to most represented 
mechanisms of action for cardiotoxicity

• Modeling other mechanisms



hERG QSAR models

• 7963 bioactivity data reported 

in ChEMBL. 

• New QSAR models based on 

different thresholds (pIC50 = 6 

or pIC50 = 5) with six machine 

learning algorithms (RF, KNN, 

GB, XGB, MLP, and SVM)

• Comparison with other tools

Delre P., Front Pharmacol 2022 Sep 5;13:951083



Evaluation set

Literature review of cardiotoxic effects of chemicals 

(in vitro, in vivo, in humans)

o 280 compounds belonging to different classes 

(environmental chemicals, drugs or other) 

o 220 of these compounds labelled with one or multiple 

modes of action

Shagun K et al. Chem Res Toxicol 34, 566, 2021.13



Evaluation set

Score plot: hERG and 

kinase inhibitors 

compounds have similar 

chemical features

Class In AD Out AD

All 123 61

Environmental 31 36

Drug 79 10

IRFMN hERG Models (th6)



Performance based on MoAs

4/8 kinase inhibitors with 

mixed MoAs (hERG

inhibitors)

Class In AD Out AD

Oxidative
Stress

17 8

Mitochondrial 
Dysfunction

8 8

hERG inhibitor 19 0

Kinase inhibitor 5 0

IRFMN hERG Models (th6)



Quantitative Structure-Activity Relationship 

(QSAR)

Biological

Activity
f=

Biological targets identified based on the 
AOPs for cardiotoxicity

Machine learning (ML) models to predict potential 

capability of compounds to interact with biological 

targets

To predict the 

biological activity of a 

compound based on its 

chemical structure and 

other related properties

Exploiting the AOP framework in silico



Assays encoding AOP MIEs



Mitochondrial-Dysfunction
APR_HepG2_MitoMass_24h_dn
APR_HepG2_MitoMass_24h_up
APR_HepG2_MitoMass_72h_dn
APR_HepG2_MitoMass_72h_up

APR_HepG2_MitoMembPot_24h_dn
APR_HepG2_MitoMembPot_24h_up
APR_HepG2_MitoMembPot_72h_dn
APR_HepG2_MitoMembPot_72h_up

ATG_XTT_Cytotoxicity_up
TOX21_MMP_ratio_down

TOX21_MMP_ratio_up
TOX21_MMP_rhodamine

Oxidative-Stress
APR_HepG2_P-H2AX_24h_dn
APR_HepG2_P-H2AX_24h_up
APR_HepG2_P-H2AX_72h_dn
APR_HepG2_P-H2AX_72h_up

APR_HepG2_StressKinase_24h_dn
APR_HepG2_StressKinase_24h_up
APR_HepG2_StressKinase_72h_dn
APR_HepG2_StressKinase_72h_up

Inhibition mitochondrial complexes
CCTE_Simmons_MITO_basal_resp_rate_OCR_dn
CCTE_Simmons_MITO_basal_resp_rate_OCR_up
CCTE_Simmons_MITO_inhib_resp_rate_OCR_dn
CCTE_Simmons_MITO_inhib_resp_rate_OCR_up
CCTE_Simmons_MITO_max_resp_rate_OCR_dn
CCTE_Simmons_MITO_max_resp_rate_OCR_up

Assays encoding AOP MIEs



Data Collection

Data curation

Encoding chemical 

information

LIME

SHAPUnsupervised 
Exploration

Data Analysis

Principal Component 
Analysis

Multidimensional 
Scaling

t-distributed stochastic 
neighbor embedding

Explainability

Artificial Intelligence

Machine 
Learning

Deep 
Learning

KNN

Random Forest

Decision Tree

Logistic Regression

SVC

GaussianNB

Multitask 
Models

Deep Neural 
Network

NLP

Multimodal 
Models

Modeling pipeline



We aimed to assess the best combination of model-descriptors for each endpoint by 
systematically evaluating all possible combinations of model types, descriptors, and 

biological targets.

KNN

Random Forest

Decision Tree

Logistic Regression

SVC

GaussianNB

Baseline 

Machine 

Learning Models 

Multitask Models

Deep Neural Network

GCNN

Text Embedding

Artificial 

Intelligence: Deep 

Learning 

Encoding chemical information



AOP Name
Number of 
compounds

Active Inactive Active% Inactive%
number of 

assays used 

MIE
Inhibition 

Mitochondrial 
complexes

232 184 48 79 21 7

KE1
Increase Oxidative 

Stress
636 191 445 30 70 7

KE2
Mitochondrial 
Dysfunctions

5004 1147 3857 23 77 12

1)Quality control: 
Only QC passed data was 

maintained in our dataset.

2)Activity 
definition: 

A chemical is classified as active if it 
yields a positive result in at least one 
assay and as negative if all available 

results are negative.

3)SMILES curation:
Standard SMILES canonization, 

removed salts, concentrating on the 
largest fragments, excluded 

stereochemistry and removed the 
resulted duplicate structures. 

Results of Data Collection and Curation process



Modeling Results (ML)

external test set 5-fold cross validation

Balance 
Accuracy

F1-Score Balanced Accuracy Model selected OverSampling Encoders SPLIT%

Inhibition of 
mitochondrial complexes

0.721 0.865 0.833 k-Nearest Neighbors SMOTE
Mordred Molecular 

Descriptors
90-10

Increase in Oxidative 
stress

0.720 0.605 0.748 Logistic regression SVM-SMOTE
Mordred Molecular 

Descriptors
90-10

Increased Mitochondrial 
dysfunction

0.742 0.602 0.921 Extreme Gradient Boosting SMOTE Latent Description CDDD 90-10

https://doi.org/10.3390/toxics12010087



Artificial Intelligence: Deep Learning 
Increased Mitochondrial dysfunction

External Test Set (cv) validation set

Balanced Accuracy Precision Sensitivity Specificity MCC F1-Score Balance Accuracy Encoder

Deep Neural Network 0.746 0.527 0.672 0.819 0.454 0.591 0.870 Circular Fingerprint

Deep Neural Network 0.700 0.446 0.638 0.762 0.358 0.525 0.737 MACCs fingerprint

Deep Neural Network 0.808 0.539 0.828 0.788 0.542 0.653 0.836 Latent representation CDDD

Deep Neural Network 0.774 0.471 0.828 0.720 0.470 0.600 0.811 Molecular Descriptors

Message Passing Neural Network 0.746 0.527 0.672 0.819 0.454 0.591 0.741 Graph

Neural Language Processing 0.780 0.551 0.741 0.819 0.510 0.632 0.753
Text Vectorization and character 

embedding

Neural Language Processing 
Augmented

0.815 0.616 0.776 0.855 0.585 0.687 0.886
Text Vectorization and character 

embedding

Multimodal 0.808 0.592 0.777 0.839 0.564 0.672 0.830 All (no graph)

Extreme Gradient Boosting
(best ML model)

0.742 0.605 0.600 0.883 0.485 0.602 0.921 Latent Description CDDD



1. Gradually increasing the size of the 
training set, to gain insights into the 
model behavior. 

2. The behavior of the multimodal 
approach aligns with the ideal 
scenario, consistently improving its 
performance as the training set 
gets bigger.

Model performance comparison



We want to explore the reason why the models make decisions and perform assessments

LIME

SHAP

Perturbative  approach

While the model may be very complex globally, it is easier to
approximate it around the vicinity of a particular instance. While
treating the model as a black box, we perturb the instance we want to
explain and learn a sparse linear model around it, as an explanation

SHAP values interpret the impact of having a certain value for a given
feature in comparison to the prediction we'd make if that feature took
some baseline value.

Game Theory

A mechanistic interpretation: Model explainability



We explored the importance of descriptors for the assessment provided by ML models. 
Example of results reported for increased mitochondrial dysfunction

Descriptor’s importance



27

Take home messages



Conclusions & perspectives

• ML and AI models to assess the potential cardiotoxic effects of chemicals 

belonging to different classes such as pesticides, drugs, and industrial 

compounds following the AOP developed specifically for cardiotoxicity

• They can serve as a first-tier component in the Integrated Approaches to Testing 

and Assessment (IATA) for cardiotoxicity

• Providing elements to inform decision makers (limitations and uncertainties, 

interpretability/explainability)
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