

Balancing Imbalanced Toxicity Model: Using MolBERT with Focal Loss

Muhammad Arslan Masood 19.09.2024

- 9 out of 10 drugs fail in clinical trials
- 50% of failures stem from unexpected toxicity
- Drug-induced liver injury (DILI) is a major culprit behind late-stage drug failures

- Challenges
 - Limited input space (limited chemistry)
 - Limited output space (limited targets)
 - Highly imbalanced dataset
- Proposed solution
 - Leverage pretraining to learn robust molecular representations
 - Incorporation of other (Hematology and clinical) modalities
 - Leverage weighted loss to tackle imbalance
 - Provide biological context in pretraining

Preclinical Liver Histopathology Tasks

$$\begin{aligned} \mathcal{D}_{\text{invivo}} &= \{(\mathbf{x}_i^{\text{invivo}}, \mathbf{y}_i)\}_{i=1}^N \\ \mathbf{y}_{i=(n,t,d,p)} &\in \{y_i\}_{k=1}^K \\ y_i &\in \{s_0, s_1, \dots, s_5\} \end{aligned}$$

Compounds n = 1, ..., NTimepoints $t \in \{t_1, ..., t_8 \in \mathbb{R}\}$ Doses $d \in \{d_1, d_2, d_3 \in \mathbb{R}\}$ Histopathological endpoints p = 1, ..., PMultiple animal replicates k = 1, ..., KSeverity levels $y_i \in \{s_0, s_1, ..., s_5\}$

Preclinical Liver Histopathology Tasks

Binary Label assignment

• Pooled over dose and time and only consider the 'nominal' toxicity y_{np} .

 $y_{np} = \begin{cases} 1, & \text{if } \exists \text{ a combination } (d, t) \text{ such that } \sum_{k} \mathbb{I}(y_{ndtpk} \neq s_0) \ge 2 \\ 0, & \text{otherwise} \end{cases}$

Expanding Output Space

Preclinical Hematology Tasks

TG-GATES Hematology

Description	Thresholds
Alkaline Phosphatase (ALP)	1.5
Aspartate Aminotransferase (AST)	2
Alanine Aminotransferase (ALT)	2
Gamma-Glutamyl Transferase (GTP)	3
Total Cholesterol (TC)	1.5
Triglycerides (TG)	3
Total Bilirubin (TBIL)	dependent on $y_{control}$
Direct Bilirubin (DBIL)	dependent on $y_{control}$

 $\begin{aligned} y_{ntdpk} \in \mathbb{R} \\ \mathbb{R} \to \{0, 1\} \\ y_{control} &= \frac{1}{K} \sum_{k=1}^{K} y_{ntdpk} \mid d \in \{0\} \\ y_{obs} &= y_{ntdpk} \mid d \notin \{0\} \end{aligned}$

$$y_{ndtpk}^{'} = \begin{cases} 1, & \text{if } y_{obs} > th \times y_{control} \\ 0, & \text{otherwise} \end{cases}$$

• SIDER dataset (1430 drugs, 6060 ADRs)¹

¹https://www.meddra.org/how-to-use/basics/hierarchy

Preclinical + clinical output space

- Preclinical: drugs 410, task 20, 7.38% active
- Clinical: drugs 1219, task 28+2, 13.7% active

preclinical + clinical

Expanding Input space

Molecular Representation learning

- Unsupervised pretraining
 - MolBERT²
 - GuacaMol benchmark dataset (1.26m compounds)
 - + 12 attention heads, 12 layers, 768 dimensional hidden layer, \approx 85M parameters

²Fabian et. al. Molecular representation learning with language models and domain-relevant auxiliary tasks

Molecular Representation learning

Given a set of SMILES and invivo labels $\mathcal{D}_{invivo} = \{(s_n^{invivo}, \mathbf{y}_n)\}_{n=1}^N$

$$\begin{split} \mathbf{h}_n &= \text{MolBERT}(\mathbf{s}_n^{\text{invivo}}; \Theta_{\text{pretrain}}^*), \quad \mathbf{h}_n \in \mathbb{R}^d\\ \hat{f}_{np} &= \text{head}_{\text{invivo}}(\mathbf{h}_n; \Theta_{\text{MLP}}) \end{split}$$

Balancing Imbalanced Toxicity Models

$$\mathcal{L}_{\rm FL}^{\rm w} = \sum_{n=1}^{N} \sum_{p=1}^{P} w_p^+ (1 - \sigma(f_{np}))^{\gamma} y_{np} \log \sigma(f_{np}) + \sigma(f_{np})^{\gamma} (1 - y_{np}) \log (1 - \sigma(f_{np}))$$

$$w_p^+ = \alpha \frac{N_{p-}}{N_{p+}} + (1-\alpha)$$

where $\alpha \in [0, 1]$ controls the positive balancing Focal loss: $\alpha = 0$ Weighted BCE: $\gamma = 0$ BCE: $\alpha = 0, \gamma = 0$

Effect of weighting

Taskwise log-loss of positive and negative instances

$$\begin{aligned} \mathcal{L}_{\text{pos}}^{p} &= \frac{1}{N_{\text{pos}}} \sum_{n=1}^{N} \left(y_{np} \log \sigma(f_{np}) \right) \\ \mathcal{L}_{\text{neg}}^{p} &= \frac{1}{N_{\text{neg}}} \sum_{n=1}^{N} \left((1 - y_{np}) \log(1 - \sigma(f_{np})) \right) \end{aligned}$$

Results

• Comparison with baselines

Model		Loss t	ype		Features		Finetuning	Metrics			
	BCE	BCE ^w	FL	FL ^w	ECFP	BERT		BA	F1	ROC	AP
RF	-	-	-	-	-	-	-	0.67 ± 0.002	0.36 ± 0.003	0.65 ± 0.004	0.27 ± 0.003
	1	-	-	-	1	-	-	0.67 ± 0.004	0.34 ± 0.001	0.62 ± 0.003	0.26 ± 0.002
	-	1	-	-	1	-	-	0.66 ± 0.003	0.34 ± 0.004	0.63 ± 0.002	0.26 ± 0.001
	-	-	1	-	1	-	-	0.67 ± 0.004	0.37 ± 0.002	0.64 ± 0.003	0.28 ± 0.004
	-	-	-	1	1	-	-	0.68 ± 0.001	0.35 ± 0.003	0.65 ± 0.002	0.26 ± 0.001
MT	1	-	-	-	-	1	-	0.68 ± 0.003	0.37 ± 0.004	0.65 ± 0.001	0.28 ± 0.003
	-	1	-	-	-	1	-	0.70 ± 0.002	0.38 ± 0.001	0.67 ± 0.003	0.29 ± 0.002
	-	-	1	-	-	1	-	0.70 ± 0.001	0.39 ± 0.003	0.67 ± 0.004	0.31 ± 0.001
			-	1	-	1	-	0.72 ± 0.004	0.40 ± 0.002	0.70 ± 0.003	0.30 ± 0.001
	1	-	-	-	-	1	 ✓ 	0.73 ± 0.001	0.37 ± 0.002	0.70 ± 0.003	0.28 ± 0.004
	-	1	-	-	-	1	1	0.72 ± 0.004	0.37 ± 0.001	0.70 ± 0.002	0.29 ± 0.003
	-	-	1	-	-	1	1	0.72 ± 0.003	0.38 ± 0.004	0.69 ± 0.001	0.30 ± 0.002
	-	-	-	1	-	1	1	0.72 ± 0.002	0.37 ± 0.003	0.68 ± 0.002	0.28 ± 0.001

Results

- Weighted losses are better than their non-weighted counterparts
- Focal loss > BCE

Model		Loss ty	уре		Features		Finetuning	Metrics			
	BCE	BCE ^w	FL	FL ^w	ECFP	BERT		BA	F1	ROC	AP
RF	-	-	-	-	-	-	-	0.67 ± 0.002	0.36 ± 0.003	0.65 ± 0.004	0.27 ± 0.003
	1	-	-	-	1	-	-	0.67 ± 0.004	0.34 ± 0.001	0.62 ± 0.003	0.26 ± 0.002
	-	1	-	-	1	-	-	0.66 ± 0.003	0.34 ± 0.004	0.63 ± 0.002	0.26 ± 0.001
	-	-	1	-	1	-	-	0.67 ± 0.004	0.37 ± 0.002	0.64 ± 0.003	0.28 ± 0.004
	-	-	-	1	1	-	-	0.68 ± 0.001	0.35 ± 0.003	0.65 ± 0.002	0.26 ± 0.001
MT	1	-	-	-	-	1	-	0.68 ± 0.003	0.37 ± 0.004	0.65 ± 0.001	0.28 ± 0.003
	-	1	-	-	-	1	-	0.70 ± 0.002	0.38 ± 0.001	0.67 ± 0.003	0.29 ± 0.002
	-	-	\checkmark	-	-	\checkmark	-	0.70 ± 0.001	0.39 ± 0.003	0.67 ± 0.004	0.31 ± 0.001
	-	-	-	\checkmark	-	\checkmark	-	0.72 ± 0.004	0.40 ± 0.002	0.70 ± 0.003	0.30 ± 0.001
	1	-	-	-	-	1	1	0.73 ± 0.001	0.37 ± 0.002	0.70 ± 0.003	0.28 ± 0.004
	-	1	-	-	-	1	1	0.72 ± 0.004	0.37 ± 0.001	0.70 ± 0.002	0.29 ± 0.003
	-	-	1	-	-	1	1	0.72 ± 0.003	0.38 ± 0.004	0.69 ± 0.001	0.30 ± 0.002
	-	-	-	1	-	1	1	0.72 ± 0.002	0.37 ± 0.003	0.68 ± 0.002	0.28 ± 0.001

Extension of this work

ToxBERT

- MolBERT
 - learns only chemically driven representations
 - lacking in biological knowledge
- ToxBERT
 - Chemically driven rerpesentaions through masking and Physchem
 - Biological interactions through invitro pretraining

- invitro-BERT outperforms Random Forest by 27% in Hematology and 32% in Pathology tasks
- invitro-BERT outperforms MolBERT by 29% in Hematology and 10% in Pathology tasks

Model	Features	Loss type	AUPR					
mousi	reatures	Loss type	Hematology	Pathology	Clinical	Combined		
RF	ECFP	-	0.37 ± 0.003	0.21 ± 0.002	0.26 ± 0.001	0.27 ± 0.004		
	ECFP	BCE	0.33 ± 0.002	0.26 ± 0.003	0.26 ± 0.004	0.26 ± 0.003		
MT MI D	ECFP	BCE^w	0.32 ± 0.004	0.26 ± 0.001	0.25 ± 0.002	0.26 ± 0.003		
MI-MLP	ECFP	FL	0.38 ± 0.002	0.31 ± 0.003	0.26 ± 0.004	0.28 ± 0.004		
	ECFP	FL^w	0.31 ± 0.003	0.28 ± 0.004	0.25 ± 0.002	0.26 ± 0.003		
	MolBERT	BCE	0.27 ± 0.003	0.23 ± 0.002	0.29 ± 0.004	0.28 ± 0.003		
MolBERT	MolBERT	BCE^w	0.30 ± 0.002	0.27 ± 0.004	0.29 ± 0.001	0.29 ± 0.003		
	MolBERT	FL	0.36 ± 0.001	0.26 ± 0.002	0.31 ± 0.004	0.31 ± 0.002		
	MolBERT	FL^w	0.36 ± 0.003	0.28 ± 0.001	0.29 ± 0.004	0.30 ± 0.003		
Physchem-BERT	ToxBERT	FL^w	0.46 ± 0.004	0.28 ± 0.003	0.29 ± 0.002	0.31 ± 0.003		
invitro-BERT	ToxBERT	FL^w	0.51 ± 0.002	$\textbf{0.31} \pm 0.003$	0.30 ± 0.004	$\textbf{0.34} \pm 0.003$		

Toxicity is a challenging task to model, following solutions might help

- Expand output space by incorporating closely related modalities
- Expand input space by leveraging unsupervised pretraining
- Leverage auxiliary data to learn better context

Acknowledgment

This project is funded by the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 956832, and it is Horizon 2020 Marie Skłodowska-Curie Innovative Training Network - European Industrial Doctorate.