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We experimentally determine three-dimensional structures at the atomic level
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Biological macromolecules are the machines that biology relies on for proper function. As a 
team of structural biologists, we elucidate the atomic ‘blueprints’ of these targets to 

understand their function and how therapeutics we develop can modulate their activities
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Building a protein 
structure is an 
enormous puzzle 
on a microscopic 
level



We experimentally locate the atoms and build atomic resolution 
blueprints

Building a protein 
structure is an 
enormous puzzle 
on a microscopic 
level
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Structural data informs project work from atoms to disease mechanism

Defining molecular mechanisms with structural biology
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Understand complex target biology
Decipher molecular mechanism to tailor lead finding 
strategy
Discover druggable sites

Mode-of-action studies elucidate how a therapeutic is 
modulating biology

Drive lead understanding to guide optimization
Define binding modes of tool and competitor compounds and 
enable fast-track computational approaches
Structurally guide lead optimization

Our mission

Lead Generation and Lead Evaluation Lead OptimizationTarget Evaluation Development

Finding and understanding leads Modifying and improving leads

D2 PCCD1

Druggability 
assessments 
and 
mechanistic 
understanding

Structurally enable 
lead finding strategy
e.g. virtual screening, 
fragment screening, high 
throughput screening

Binding mode 
determination to 
enable structure-
based 
optimization
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We use X-rays and electrons for structure determination
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Crystalize
sample 

Expose to 
X-rays

Freeze
sample Image with

electrons

Structure
determination
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Comparing cryo-EM, X-ray crystallography, and NMR

Overview of structural biology techniques
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Cryo-EM X-ray crystallography NMR

Sample types
Membrane proteins
Large complex proteins
Soluble proteins

Crystallizable samples
Largely limited to soluble proteins Proteins with MW <50 kDa

Advantages Only requires small sample size
Structures are obtained in native state

High resolution
Broad MW range
Established technique
Moderate throughput
Routinely resolve small molecules and 
water networks

Obtains 3D structures in solution
Information about dynamcis
Suited for RNAs

Current 
limitations

Proteins with molecular weights >100 
kDa are most feasible
Routine resolutions are not as high as X-
ray crystal structures
Costly, but getting cheaper

Crystallization can be difficult or not 
possible
Results are in static crystalline state
Diffraction can be difficult

Needs high purity sample
Has a difficult computational simulation
Sample must be isotopically labeled

Sample 
amounts Nanograms to micrograms Micrograms to milligrams Micrograms to milligrams
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Resolution and why it is important

5.0 Å 3.0 Å

2.0 Å

1.5 Å

Kuster DJ, Liu C, Fang Z, Ponder JW, Marshall GR (2015) High-Resolution Crystal Structures 
of Protein Helices Reconciled with Three-Centered Hydrogen Bonds and Multipole 
Electrostatics. PLOS ONE 10(4): e0123146. https://doi.org/10.1371/journal.pone.0123146
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https://doi.org/10.1371/journal.pone.0123146


Integrated approaches necessary for challenging targets and systems  

Structural biology is not ‘one size fits all’  
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X-ray crystallography
Electron cryo-microscopy (SPA)

NMR

Medium to high resolution

Hydrogen/deuterium exchange (HDX) mass 
spectroscopy

Local conformations and binding interfaces

Protein structure prediction
Docking

Molecular Dynamics 

Computational approaches

Small angle X-ray scattering (SAXS)
Native mass spectroscopy

Crosslinking mass spectroscopy

Global conformations and complexes

Integrated approaches for 
structural determination
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Highlight integrating SBIO techniques

Case study for understanding protein structure-function
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Structure-function analysis of transmembrane domain insertase called the ER membrane protein complex (EMC)
CryoEM delivered a moderate resolution EM map at 6angstrom, but not good enough to build a structure de novo.
Implemented numerous integrated structural biology techniques in addition to cell biology and biophysics.

Integrated structure:
CryoEM and crystallography
Co-evolution to determine spatially linked residues
Cell biology experiments to determine topology and #of TMDs in proteins
Deep learning protein prediction methods (trROSETTA / AF2)
Molecular dynamics flexible fitting with Flex-EM, Namdinator, and ISOLDE; normal mode analysis

Biophysics:
SEC-MALS
Microscale thermophoresis
nanoDSF
Non-natural amino acid incorporation (BPA photocrosslinker) into recombinant protein and in vitro translations

Cell biology:
Cellular site specific photo-crosslinking 
Membrane protein expression in HEK freestyle cells
Ratiometric FACS assay for tracking membrane protein biogenesis
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Insertion machineries
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• Translocated luminal 
domain is very short

• Either topology is okay
• Energy-independent

EMC is an insertase for terminal transmembrane domains
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• Translocated luminal 
domain is very short

• Either topology is okay
• Energy-independent

EMC is an insertase for terminal transmembrane domains
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How does EMC facilitate insertion
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EMC is a multi-subunit integral membrane protein
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EMC purification strategy
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State-of-the-art in structural biology

Cryo-EM for 3D structure determination of macromolecules 
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Cryo-EM is an imaging-based technique that reveals 
the atomic structures of macromolecules (protein, 
RNA, DNA)

Technical and algorithmic advances has transitioned 
cryo-EM from niche to method of choice for structural 
biologists 

Cryo-EM opens many exciting possibilities because it 
can be used to study previously intractable questions

For challenging specimens…

Small amounts of biological material

Membrane proteins

Biological assemblies (protein and nucleic acid 
complex)

Native / full length proteins

Deconvolving conformational dynamics

Freeze
sample

Image with
electrons

Solve 
structure

Calculate atomic 
coordinates
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SBGrid Consortium is a great online resource for talks on applications

AI/ML methods are essential for all stages in cryo-EM
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Automated data collection
Scipion

Image processing
CryoAssess

Particle Picking
Topaz & crYOLO

3D-reconstruction
CryoDRGN

Model Building
ModelAngelo

Map improvement
DeepEMhancer

https://sbgrid.org/
https://www.youtube.com/@SBGridTV
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Low resolution cryoEM structure of EMC
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Low resolution cryoEM structure of EMC
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What is the composition of the cytoplasmic EMC
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Purification and analysis of individual subunits
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Nano Differential Scanning Fluorimetry (nanoDSF)
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Measure protein unfolding as a function of temperature

Tryptophan fluorescence changes 
based on environment 

Adapted from NanoTemper Resources: https://resources.nanotempertech.com/
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EMC2 increases stability when combined with EMC8 or EMC9

26 /// AiChemist + AIDD /// 04 March 2024



Are stable complexes forming?

Microscale thermophoresis is based on the detection of a temperature-
induced change in fluorescence of a target as a function of the concentration 
of a non-fluorescent ligand. The observed change in fluorescence is based on 
two distinct effects. 
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Size exclusion chromatography coupled to multi-angle light scattering (SEC-MALS) gold standard in MW 
determination
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Independently validated with MST and SEC-MALS

Complexes consist of EMC2+8 and EMC2+9
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Established SBIO technique

X-ray crystallography for 3D structure determination of macromolecules 

31

X-ray crystallography is a diffraction-based technique 
that reveals the atomic structures of macromolecules 
(protein, RNA, DNA)

X-ray crystallography has long been the method of 
choice when determining macromolecular structure.

Pros:
High resolution; 
High-throughput compared to cryo-EM in robust 
crystallization systems
Can be coupled to lead discovery with fragment 
screening

Cons:
Relies on crystallization of protein (or 
RNA/DNA)
Requires large amount of sample 
Crystallization disfavors proteins with 
flexibility/dynamics

Crystallize
sample

Measure 
diffraction

Solve 
structure

Calculate atomic 
coordinates
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Crystallography with the complexes
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Limited proteolysis to determine crystallization boundaries

33 /// AiChemist + AIDD /// 04 March 2024



SEC-MALS data shows excellent QC

Limited proteolysis to determine crystallization boundaries
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Crystallography with the complexes
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Native data set to 2.8Å
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Resolution at 2.2 Å but 
with interesting pathology



Crystal structure of EMC2+9
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Crystal structure and EM density is not a perfect match
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Normal mode analysis is a technique 
that can be used to describe the 
flexible states accessible to a protein 
or other molecule about an equilibrium 
position. It is based on the physics 
used to describe small oscillations 
(PMID: 31510014)

Used software ElNémo to calculate 
normal modes (PMID: 15215461)

Normal mode analysis as a proxy for dynamics
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• Flex-EM: uses Monte-Carlo search, 
conjugate-gradients minimization, and 
simulated annealing molecular dynamics 
(PMID: 18275820)

• Namdinator: automated molecular 
dynamics flexible fitting simulation and 
real space refinement (PMID: 31316797)

• ISOLDE: interactive real-time molecular 
dynamics flexible fitting (PMID: 29872003)

Integrating modelling and experimental data
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Namdinator automated MD flexible fitting
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Namdinator automated MD flexible fitting
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ISOLDE MD flexible fitting during model building
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Substrate binding groove faces the membrane plan
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EMC binding groove is only moderately hydrophobic
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Substrate binding-
groove
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In vitro E. coli translation system with modifications: 
• omission of RF1
• tRNA purified from strain over-expressing amber 

suppressor tRNA
• Supplemented with amber suppression tRNA synthetase
• Benzoyl-phenylalanine (Bpa), a photo-crosslinking non-

natural amino acid
• 35S-Methionine for visualizing translations

Can cytosolic EMC engage TMDs?
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Can cytosolic EMC engage TMDs?
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Low resolution cryoEM structure of EMC
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Identification of subunit TMDs

49 /// AiChemist + AIDD /// 04 March 2024



Co-evolution

Integrated approaches to our TMD puzzle
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Protein prediction

/// AiChemist + AIDD /// 04 March 2024



Analysis of correlated evolutionary sequence 
changes across proteins identifies residues 
that are close in space with sufficient accuracy 
to determine the three-dimensional structure of 
the protein complexes (PMID: 25255213)

Determining intra and inter molecular contacts

Who is next to who with co-evolution
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AF2 has solved the protein folding problem, but still many gaps that require experimentation

AlphaFold2 structure prediction of proteins

52

AlphaFold2 is an AI system that makes accurate predictions of a protein’s 3D structure from its 
amino-acid sequence. AlphaFold Database now provides over 200 million protein predictions 
(https://alphafold.ebi.ac.uk/)

AF2 revolutionized structural biology but there are still limitations:
Most accurate models are predictions of monomers

AF multimer is very powerful in predicting protein complexes but not always accurate
Cannot infer mutational analysis
Does not predict ligands, cofactors, post-translational modifications

AlphaFill can help infer or ‘transplant’ missing elements (https://alphafill.eu/)

Closing the gaps with next generation applications:
AlphaLink (predict conformational changes)

https://www.nature.com/articles/s41587-023-01704-z
CombFold (predict large protein assemblies)

https://www.nature.com/articles/s41592-024-02174-0 
AlphaPulldown (in situ protein interaction screen)

https://pubmed.ncbi.nlm.nih.gov/36413069/
Generative de novo design

https://www.nature.com/articles/s41586-023-06415-8 
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Prediction of subunits unambiguously matches density maps
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Prediction of subunits unambiguously matches density maps
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Placement of  multi-TMD subunits
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Placing single pass TMDs with in vivo photo-crosslinking
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CryoEM, AI prediction, and in cell crosslinking

Organization of membrane subunits
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Protein prediction for models of the lumenal subunits
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Composite model of EMC based integrated approaches
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In agreement with subsequent full-length structure
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Mechanism of EMC mediated membrane protein insertion

62

John P O'Donnell, Ben P Phillips, Yuichi Yagita, Szymon Juszkiewicz, Armin Wagner, 
Duccio Malinverni, Robert J Keenan, Elizabeth A Miller, Ramanujan S Hegde (2020) 
The architecture of EMC reveals a path for membrane protein insertion eLife 9:e57887 
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Integrated approaches to understanding mechanism
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///////////

Thank you



2D classification of particles
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Membrane protein topology and # of TMDs
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Site-specific photo-crosslinking in mammalian cells
• Methanosarcina mazei pyrrolysyl-tRNA synthetase 

(PylRS) and tRNAPylCUA pair 
• photo-crosslinking amino acid AbK
• UV irradiated in cells in native state

Example cellular crosslink
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