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Fig: Biocatalysis enabling efficient and sustainable synthesis of AstraZeneca drug molecules.



 

Context and Research Questions

High-stakes decisions require UQ in drug discovery (Mervin et al., 2021) 
1. initial screening of chemical space,
2. guiding the search, and
3. choosing final drug candidate for clinical trial.

Temporal split most accurately 
simulates the real drug 
discovery (Yin et al., 2023).

Low-data problem makes it 
difficult to accurately evaluate UQ 
(Hirschfeld et al., 2020).

Censored data is typically available
but currently not used in UQ for 
drug discovery applications (Hüttel et al.,2024).
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Temporal Evaluation of Assay-based Data

Assay categories, 
- Panel: e.g. Absorption, Distribution, Metabolism, 

Excretion, and Toxicity (ADME-T). Cross-project 
assays for off-target effects.

- Other: project-specific on-target effects.

Preprocessing,
- Aggregate duplicated measurements with median
- Transform to log-scale for all end-points
- ECFP with size 1024 and radius 2

Temporal evaluation,
- Split data into five folds based on time
- Train/valid/test on resulting 3 settings 
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Temporal Evaluation of Assay-based Data

Data analysis, feature-space and label-space shifts over time…
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Modeling UQ in Regression

Ensemble-based approaches train multiple individual models 
independently, e.g. decision trees in Random Forest (Sheridan, 2012) 
and neural networks (Lakshminarayanan et al., 2017).

Objective, for regression mean squared error (MSE) is used to train 
each base model. For censored labels we use (Arany et al., 2022),

Result,

- Final prediction is the average over all 
individual predictions, 𝜇

- Predicted epistemic uncertainty is the variance 
between the predictions, 𝜎2

ep 
=
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Experimental Setup

Training details,

Optimized hyperparameters for Random Forest, base 
neural network for Ensemble, MC-Dropout. 

Make 10 repeated experiments for all models.

Evaluation metrics, 

- Predictive accuracy in terms of MSE
- Calibration of uncertainty with confidence-based 

calibration curves (Hubschneider et al., 2019)
- Intertwined, overall performance in terms of NLL 

and ENCE (Levi et al., 2022)

Only key results presented here…
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Ablation study,

Compare each model trained with and without 
censored labels in addition to the observed values.

Model comparison, 

Compare the resulting models with each other and the 
Random Forest baseline.

Case study,

Deeper look at the predicted epistemic uncertainty by 
the best performing model on an assay with large 
distribution shifts.
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Ablation Study
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NLL is adjusted to censored labels using the 
Tobit model (Tobin, 1958),

Compare, ΔNLL = NLL
Observed

 - NLL
Censored

Significance is marked with star 
above/below if censored/observed model is 
significantly better for majority of settings.
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Model Comparison
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Overall predictive performance,

Higher accuracy for all models on Panel (ADME-T) assays without distributions shifts. 



 

Model Comparison
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Confidence-based calibration curves,  

1. Convert predicted 
uncertainty to 
Confidence 
Interval (CI), 
e.g. 1.96𝜎 for 
a 95% CI. 

2. For every 
predicted 
z% CI (expected) 
check fraction of 
predictions that lie 
within the 
corresponding CI 
(observed).
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Conclusions
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Censored labels, 
Enhance the robustness and reliability of the models, especially when >33% of the available labels are 
censored. 

Best methods,
The highest predictive accuracy varies between assays, but the computationally efficient, Bayesian 
MC-Dropout model produces consistently better calibrated uncertainty estimates.

Temporal evaluation,
Results from the model comparison are typically robust through time for Panel (ADME-T) assays, where 
no shifts occur due to the diverse nature of the cross-project assays. 
For target-based assays, it can change drastically, requiring re-evaluated comparison from time to time.

In our extended work, we have added Bayesian and Gaussian models as well as more ADME-T assays 
(Svensson et al., 2024)
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