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What is denoising
diffusion?



ffusion

ing d

IS

Principles of deno

q(x2[x1)

X0

Fixed forward diffusion process

@
b
o
=z

Data

Generative reverse denoising process



...for molecules




Denoising diffusion for
structure-based drug
discovery



The network: Equivariant GNN
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Denoising diffusion for molecules with
pocket condition




What are the problems with current
generative de novo models?

* In principle, current SOTA models show promising results

 However, the dataset limitations are striking
* No efficient chemical space coverage possible
 Many flaws in the dataset lead to bias propagation

 Many drug discovery campaigns have very specific needs
* Hence, ligand generation from scratch suboptimal

* How about constraining the generation in chemical and/or property space?

* We came up with an easy-to-use latent-conditional approach (besides the pocket
condition) to have better control over the generation process

* We applied the approach to hit expansion
* Chemical diversification of already existing hits without losing potential activity
* E.g., preserve the shape of the hit molecule and diversify its chemical composition



The pipeline of PoLiGenX
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Model evaluation: Shape and chemical
composition
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Model evaluation: Docking and
druglikeness

Data QVina2 (All) |  QVina2 (Top-10%) | | QED 1 logP1T MolWt1 H-acceptors{ H-donors? Lipinski

CrossDocked test set -6.85492.33 - | 0471020 0.79 0.85 0.84 0.8 3351114
PoLiGenX -7.2142.22 -804 5 44 | 0.590 20 0.91 0.87 0.85 091 3.5710.93
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The expressiveness of the latents
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Control over the latents
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Summary

* Introduction of an easy and efficient way to incorporate a
constraining mechanism into diffusion-based SBDD models via latent
conditioning

* High shape similarity with reference ligands, while chemical
diversification is guaranteed (no mode collaps etc.)

* Docking scores and druglikeness are favorable

* The latent model learns expressive embeddings (that could be also
used downstream for other purposes)

* Flexible control over the latent strength



Thanks!

Questions?
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