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What is denoising 
diffusion?



Principles of denoising diffusion



…for molecules
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Denoising diffusion for 
structure-based drug 

discovery



The network: Equivariant GNN



Denoising diffusion for molecules with 
pocket condition



What are the problems with current 
generative de novo models?
• In principle, current SOTA models show promising results
• However, the dataset limitations are striking

• No efficient chemical space coverage possible
• Many flaws in the dataset lead to bias propagation
• Many drug discovery campaigns have very specific needs
• Hence, ligand generation from scratch suboptimal

• How about constraining the generation in chemical and/or property space?
• We came up with an easy-to-use latent-conditional approach (besides the pocket 

condition) to have better control over the generation process
• We applied the approach to hit expansion

• Chemical diversification of already existing hits without losing potential activity
• E.g., preserve the shape of the hit molecule and diversify its chemical composition



The pipeline of PoLiGenX



Model evaluation: Shape and chemical 
composition



Model evaluation: Docking and 
druglikenessLatent-Conditioned Equivariant Diffusion for Controlled Structure-Based De Novo Ligand Generation

Table 1. Docking performance on the CrossDocked test set and ligands generated using PoLiGenX. QuickVina2 is employed for docking.
We report mean values across all targets with standard deviations given as subscripts. Drug-likeness is measured via RDKit’s QED value.
Further, molecules are evaluated in terms of the octanol–water partition coefficient (logP), the molecular weight (MolWt) and the number
of hydrogen acceptors and donors. Following Lipinski’s rule of five, we report the percentage of molecules that obey the respective rule.
The last column gives the average of molecules fulfilling all rules.

Data QVina2 (All) # QVina2 (Top-10%) # QED " logP " MolWt " H-acceptors " H-donors " Lipinski "
CrossDocked test set -6.85±2.33 - 0.47±0.20 0.79 0.85 0.84 0.8 3.35±1.14

PoLiGenX -7.21±2.22 -8.04±2.44 0.59±0.20 0.91 0.87 0.85 0.91 3.57±0.93

outlined, the purpose of PoLiGenX is significantly different
to recent de novo models, such as EQGAT-diff, hence we
omit a comparison. Tab. 1 summarizes the results. We ob-
serve improved docking scores for generated samples com-
pared to the CrossDocked test data, in particular within the
top 10% of each target. Here, we reach a docking score of
�8.04± 2.44 compared to �6.85± 2.33 for the test data.
At the same time, the generated ligands per target show
improvement in RDKit’s drug-likeness score (QED) and
adherence to Lipinski’s Rule of Five. These are chemical
features recognized from a medicinal chemistry perspective
as guidelines to identify compounds likely to possess favor-
able bioavailability. Specifically, the octanol-water partition
coefficient (logP) should be less than 5, molecular weight
(MolWt) should be less than 500 Daltons, hydrogen bond
acceptors (H-acceptors) less than 10 and hydrogen bond
donors (H-donors) should be less than 5.

Fig. 4 depicts three randomly chosen test set ligands with
four conditionally sampled and randomly selected ligands
each. Judging by visual inspection, the topology is well pre-
served. We note that chemical similarity, especially based
on fingerprints can change drastically if some chemical ele-
ments are interchanged. As shown in the bottom panel in
Figure 2, PoLiGenX achieves a mean chemical similarity
of around 0.33 while preserving shape similarity of 0.87
compared to the unconditional case with 0.12 and 0.64 for
chemical and shape similarity, respectively.

The controlable generation of PoLiGenX can be further reg-
ulated by including a control parameter � 2 (0, 1] that scales
the latent z when going into the diffusion model. That is, for
small � values approaching 0, PoLiGenX does not include
any latent information and collapses to the unconditional
EQGAT-diff and only leverages the pocket information as
context. With � interpolating between e.g. (0.5, 1.0), we
observe that the mean chemical similarity for generated
ligands with respect to the references also increases as de-
picted in Figure 5. We detail the influence of the latent
variable z in combination with the scale parameter � in the
supplementary materials.

Figure 5. Density plot for chemical similarity of generated ligands
from PoLiGenX with varying � control parameter. With increasing
�, the latent z of reference/seed ligand M0 is preserved such that
generated ligands exhibit higher chemical similarity to M0.

5. Conclusions
We have developed PoLiGenX for controlled de novo ligand
generation within a protein binding pocket. By incorporat-
ing a latent encoding from a seed molecule into the diffusion
model, we ensure that the generated ligands preserve shape
and also adhere to the structural constraints of the target
protein binding site. The effectiveness of PoLiGenX is evi-
denced by improved docking scores compared to reference
ligands. Additionally, the generated ligands conform to
Lipinski’s Rule of Five, demonstrating their drug-likeness.
Importantly, the model maintains chemical diversity, which
is essential for exploring a broad range of chemical space
and discovering novel therapeutic candidates. This integra-
tion of shape preservation, target specificity, and chemical
diversity provides a powerful approach for the targeted gen-
eration of drug candidates, particularly useful in the hit
expansion phase of drug discovery campaigns.



Examples
Reference Generated

0.101 0.07 0.115 0.246

0.151 0.132 0.224 0.191

0.138 0.164 0.129 0.106



The expressiveness of the latents



Control over the latents



Summary

• Introduction of an easy and efficient way to incorporate a 
constraining mechanism into diffusion-based SBDD models via latent 
conditioning
• High shape similarity with reference ligands, while chemical 

diversification is guaranteed (no mode collaps etc.)
• Docking scores and druglikeness are favorable
• The latent model learns expressive embeddings (that could be also 

used downstream for other purposes)
• Flexible control over the latent strength



Thanks!

Questions?


