LATENT-CONDITIONED EQUIVARIANT DIFFUSION FOR STRUCTURE-BASED DE NOVO LIGAND GENERATION

Tuan Le*, Julian Cremer*, Djork-Arné Clevert, Kristof T. Schütt

*Equal contribution

What is denoising diffusion?

Principles of denoising diffusion

Generative reverse denoising process

Data

...for molecules

Denoising diffusion for structure-based drug discovery

The network: Equivariant GNN

Denoising diffusion for molecules with pocket condition

What are the problems with current generative *de novo* models?

- In principle, current SOTA models show promising results
- However, the dataset limitations are striking
 - No efficient chemical space coverage possible
 - Many flaws in the dataset lead to bias propagation
 - Many drug discovery campaigns have very specific needs
 - Hence, ligand generation from scratch suboptimal
- How about constraining the generation in chemical and/or property space?
 - We came up with an easy-to-use latent-conditional approach (besides the pocket condition) to have better control over the generation process
 - We applied the approach to hit expansion
 - Chemical diversification of already existing hits without losing potential activity
 - E.g., preserve the shape of the hit molecule and diversify its chemical composition

The pipeline of PoLiGenX

Model evaluation: Shape and chemical composition

Model evaluation: Docking and druglikeness

Data	QVina2 (All) \downarrow	QVina2 (Top-10%) \downarrow	$QED\uparrow$	$\log P \uparrow$	MolWt ↑	H-acceptors \uparrow	H-donors \uparrow	Lipinski ↑
CrossDocked test set	$-6.85_{\pm 2.33}$	-	$0.47_{\pm0.20}$	0.79	0.85	0.84	0.8	$3.35_{\pm1.14}$
PoLiGenX	-7.21 $_{\pm 2.22}$	-8.04 ±2.44	$0.59_{\pm 0.20}$	0.91	0.87	0.85	0.91	$3.57_{\pm 0.93}$

The expressiveness of the latents

Control over the latents

Summary

- Introduction of an easy and efficient way to incorporate a constraining mechanism into diffusion-based SBDD models via latent conditioning
- High shape similarity with reference ligands, while chemical diversification is guaranteed (no mode collaps etc.)
- Docking scores and druglikeness are favorable
- The latent model learns expressive embeddings (that could be also used downstream for other purposes)
- Flexible control over the latent strength

Thanks!

Questions?

