

Dissecting Drug-Induced-Liver-Injury

Arslan Masood¹, Markus Heinonen¹, Dorota Herman², Hugo Ceulemans², Samuel Kaski¹

¹DepartmentofComputerScience, AaltoUniversity, 02150Espoo, Finland ²JanssenPharmaceuticaNV, Turnhoutseweg30, 2340Beerse, Belgium arslan.masood@aalto.fi

Research Questions

- ► How preclinical phenotypes translates to clinical adverse effects? How to identify the network of interactions between preclinical and clinical DILI-realted endpoints?
- ► How to learn good latent representations of molecules?

Assumptions

- ► Few hidden process that drive the whole toxicity landscape
- The association strength between s_i and s_j can be represented in term of similarity

Method

Matrix Factorization

$$\mathbf{E} = f_{\theta}(\mathbf{X})$$

$$D = W^T E$$
 $S = W^{'T} Y$

$$\hat{\mathbf{A}} = \mathbf{D}^T \mathbf{S} + \mathbf{b}_n + \mathbf{b}_m$$

$$(\mathbf{A} - \hat{\mathbf{A}})^2 + \lambda_1(||\mathbf{S}||^1) + \lambda_2(||\mathbf{D}||^2)$$

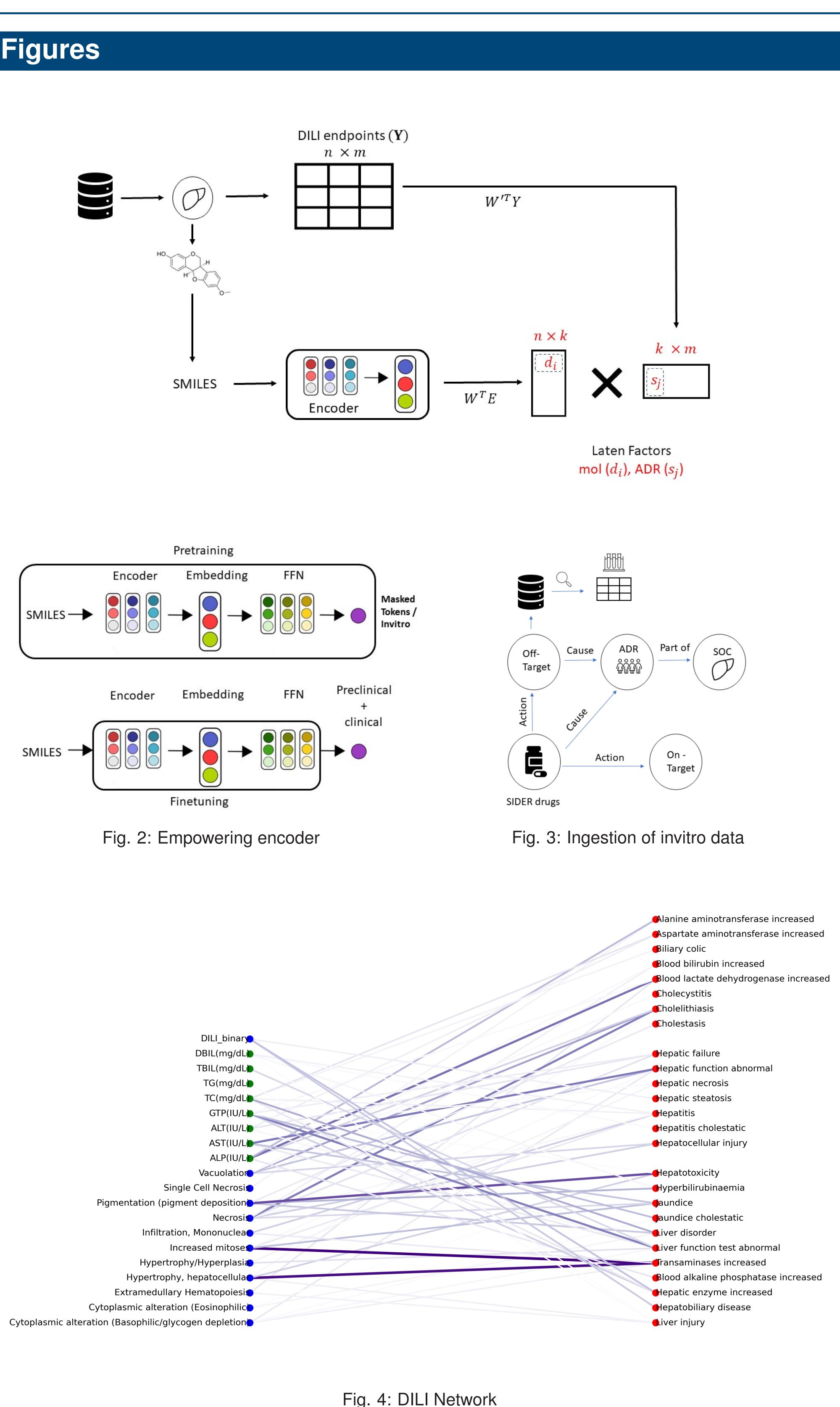
Classification loss (Binary cross Entropy)

$$\hat{a}_{ij} = \sigma(d_i^T s_i + b_i + b_i)$$

$$\min_{D,S} - \sum_{(i,j)\in A} \left(\underbrace{ \underbrace{ a_{ij} \log(\hat{a}_{ij}) + (1-a_{ij}) \log(1-\hat{a}_{ij})}_{\mathcal{L}_{\mathsf{BCE}}} \right)$$
 $+ \lambda \left(||d_i||^2 + ||s_i||^2 \right)$

$$\mathcal{L}_{BCE} = \sum_{i} \sum_{j} \left(a_{ij} \log \hat{a}_{ij} + (1 - a_{ij}) \log(1 - \hat{a}_{ij}) \right)$$

Pos-Negative weighting, Task weighting


$$\mathcal{L}_{\text{BCE}}^{\text{wb}} = \sum_{j} w_{p} \sum_{i} (w_{p}^{+} a_{ij} \log \hat{a}_{ij}) +$$

$$(1 - a_{ij}) \log (1 - \hat{a}_{ij}))$$

$$w_{p}^{+} = \alpha \frac{N_{p-}}{N_{p+}} + (1 - \alpha)1$$

 $\mathbf{w}_{p} = \beta \frac{N}{N_{p}} + (1 - \beta)1$

Acknowledgements

This project is funded by Horizon2020 research and innovation programme under the MSC-ITN actions, grant agreement No. 956832.

